

Welcome to FireSim’s documentation!

New to FireSim? Jump to the FireSim Basics page for more info.

Getting Started:

	1. FireSim Basics
	1.1. Two common use cases:
	1.1.1. Single-Node Simulation, in Parallel

	1.1.2. Datacenter/Cluster Simulation

	1.2. Other Use Cases

	1.3. Background/Terminology

	1.4. Using FireSim/The FireSim Workflow

	2. Initial Setup/Installation
	2.1. First-time AWS User Setup
	2.1.1. Creating an AWS Account

	2.1.2. AWS Credit at Berkeley

	2.1.3. Requesting Limit Increases

	2.2. Configuring Required Infrastructure in Your AWS Account
	2.2.1. Select a region

	2.2.2. Key Setup

	2.2.3. Check your EC2 Instance Limits

	2.2.4. Start a t2.nano instance to run the remaining configuration commands

	2.2.5. Run scripts from the t2.nano

	2.2.6. Terminate the t2.nano

	2.2.7. Subscribe to the AWS FPGA Developer AMI

	2.3. Setting up your Manager Instance
	2.3.1. Launching a “Manager Instance”

	2.3.2. Setting up the FireSim Repo

	2.3.3. Completing Setup Using the Manager

	3. Running FireSim Simulations
	3.1. Running a Single Node Simulation
	3.1.1. Building target software

	3.1.2. Setting up the manager configuration

	3.1.3. Launching a Simulation!

	3.2. Running a Cluster Simulation
	3.2.1. Returning to a clean configuration

	3.2.2. Building target software

	3.2.3. Setting up the manager configuration

	3.2.4. Launching a Simulation!

	4. Building Your Own Hardware Designs (FireSim FPGA Images)
	4.1. Amazon S3 Setup

	4.2. Build Recipes

	4.3. Running a Build

Advanced Docs:

	Manager Usage (the firesim command)
	1. Overview
	1.1. “Inputs” to the Manager

	1.2. Logging

	2. Manager Command Line Arguments
	2.1. --runtimeconfigfile FILENAME

	2.2. --buildconfigfile FILENAME

	2.3. --buildrecipesconfigfile FILENAME

	2.4. --hwdbconfigfile FILENAME

	2.5. --overrideconfigdata SECTION PARAMETER VALUE

	2.6. TASK

	3. Manager Tasks
	3.1. firesim managerinit

	3.2. firesim buildafi

	3.3. firesim shareagfi

	3.4. firesim launchrunfarm

	3.5. firesim terminaterunfarm

	3.6. firesim infrasetup

	3.7. firesim boot

	3.8. firesim kill

	3.9. firesim runworkload

	3.10. firesim runcheck

	4. Manager Configuration Files
	4.1. config_runtime.ini

	4.2. config_build.ini

	4.3. config_build_recipes.ini

	4.4. config_hwdb.ini

	5. Manager Environment Variables
	5.1. FIRESIM_RUNFARM_PREFIX

	6. Manager Network Topology Definitions (user_topology.py)
	6.1. user_topology.py contents:

	7. AGFI Metadata/Tagging

	Workloads
	Defining Custom Workloads
	Uniform Workload JSON

	Non-uniform Workload JSON (explicit job per simulated node)

	SPEC 2017
	Intspeed

	Intrate

	Running Fedora on FireSim

	ISCA 2018 Experiments
	Prerequisites

	Building Benchmark Binaries/Rootfses

	Figure 5: Ping Latency vs. Configured Link Latency

	Figure 6: Network Bandwidth Saturation

	Figure 7: Memcached QoS / Thread Imbalance

	Figure 8: Simulation Rate vs. Scale

	Figure 9: Simulation Rate vs. Link Latency

	Running all experiments at once

	GAP Benchmark Suite

	FireMarshal
	Quick Start

	Targets
	Restrictions on Target RTL

	Provided Target Designs
	Target Generator Organization

	Specifying A Target Instance

	Rocket Chip Generator-based SoCs (firesim project)
	Rocket-based SoCs

	BOOM-based SoCs

	Generating A Different FASED Memory-Timing Model Instance

	Midas Examples (midasexamples project)
	Examples

	FASED Tests (fasedtests project)
	Examples

	Debugging
	Debugging & Testing with RTL Simulation
	Target-Level Simulation

	MIDAS-Level Simulation

	FPGA-Level Simulation

	Scala Tests

	Debugging Using FPGA Integrated Logic Analyzers (ILA)
	Annotating Signals

	Setting a ILA Depth

	Using the ILA at Runtime

	Debugging Using TracerV
	Building a Design with TracerV

	Enabling Tracing at Runtime

	Interpreting the Trace Result

	Assertion Synthesis
	Enabling Assertion Synthesis

	Runtime Behavior

	Related Publications

	Printf Synthesis
	Enabling Printf Synthesis

	Runtime Arguments

	Related Publications

	Supernode - Multiple Simulated SoCs Per FPGA
	Introduction

	Building Supernode Designs

	Running Supernode Simulations

	Work in Progress!

	Miscellaneous Tips
	Add the fsimcluster column to your AWS management console

	FPGA Dev AMI Remote Desktop Setup

	Experimental Support for SSHing into simulated nodes and accessing the internet from within simulations

	Navigating the FireSim Codebase

	FireSim Asked Questions
	I just bumped the FireSim repository to a newer commit and simulations aren’t running. What is going on?

	Is there a good way to keep track of what AGFI corresponds to what FireSim commit?

Golden Gate (MIDAS II) Docs:

	Overview & Philosophy
	Golden Gate vs FPGA Prototyping

	Why Use Golden Gate & FireSim

	Why Not Golden Gate

	How is Host-Decoupling Implemented?

	Target Abstraction & Host Decoupling
	The Target as a Dataflow Graph

	Model Implementations

	Expressing the Target Graph

	Latency-Insensitive Bounded Dataflow Networks

	Target-to-Host Bridges
	Use Cases

	Defining A Bridge

	Target Side

	What Happens Next?

	Host-side Implementation

	Compile-Time (Parameterization) vs Runtime Configuration

	Target-Side vs Host-Side Parameterization

Indices and tables

	Index

	Module Index

	Search Page

1. FireSim Basics

FireSim is a cycle-accurate, FPGA-accelerated scale-out computer system
simulation platform developed in the Berkeley Architecture Research Group in
the EECS Department at the University of California, Berkeley.

FireSim is capable of simulating from one to thousands of multi-core compute
nodes, derived from silicon-proven and open target-RTL, with an optional
cycle-accurate network simulation tying them together. FireSim runs on FPGAs in public
cloud environments like AWS EC2 F1, removing the high capex traditionally
involved in large-scale FPGA-based simulation.

FireSim is useful both for datacenter architecture research as well as running
many single-node architectural experiments in parallel on FPGAs. By harnessing
a standardized host platform and providing a large amount of
automation/tooling, FireSim drastically simplifies the process of building and
deploying large-scale FPGA-based hardware simulations.

To learn more, see the FireSim website [https://fires.im] and the FireSim
ISCA 2018 paper [https://sagark.org/assets/pubs/firesim-isca2018.pdf].

For a two-minute overview that describes how FireSim simulates a datacenter,
see our ISCA 2018 lightning talk on YouTube [https://www.youtube.com/watch?v=4XwoSe5c8lY].

1.1. Two common use cases:

1.1.1. Single-Node Simulation, in Parallel

In this mode, FireSim allows for simulation of individual Rocket
Chip-based nodes without a network, which allows individual simulations to run
at ~150 MHz. The FireSim manager has the ability to automatically distribute
jobs to many parallel simulations, expediting the process of running large
workloads like SPEC. For example, users can run all of SPECInt2017 on Rocket Chip
in ~1 day by running the 10 separate workloads in parallel on 10 FPGAs.

1.1.2. Datacenter/Cluster Simulation

In this mode, FireSim also models a cycle-accurate network with
parameterizeable bandwidth and link latency, as well as configurable
topology, to accurately model current and future datacenter-scale
systems. For example, FireSim has been used to simulate 1024 quad-core
Rocket Chip-based nodes, interconnected by a 200 Gbps, 2us network. To learn
more about this use case, see our ISCA 2018 paper [https://sagark.org/assets/pubs/firesim-isca2018.pdf] or two-minute lightning talk [https://www.youtube.com/watch?v=4XwoSe5c8lY].

1.2. Other Use Cases

This release does not support a non-cycle-accurate network as our AWS Compute Blog Post/Demo [https://aws.amazon.com/blogs/compute/bringing-datacenter-scale-hardware-software-co-design-to-the-cloud-with-firesim-and-amazon-ec2-f1-instances/]
used. This feature will be restored in a future release.

If you have other use-cases that we haven’t covered, feel free to contact us!

1.3. Background/Terminology

[image: FireSim Infrastructure Setup]
FireSim Infrastructure Diagram

	FireSim Manager (firesim)

	This program (available on your path as firesim
once we source necessary scripts) automates the work required to launch FPGA
builds and run simulations. Most users will only have to interact with the
manager most of the time. If you’re familiar with tools like Vagrant or Docker, the firesim
command is just like the vagrant and docker commands, but for FPGA simulators
instead of VMs/containers.

	Manager Instance

	This is the AWS EC2 instance that you will
SSH-into and do work on. This is where you’ll clone your copy of FireSim and
use the FireSim Manager to deploy builds/simulations from.

	Build Farm

	These are instances that are elastically
started/terminated by the FireSim manager when you run FPGA builds.
The manager will automatically ship source for builds to these instances and
run the Verilog -> FPGA Image process on them.

	Run Farm

	These are a tagged collection of F1 (and M4) instances that the manager
automatically launches and deploys simulations onto. You can launch multiple
Run Farms in parallel, each with their own tag, to run multiple separate
simulations in parallel.

To disambiguate between the computers being simulated and the computers doing
the simulating, we also define:

	Target

	The design and environment under simulation. Generally, a
group of one or more multi-core RISC-V microprocessors with or without a network between them.

	Host

	The computers executing the FireSim simulation – the Run Farm from above.

We frequently prefix words with these terms. For example, software can run
on the simulated RISC-V system (target-software) or on a host x86 machine (host-software).

	Golden Gate (MIDAS II)

	The FIRRTL compiler used by FireSim to convert target RTL into a decoupled
simulator. Formerly named MIDAS.

1.4. Using FireSim/The FireSim Workflow

The tutorials that follow this page will guide you through the complete flow for
getting an example FireSim simulation up and running. At the end of this
tutorial, you’ll have a simulation that simulates a single quad-core Rocket
Chip-based node with a 4 MB last level cache, 16 GB DDR3, and no NIC. After
this, you can continue to a tutorial that shows you how to simulate
a globally-cycle-accurate cluster-scale FireSim simulation. The final tutorial
will show you how to build your own FPGA images with customized hardware.
After you complete these tutorials, you can look at the Advanced documentation
in the sidebar to the left.

Here’s a high-level outline of what we’ll be doing in our tutorials:

	Initial Setup/Installation

	First-time AWS User Setup: You can skip this if you already have an AWS
account/payment method set up.

	Configuring required AWS resources in your account: This sets up the
appropriate VPCs/subnets/security groups required to run FireSim.

	Setting up a “Manager Instance” from which you will coordinate building
and deploying simulations.

	Single-node simulation tutorial: This tutorial guides you through the process of running one simulation on a Run Farm consisting of a single f1.2xlarge, using our pre-built public FireSim AGFIs.

	Cluster simulation tutorial: This tutorial guides you through the process of running an 8-node cluster simulation on a Run Farm consisting of one f1.16xlarge, using our pre-built public FireSim AGFIs and switch models.

	Building your own hardware designs tutorial (Chisel to FPGA Image): This tutorial guides you through the full process of taking Rocket Chip RTL and any custom RTL plugged into Rocket Chip and producing a FireSim AGFI to plug into your simulations. This automatically runs Chisel elaboration, FAME-1 Transformation, and the Vivado FPGA flow.

Generally speaking, you only need to follow step 4 if you’re modifying Chisel
RTL or changing non-runtime configurable hardware parameters.

Now, hit next to proceed with setup.

2. Initial Setup/Installation

This section will guide you through initial setup of your AWS account to support
FireSim, as well as cloning/installing FireSim on your manager instance.

Initial Setup/Installation:

	2.1. First-time AWS User Setup
	2.1.1. Creating an AWS Account

	2.1.2. AWS Credit at Berkeley

	2.1.3. Requesting Limit Increases

	2.2. Configuring Required Infrastructure in Your AWS Account
	2.2.1. Select a region

	2.2.2. Key Setup

	2.2.3. Check your EC2 Instance Limits

	2.2.4. Start a t2.nano instance to run the remaining configuration commands

	2.2.5. Run scripts from the t2.nano

	2.2.6. Terminate the t2.nano

	2.2.7. Subscribe to the AWS FPGA Developer AMI

	2.3. Setting up your Manager Instance
	2.3.1. Launching a “Manager Instance”

	2.3.2. Setting up the FireSim Repo

	2.3.3. Completing Setup Using the Manager

2.1. First-time AWS User Setup

If you’ve never used AWS before and don’t have an account, follow the instructions
below to get started.

2.1.1. Creating an AWS Account

First, you’ll need an AWS account. Create one by going to
aws.amazon.com [https://aws.amazon.com] and clicking “Sign Up.”
You’ll want to create a personal account. You will have to give it a
credit card number.

2.1.2. AWS Credit at Berkeley

If you’re an internal user at Berkeley and affiliated with UCB-BAR or the RISE
Lab, see the RISE Lab Wiki [https://rise.cs.berkeley.edu/wiki/resources/aws] for instructions on
getting access to the AWS credit pool. Otherwise, continue with the following section.

2.1.3. Requesting Limit Increases

In our experience, new AWS accounts do not have access to EC2 F1 instances by
default. In order to get access, you should file a limit increase
request.

Follow these steps to do so:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html

You’ll probably want to start out with the following requests, depending on your existing limits:

Request 1:

Region: US East (Northern Virginia)
Primary Instance Type: f1.2xlarge
Limit: Instance Limit
New limit value: 1

Request 2:

Region: US East (Northern Virginia)
Primary Instance Type: f1.16xlarge
Limit: Instance Limit
New limit value: 1

This allows you to run one node on the f1.2xlarge or eight nodes on the
f1.16xlarge.

For the “Use Case Description”, you should describe your project and write
something about hardware simulation and mention that information about the tool
you’re using can be found at: https://fires.im

This process has a human in the loop, so you should submit it ASAP. At
this point, you should wait for the response to this request.

If you’re at Berkeley/UCB-BAR, you also need to wait until your account has
been added to the RISE billing pool, otherwise your personal CC will be charged
for AWS usage.

Hit Next below to continue.

2.2. Configuring Required Infrastructure in Your AWS Account

Once we have an AWS Account setup, we need to perform some advance setup
of resources on AWS. You will need to follow these steps even if you
already had an AWS account as these are FireSim-specific.

2.2.1. Select a region

Head to the EC2 Management
Console [https://console.aws.amazon.com/ec2/v2/home]. In the top
right corner, ensure that the correct region is selected. You should
select one of: us-east-1 (N. Virginia), us-west-2 (Oregon), or eu-west-1
(Ireland), since F1 instances are only available in those regions.

Once you select a region, it’s useful to bookmark the link to the EC2
console, so that you’re always sent to the console for the correct
region.

2.2.2. Key Setup

In order to enable automation, you will need to create a key named
firesim, which we will use to launch all instances (Manager
Instance, Build Farm, Run Farm).

To do so, click “Key Pairs” under “Network & Security” in the
left-sidebar. Follow the prompts, name the key firesim, and save the
private key locally as firesim.pem. You can use this key to access
all instances from your local machine. We will copy this file to our
manager instance later, so that the manager can also use it.

2.2.3. Check your EC2 Instance Limits

AWS limits access to particular instance types for new/infrequently used
accounts to protect their infrastructure. You should make sure that your
account has access to f1.2xlarge, f1.4xlarge, f1.16xlarge,
m4.16xlarge, and c5.4xlarge instances by looking at the “Limits” page
in the EC2 panel, which you can access
here [https://console.aws.amazon.com/ec2/v2/home#Limits:]. The
values listed on this page represent the maximum number of any of these
instances that you can run at once, which will limit the size of
simulations (# of nodes) that you can run. If you need to increase your
limits, follow the instructions on the
Requesting Limit Increases page.
To follow this guide, you need to be able to run one f1.2xlarge instance
and two c5.4xlarge instances.

2.2.4. Start a t2.nano instance to run the remaining configuration commands

To avoid having to deal with the messy process of installing packages on
your local machine, we will spin up a very cheap t2.nano instance to
run a series of one-time aws configuration commands to setup our AWS
account for FireSim. At the end of these instructions, we’ll terminate
the t2.nano instance. If you happen to already have boto3 and
the AWS CLI installed on your local machine, you can do this locally.

Launch a t2.nano by following these instructions:

	Go to the EC2 Management
Console [https://console.aws.amazon.com/ec2/v2/home] and click
“Launch Instance”

	On the AMI selection page, select “Amazon Linux AMI…”, which should
be the top option.

	On the Choose an Instance Type page, select t2.nano.

	Click “Review and Launch” (we don’t need to change any other
settings)

	On the review page, click “Launch”

	Select the firesim key pair we created previously, then click
Launch Instances.

	Click on the instance name and note its public IP address.

2.2.5. Run scripts from the t2.nano

SSH into the t2.nano like so:

ssh -i firesim.pem ec2-user@INSTANCE_PUBLIC_IP

Which should present you with something like:

Last login: Mon Feb 12 21:11:27 2018 from 136.152.143.34

 __| __|_)
 _| (/ Amazon Linux AMI
 ___|___|___|

https://aws.amazon.com/amazon-linux-ami/2017.09-release-notes/
4 package(s) needed for security, out of 5 available
Run "sudo yum update" to apply all updates.
[ec2-user@ip-172-30-2-66 ~]$

On this machine, run the following:

aws configure
[follow prompts]

See
https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#configure-cli-launch-ec2
for more about aws configure. You should specify the same region that you chose
above (one of us-east-1, us-west-2, eu-west-1) and set the default
output format to json.

Again on the t2.nano instance, do the following:

sudo yum -y install python-pip
sudo pip install boto3
wget https://raw.githubusercontent.com/firesim/firesim/master/scripts/aws-setup.py
python aws-setup.py

This will create a VPC named firesim and a security group named
firesim in your account.

2.2.6. Terminate the t2.nano

At this point, we are finished with the general account configuration.
You should terminate the t2.nano instance you created, since we do not
need it anymore (and it shouldn’t contain any important data).

2.2.7. Subscribe to the AWS FPGA Developer AMI

Go to the AWS Marketplace page for the FPGA Developer
AMI [https://aws.amazon.com/marketplace/pp/B06VVYBLZZ]. Click the
button to subscribe to the FPGA Dev AMI (it should be free) and follow
the prompts to accept the EULA (but do not launch any instances).

Now, hit next to continue on to setting up our Manager Instance.

2.3. Setting up your Manager Instance

2.3.1. Launching a “Manager Instance”

Now, we need to launch a “Manager Instance” that acts as a
“head” node that we will ssh or mosh into to work from.
Since we will deploy the heavy lifting to separate c5.4xlarge and
f1 instances later, the Manager Instance can be a relatively cheap instance. In this guide, however,
we will use a c5.4xlarge,
running the AWS FPGA Developer AMI (be sure to subscribe if you have not done so. See Subscribe to the AWS FPGA Developer AMI).

Head to the EC2 Management
Console [https://console.aws.amazon.com/ec2/v2/home]. In the top
right corner, ensure that the correct region is selected.

To launch a manager instance, follow these steps:

	From the main page of the EC2 Management Console, click
Launch Instance. We use an on-demand instance here, so that your
data is preserved when you stop/start the instance, and your data is
not lost when pricing spikes on the spot market.

	When prompted to select an AMI, search in the Community AMIs tab for
“FPGA” and select the option that starts with FPGA Developer AMI - 1.6.0.
DO NOT USE ANY OTHER VERSION.

	When prompted to choose an instance type, select the instance type of
your choosing. A good choice is a c5.4xlarge.

	On the “Configure Instance Details” page:

	First make sure that the firesim VPC is selected in the
drop-down box next to “Network”. Any subnet within the firesim
VPC is fine.

	Additionally, check the box for “Protect against accidental
termination.” This adds a layer of protection to prevent your
manager instance from being terminated by accident. You will need
to disable this setting before being able to terminate the
instance using usual methods.

	Also on this page, expand “Advanced Details” and in the resulting
text box, paste the following:

#!/bin/bash
echo "machine launch script started" > /home/centos/machine-launchstatus
sudo yum install -y mosh
sudo yum groupinstall -y "Development tools"
sudo yum install -y gmp-devel mpfr-devel libmpc-devel zlib-devel vim git java java-devel
curl https://bintray.com/sbt/rpm/rpm | sudo tee /etc/yum.repos.d/bintray-sbt-rpm.repo
sudo yum install -y sbt texinfo gengetopt
sudo yum install -y expat-devel libusb1-devel ncurses-devel cmake "perl(ExtUtils::MakeMaker)"
deps for poky
sudo yum install -y python36 patch diffstat texi2html texinfo subversion chrpath git wget
deps for qemu
sudo yum install -y gtk3-devel
deps for firesim-software (note that rsync is installed but too old)
sudo yum install -y python36-pip python36-devel rsync
Install GNU make 4.x (needed to cross-compile glibc 2.28+)
sudo yum install -y centos-release-scl
sudo yum install -y devtoolset-8-make

install DTC. it's not available in repos in FPGA AMI
DTCversion=dtc-1.4.4
wget https://git.kernel.org/pub/scm/utils/dtc/dtc.git/snapshot/$DTCversion.tar.gz
tar -xvf $DTCversion.tar.gz
cd $DTCversion
make -j16
make install
cd ..
rm -rf $DTCversion.tar.gz
rm -rf $DTCversion

get a proper version of git
sudo yum -y remove git
sudo yum -y install epel-release
sudo yum -y install https://centos7.iuscommunity.org/ius-release.rpm
sudo yum -y install git2u

install verilator
git clone http://git.veripool.org/git/verilator
cd verilator/
git checkout v4.002
autoconf && ./configure && make -j16 && sudo make install
cd ..

bash completion for manager
sudo yum -y install bash-completion

graphviz for manager
sudo yum -y install graphviz python-devel

these need to match what's in deploy/requirements.txt
sudo pip2 install fabric==1.14.0
sudo pip2 install boto3==1.6.2
sudo pip2 install colorama==0.3.7
sudo pip2 install argcomplete==1.9.3
sudo pip2 install graphviz==0.8.3
for some of our workload plotting scripts
sudo pip2 install --upgrade --ignore-installed pyparsing
sudo pip2 install matplotlib==2.2.2
sudo pip2 install pandas==0.22.0
new awscli on 1.6.0 AMI is broken with our versions of boto3
sudo pip2 install awscli==1.15.76

sudo activate-global-python-argcomplete

get a regular prompt
echo "PS1='\u@\H:\w\\$ '" >> /home/centos/.bashrc
echo "machine launch script completed" >> /home/centos/machine-launchstatus

This will pre-install all of the dependencies needed to run FireSim on your instance.

	On the next page (“Add Storage”), increase the size of the root EBS
volume to ~300GB. The default of 150GB can quickly become tight as
you accumulate large Vivado reports/outputs, large waveforms, XSim outputs,
and large root filesystems for simulations. You can get rid of the
small (5GB) secondary volume that is added by default.

	You can skip the “Add Tags” page, unless you want tags.

	On the “Configure Security Group” page, select the firesim
security group that was automatically created for you earlier.

	On the review page, click the button to launch your instance.

Make sure you select the firesim key pair that we setup earlier.

2.3.1.1. Access your instance

We HIGHLY recommend using mosh [https://mosh.org/] instead
of ssh or using ssh with a screen/tmux session running on your
manager instance to ensure that long-running jobs are not killed by a
bad network connection to your manager instance. On this instance, the
mosh server is installed as part of the setup script we pasted
before, so we need to first ssh into the instance and make sure the
setup is complete.

In either case, ssh into your instance (e.g. ssh -i firesim.pem centos@YOUR_INSTANCE_IP) and wait until the
~/machine-launchstatus file contains all the following text:

centos@ip-172-30-2-140.us-west-2.compute.internal:~$ cat machine-launchstatus
machine launch script started
machine launch script completed!

Once this line appears, exit and re-ssh into the system. If you want
to use mosh, mosh back into the system.

2.3.1.2. Key Setup, Part 2

Now that our manager instance is started, copy the private key that you
downloaded from AWS earlier (firesim.pem) to ~/firesim.pem on
your manager instance. This step is required to give the manager access
to the instances it launches for you.

2.3.2. Setting up the FireSim Repo

We’re finally ready to fetch FireSim’s sources. Run:

git clone https://github.com/firesim/firesim
cd firesim
./build-setup.sh fast

This will have initialized submodules and installed the RISC-V tools and
other dependencies.

Next, run:

source sourceme-f1-manager.sh

This will have initialized the AWS shell, added the RISC-V tools to your
path, and started an ssh-agent that supplies ~/firesim.pem
automatically when you use ssh to access other nodes. Sourcing this the
first time will take some time – however each time after that should be instantaneous.
Also, if your firesim.pem key requires a passphrase, you will be asked for
it here and ssh-agent should cache it.

Every time you login to your manager instance to use FireSim, you should ``cd`` into
your firesim directory and source this file again.

2.3.3. Completing Setup Using the Manager

The FireSim manager contains a command that will interactively guide you
through the rest of the FireSim setup process. To run it, do the following:

firesim managerinit

This will first prompt you to setup AWS credentials on the instance, which allows
the manager to automatically manage build/simulation nodes. See
https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#configure-cli-launch-ec2
for more about these credentials. When prompted, you should specify the same
region that you chose above and set the default output format to json.

Next, it will create initial configuration files, which we will edit in later
sections. Finally, it will prompt you for an email address, which is used to
send email notifications upon FPGA build completion and optionally for
workload completion. You can leave this blank if you do not wish to receive any
notifications, but this is not recommended.

Now you’re ready to launch FireSim simulations! Hit Next to learn how to run single-node simulations.

3. Running FireSim Simulations

These guides will walk you through running two kinds of simulations:

	First, we will simulate a single-node, non-networked target, using a pre-generated
hardware image.

	Then, we will simulate an eight-node, networked cluster target, also using
a pre-generated hardware image.

Hit next to get started!

Running FireSim Simulations:

	3.1. Running a Single Node Simulation
	3.1.1. Building target software

	3.1.2. Setting up the manager configuration

	3.1.3. Launching a Simulation!

	3.2. Running a Cluster Simulation
	3.2.1. Returning to a clean configuration

	3.2.2. Building target software

	3.2.3. Setting up the manager configuration

	3.2.4. Launching a Simulation!

3.1. Running a Single Node Simulation

Now that we’ve completed the setup of our manager instance, it’s time to run
a simulation! In this section, we will simulate 1 target node, for which we
will need a single f1.2xlarge (1 FPGA) instance.

Make sure you are ssh or mosh’d into your manager instance and have sourced
sourceme-f1-manager.sh before running any of these commands.

3.1.1. Building target software

In these instructions, we’ll assume that you want to boot Linux on your
simulated node. To do so, we’ll need to build our FireSim-compatible RISC-V
Linux distro. For this tutorial, we will use a simple buildroot-based
distribution. You can do this like so:

cd firesim/sw/firesim-software
./marshal -v build workloads/br-base.json

This process will take about 10 to 15 minutes on a c5.4xlarge instance.
Once this is completed, you’ll have the following files:

	firesim/sw/firesim-software/images/br-base-bin - a bootloader + Linux
kernel image for the nodes we will simulate.

	firesim/sw/firesim-software/images/br-base.img - a disk image for
each the nodes we will simulate

These files will be used to form base images to either build more complicated
workloads (see the Defining Custom Workloads section) or to copy around
for deploying.

3.1.2. Setting up the manager configuration

All runtime configuration options for the manager are set in a file called
firesim/deploy/config_runtime.ini. In this guide, we will explain only the
parts of this file necessary for our purposes. You can find full descriptions of
all of the parameters in the Manager Configuration Files section.

If you open up this file, you will see the following default config (assuming
you have not modified it):

RUNTIME configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation of all of these params.

[runfarm]
runfarmtag=mainrunfarm

f1_16xlarges=1
m4_16xlarges=0
f1_4xlarges=0
f1_2xlarges=0

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=example_8config
no_net_num_nodes=2
linklatency=6405
switchinglatency=10
netbandwidth=200
profileinterval=-1

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-nic-l2-llc4mb-ddr3

[tracing]
enable=no
startcycle=0
endcycle=-1

[workload]
workloadname=linux-uniform.json
terminateoncompletion=no

We’ll need to modify a couple of these lines.

First, let’s tell the manager to use the correct numbers and types of instances.
You’ll notice that in the [runfarm] section, the manager is configured to
launch a Run Farm named mainrunfarm, consisting of one f1.16xlarge and
no m4.16xlarges, f1.4xlarges, or f1.2xlarges. The tag specified here allows the
manager to differentiate amongst many parallel run farms (each running
a workload) that you may be operating – but more on that later.

Since we only want to simulate a single node, let’s switch to using one
f1.2xlarge and no f1.16xlarges. To do so, change this section to:

[runfarm]
per aws restrictions, this tag cannot be longer than 255 chars
runfarmtag=mainrunfarm
f1_16xlarges=0
f1_4xlarges=0
m4_16xlarges=0
f1_2xlarges=1

You’ll see other parameters here, like runinstancemarket,
spotinterruptionbehavior, and spotmaxprice. If you’re an experienced
AWS user, you can see what these do by looking at the
Manager Configuration Files section. Otherwise, don’t change them.

Now, let’s change the [targetconfig] section to model the correct target design.
By default, it is set to model an 8-node cluster with a cycle-accurate network.
Instead, we want to model a single-node with no network. To do so, we will need
to change a few items in this section:

[targetconfig]
topology=no_net_config
no_net_num_nodes=1
linklatency=6405
switchinglatency=10
netbandwidth=200

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-no-nic-l2-llc4mb-ddr3

Note that we changed three of the parameters here: topology is now set to
no_net_config, indicating that we do not want a network. Then,
no_net_num_nodes is set to 1, indicating that we only want to simulate
one node. Lastly, we changed defaulthwconfig from
firesim-quadcore-nic-l2-llc4mb-ddr3 to
firesim-quadcore-no-nic-l2-llc4mb-ddr3. Notice the subtle difference in this
last option? All we did is switch to a hardware configuration that does not
have a NIC. This hardware configuration models a Quad-core Rocket Chip with 4
MB of L2 cache and 16 GB of DDR3, and no network interface card.

We will leave the last section ([workload]) unchanged here, since we do
want to run the buildroot-based Linux on our simulated system. The terminateoncompletion
feature is an advanced feature that you can learn more about in the
Manager Configuration Files section.

As a final sanity check, your config_runtime.ini file should now look like this:

RUNTIME configuration for the FireSim Simulation Manager
See docs/Configuration-Details.rst for documentation of all of these params.

[runfarm]
runfarmtag=mainrunfarm

f1_16xlarges=0
f1_4xlarges=0
m4_16xlarges=0
f1_2xlarges=1

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=no_net_config
no_net_num_nodes=1
linklatency=6405
switchinglatency=10
netbandwidth=200

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-no-nic-l2-llc4mb-ddr3

[workload]
workloadname=linux-uniform.json
terminateoncompletion=no

Attention

[Advanced users] Simulating BOOM instead of Rocket Chip: If you would like to simulate a single-core BOOM [https://github.com/ucb-bar/riscv-boom] as a target, set defaulthwconfig to fireboom-singlecore-no-nic-l2-llc4mb-ddr3.

3.1.3. Launching a Simulation!

Now that we’ve told the manager everything it needs to know in order to run
our single-node simulation, let’s actually launch an instance and run it!

3.1.3.1. Starting the Run Farm

First, we will tell the manager to launch our Run Farm, as we specified above.
When you do this, you will start getting charged for the running EC2 instances
(in addition to your manager).

To do launch your run farm, run:

firesim launchrunfarm

You should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim launchrunfarm
FireSim Manager. Docs: http://docs.fires.im
Running: launchrunfarm

Waiting for instance boots: f1.16xlarges
Waiting for instance boots: f1.4xlarges
Waiting for instance boots: m4.16xlarges
Waiting for instance boots: f1.2xlarges
i-0d6c29ac507139163 booted!
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-19-43-launchrunfarm-B4Q2ROAK0JN9EDE4.log

The output will rapidly progress to Waiting for instance boots: f1.2xlarges
and then take a minute or two while your f1.2xlarge instance launches.
Once the launches complete, you should see the instance id printed and the instance
will also be visible in your AWS EC2 Management console. The manager will tag
the instances launched with this operation with the value you specified above
as the runfarmtag parameter from the config_runtime.ini file, which we left
set as mainrunfarm. This value allows the manager to tell multiple Run Farms
apart – i.e., you can have multiple independent Run Farms running different
workloads/hardware configurations in parallel. This is detailed in the
Manager Configuration Files and the firesim launchrunfarm
sections – you do not need to be familiar with it here.

3.1.3.2. Setting up the simulation infrastructure

The manager will also take care of building and deploying all software
components necessary to run your simulation. The manager will also handle
flashing FPGAs. To tell the manager to setup our simulation infrastructure,
let’s run:

firesim infrasetup

For a complete run, you should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim infrasetup
FireSim Manager. Docs: http://docs.fires.im
Running: infrasetup

Building FPGA software driver for FireSimNoNIC-FireSimRocketChipQuadCoreConfig-FireSimDDR3FRFCFSLLC4MBConfig
[172.30.2.174] Executing task 'instance_liveness'
[172.30.2.174] Checking if host instance is up...
[172.30.2.174] Executing task 'infrasetup_node_wrapper'
[172.30.2.174] Copying FPGA simulation infrastructure for slot: 0.
[172.30.2.174] Installing AWS FPGA SDK on remote nodes.
[172.30.2.174] Unloading XDMA/EDMA/XOCL Driver Kernel Module.
[172.30.2.174] Copying AWS FPGA XDMA driver to remote node.
[172.30.2.174] Loading XDMA Driver Kernel Module.
[172.30.2.174] Clearing FPGA Slot 0.
[172.30.2.174] Flashing FPGA Slot: 0 with agfi: agfi-0eaa90f6bb893c0f7.
[172.30.2.174] Unloading XDMA/EDMA/XOCL Driver Kernel Module.
[172.30.2.174] Loading XDMA Driver Kernel Module.
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-32-02-infrasetup-9DJJCX29PF4GAIVL.log

Many of these tasks will take several minutes, especially on a clean copy of
the repo. The console output here contains the “user-friendly” version of the
output. If you want to see detailed progress as it happens, tail -f the
latest logfile in firesim/deploy/logs/.

At this point, the f1.2xlarge instance in our Run Farm has all the infrastructure
necessary to run a simulation.

So, let’s launch our simulation!

3.1.3.3. Running a simulation!

Finally, let’s run our simulation! To do so, run:

firesim runworkload

This command boots up a simulation and prints out the live status of the simulated
nodes every 10s. When you do this, you will initially see output like:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim runworkload
FireSim Manager. Docs: http://docs.fires.im
Running: runworkload

Creating the directory: /home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/
[172.30.2.174] Executing task 'instance_liveness'
[172.30.2.174] Checking if host instance is up...
[172.30.2.174] Executing task 'boot_simulation_wrapper'
[172.30.2.174] Starting FPGA simulation for slot: 0.
[172.30.2.174] Executing task 'monitor_jobs_wrapper'

If you don’t look quickly, you might miss it, since it will get replaced with a
live status page:

FireSim Simulation Status @ 2018-05-19 00:38:56.062737
--
This workload's output is located in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/
This run's log is located in:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.log
This status will update every 10s.
--
Instances
--
Instance IP: 172.30.2.174 | Terminated: False
--
Simulated Switches
--
--
Simulated Nodes/Jobs
--
Instance IP: 172.30.2.174 | Job: linux-uniform0 | Sim running: True
--
Summary
--
1/1 instances are still running.
1/1 simulations are still running.
--

This will only exit once all of the simulated nodes have shut down. So, let’s let it
run and open another ssh connection to the manager instance. From there, cd into
your firesim directory again and source sourceme-f1-manager.sh again to get
our ssh key setup. To access our simulated system, ssh into the IP address being
printed by the status page, from your manager instance. In our case, from
the above output, we see that our simulated system is running on the instance with
IP 172.30.2.174. So, run:

[RUN THIS ON YOUR MANAGER INSTANCE!]
ssh 172.30.2.174

This will log you into the instance running the simulation. Then, to attach to the
console of the simulated system, run:

screen -r fsim0

Voila! You should now see Linux booting on the simulated system and then be prompted
with a Linux login prompt, like so:

[truncated Linux boot output]
[0.020000] VFS: Mounted root (ext2 filesystem) on device 254:0.
[0.020000] devtmpfs: mounted
[0.020000] Freeing unused kernel memory: 140K
[0.020000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device
Starting logging: OK
Starting mdev...
mdev: /sys/dev: No such file or directory
modprobe: can't change directory to '/lib/modules': No such file or directory
Initializing random number generator... done.
Starting network: ip: SIOCGIFFLAGS: No such device
ip: can't find device 'eth0'
FAIL
Starting dropbear sshd: OK

Welcome to Buildroot
buildroot login:

You can ignore the messages about the network – that is expected because we
are simulating a design without a NIC.

Now, you can login to the system! The username is root and the password is
firesim. At this point, you should be presented with a regular console,
where you can type commands into the simulation and run programs. For example:

Welcome to Buildroot
buildroot login: root
Password:
uname -a
Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018 riscv64 GNU/Linux
#

At this point, you can run workloads as you’d like. To finish off this tutorial,
let’s poweroff the simulated system and see what the manager does. To do so,
in the console of the simulated system, run poweroff -f:

Welcome to Buildroot
buildroot login: root
Password:
uname -a
Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018 riscv64 GNU/Linux
poweroff -f

You should see output like the following from the simulation console:

poweroff -f
[12.456000] reboot: Power down
Power off
time elapsed: 468.8 s, simulation speed = 88.50 MHz
*** PASSED *** after 41492621244 cycles
Runs 41492621244 cycles
[PASS] FireSimNoNIC Test
SEED: 1526690334
Script done, file is uartlog

[screen is terminating]

You’ll also notice that the manager polling loop exited! You’ll see output like this
from the manager:

FireSim Simulation Status @ 2018-05-19 00:46:50.075885
--
This workload's output is located in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/
This run's log is located in:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.log
This status will update every 10s.
--
Instances
--
Instance IP: 172.30.2.174 | Terminated: False
--
Simulated Switches
--
--
Simulated Nodes/Jobs
--
Instance IP: 172.30.2.174 | Job: linux-uniform0 | Sim running: False
--
Summary
--
1/1 instances are still running.
0/1 simulations are still running.
--
FireSim Simulation Exited Successfully. See results in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.log

If you take a look at the workload output directory given in the manager output (in this case, /home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/), you’ll see the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform$ ls -la */*
-rw-rw-r-- 1 centos centos 797 May 19 00:46 linux-uniform0/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 00:46 linux-uniform0/os-release
-rw-rw-r-- 1 centos centos 7316 May 19 00:46 linux-uniform0/uartlog

What are these files? They are specified to the manager in a configuration file
(firesim/deploy/workloads/linux-uniform.json) as files that we want
automatically copied back to our manager after we run a simulation, which is
useful for running benchmarks automatically. The
Defining Custom Workloads section describes this process in detail.

For now, let’s wrap-up our tutorial by terminating the f1.2xlarge instance
that we launched. To do so, run:

firesim terminaterunfarm

Which should present you with the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim terminaterunfarm
FireSim Manager. Docs: http://docs.fires.im
Running: terminaterunfarm

IMPORTANT!: This will terminate the following instances:
f1.16xlarges
[]
f1.4xlarges
[]
m4.16xlarges
[]
f1.2xlarges
['i-0d6c29ac507139163']
Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.

You must type yes then hit enter here to have your instances terminated. Once
you do so, you will see:

[truncated output from above]
Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.
yes
Instances terminated. Please confirm in your AWS Management Console.
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-51-54-terminaterunfarm-T9ZAED3LJUQQ3K0N.log

At this point, you should always confirm in your AWS management console that
the instance is in the shutting-down or terminated states. You are ultimately
responsible for ensuring that your instances are terminated appropriately.

Congratulations on running your first FireSim simulation! At this point, you can
check-out some of the advanced features of FireSim in the sidebar to the left
(for example, we expect that many people will be interested in the ability to
automatically run the SPEC17 benchmarks: SPEC 2017), or you can continue
on with the cluster simulation tutorial.

3.2. Running a Cluster Simulation

Now, let’s move on to simulating a cluster of eight nodes, interconnected
by a network with one 8-port Top-of-Rack (ToR) switch and 200 Gbps, 2μs links.
This will require one f1.16xlarge (8 FPGA) instance.

Make sure you are ssh or mosh’d into your manager instance and have sourced
sourceme-f1-manager.sh before running any of these commands.

3.2.1. Returning to a clean configuration

If you already ran the single-node tutorial, let’s return to a clean FireSim
manager configuration by doing the following:

cd firesim/deploy
cp sample-backup-configs/sample_config_runtime.ini config_runtime.ini

3.2.2. Building target software

If you already built target software during the single-node tutorial, you can
skip to the next part (Setting up the manager configuration). If you haven’t followed the single-node tutorial,
continue with this section.

In these instructions, we’ll assume that you want to boot the buildroot-based
Linux distribution on each of the nodes in your simulated cluster. To do so,
we’ll need to build our FireSim-compatible RISC-V Linux distro. You can do
this like so:

cd firesim/sw/firesim-software
./marshal -v build workloads/br-base.json

This process will take about 10 to 15 minutes on a c5.4xlarge instance.
Once this is completed, you’ll have the following files:

	firesim/sw/firesim-software/images/br-disk-bin - a bootloader + Linux
kernel image for the nodes we will simulate.

	firesim/sw/firesim-software/images/br-disk.img - a disk image for
each the nodes we will simulate

These files will be used to form base images to either build more complicated
workloads (see the Defining Custom Workloads section) or to copy around
for deploying.

3.2.3. Setting up the manager configuration

All runtime configuration options for the manager are set in a file called
firesim/deploy/config_runtime.ini. In this guide, we will explain only the
parts of this file necessary for our purposes. You can find full descriptions of
all of the parameters in the Manager Configuration Files section.

If you open up this file, you will see the following default config (assuming
you have not modified it):

RUNTIME configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation of all of these params.

[runfarm]
runfarmtag=mainrunfarm

f1_16xlarges=1
m4_16xlarges=0
f1_4xlarges=0
f1_2xlarges=0

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=example_8config
no_net_num_nodes=2
linklatency=6405
switchinglatency=10
netbandwidth=200
profileinterval=-1

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-nic-l2-llc4mb-ddr3

[tracing]
enable=no
startcycle=0
endcycle=-1

[workload]
workloadname=linux-uniform.json
terminateoncompletion=no

For the 8-node cluster simulation, the defaults in this file are exactly what
we want. Let’s outline the important parameters:

	f1_16xlarges=1: This tells the manager that we want to launch one f1.16xlarge when we call the launchrunfarm command.

	topology=example_8config: This tells the manager to use the topology named example_8config which is defined in deploy/runtools/user_topology.py. This topology simulates an 8-node cluster with one ToR switch.

	linklatency=6405: This models a network with 6405 cycles of link latency. Since we are modeling processors running at 3.2 Ghz, 1 cycle = 1/3.2 ns, so 6405 cycles is roughly 2 microseconds.

	switchinglatency=10: This models switches with a minimum port-to-port latency of 10 cycles.

	netbandwidth=200: This sets the bandwidth of the NICs to 200 Gbit/s. Currently you can set any integer value less than this without making hardware modifications.

	defaulthwconfig=firesim-quadcore-nic-l2-llc4mb-ddr3: This tells the manager to use a quad-core Rocket Chip configuration with 512 KB of L2, 4 MB of L3 (LLC) and 16 GB of DDR3, with a NIC, for each of the simulated nodes in the topology.

You’ll see other parameters here, like runinstancemarket,
spotinterruptionbehavior, and spotmaxprice. If you’re an experienced
AWS user, you can see what these do by looking at the
Manager Configuration Files section. Otherwise, don’t change them.

As in the single-node tutorial, we will leave the last section ([workload])
unchanged here, since we do want to run the buildroot-based Linux on our
simulated system. The terminateoncompletion feature is an advanced feature
that you can learn more about in the Manager Configuration Files
section.

As a final sanity check, your config_runtime.ini file should now look like this:

RUNTIME configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation of all of these params.

[runfarm]
runfarmtag=mainrunfarm

f1_16xlarges=1
m4_16xlarges=0
f1_4xlarges=0
f1_2xlarges=0

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=example_8config
no_net_num_nodes=2
linklatency=6405
switchinglatency=10
netbandwidth=200
profileinterval=-1

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-nic-l2-llc4mb-ddr3

[tracing]
enable=no
startcycle=0
endcycle=-1

[workload]
workloadname=linux-uniform.json
terminateoncompletion=no

Attention

[Advanced users] Simulating BOOM instead of Rocket Chip: If you would like to simulate a single-core BOOM [https://github.com/ucb-bar/riscv-boom] as a target, set defaulthwconfig to fireboom-singlecore-nic-l2-llc4mb-ddr3.

3.2.4. Launching a Simulation!

Now that we’ve told the manager everything it needs to know in order to run
our single-node simulation, let’s actually launch an instance and run it!

3.2.4.1. Starting the Run Farm

First, we will tell the manager to launch our Run Farm, as we specified above.
When you do this, you will start getting charged for the running EC2 instances
(in addition to your manager).

To do launch your run farm, run:

firesim launchrunfarm

You should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim launchrunfarm
FireSim Manager. Docs: http://docs.fires.im
Running: launchrunfarm

Waiting for instance boots: f1.16xlarges
i-09e5491cce4d5f92d booted!
Waiting for instance boots: f1.4xlarges
Waiting for instance boots: m4.16xlarges
Waiting for instance boots: f1.2xlarges
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-05-53-launchrunfarm-ZGVP753DSU1Y9Q6R.log

The output will rapidly progress to Waiting for instance boots: f1.16xlarges
and then take a minute or two while your f1.16xlarge instance launches.
Once the launches complete, you should see the instance id printed and the instance
will also be visible in your AWS EC2 Management console. The manager will tag
the instances launched with this operation with the value you specified above
as the runfarmtag parameter from the config_runtime.ini file, which we left
set as mainrunfarm. This value allows the manager to tell multiple Run Farms
apart – i.e., you can have multiple independent Run Farms running different
workloads/hardware configurations in parallel. This is detailed in the
Manager Configuration Files and the firesim launchrunfarm
sections – you do not need to be familiar with it here.

3.2.4.2. Setting up the simulation infrastructure

The manager will also take care of building and deploying all software
components necessary to run your simulation (including switches for the networked
case). The manager will also handle
flashing FPGAs. To tell the manager to setup our simulation infrastructure,
let’s run:

firesim infrasetup

For a complete run, you should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim infrasetup
FireSim Manager. Docs: http://docs.fires.im
Running: infrasetup

Building FPGA software driver for FireSim-FireSimRocketChipQuadCoreConfig-FireSimDDR3FRFCFSLLC4MBConfig
Building switch model binary for switch switch0
[172.30.2.178] Executing task 'instance_liveness'
[172.30.2.178] Checking if host instance is up...
[172.30.2.178] Executing task 'infrasetup_node_wrapper'
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 0.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 1.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 2.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 3.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 4.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 5.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 6.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 7.
[172.30.2.178] Installing AWS FPGA SDK on remote nodes.
[172.30.2.178] Unloading XDMA/EDMA/XOCL Driver Kernel Module.
[172.30.2.178] Copying AWS FPGA XDMA driver to remote node.
[172.30.2.178] Loading XDMA Driver Kernel Module.
[172.30.2.178] Clearing FPGA Slot 0.
[172.30.2.178] Clearing FPGA Slot 1.
[172.30.2.178] Clearing FPGA Slot 2.
[172.30.2.178] Clearing FPGA Slot 3.
[172.30.2.178] Clearing FPGA Slot 4.
[172.30.2.178] Clearing FPGA Slot 5.
[172.30.2.178] Clearing FPGA Slot 6.
[172.30.2.178] Clearing FPGA Slot 7.
[172.30.2.178] Flashing FPGA Slot: 0 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 1 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 2 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 3 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 4 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 5 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 6 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 7 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Unloading XDMA/EDMA/XOCL Driver Kernel Module.
[172.30.2.178] Loading XDMA Driver Kernel Module.
[172.30.2.178] Copying switch simulation infrastructure for switch slot: 0.
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-07-33-infrasetup-2Z7EBCBIF2TSI66Q.log

Many of these tasks will take several minutes, especially on a clean copy of
the repo (in particular, f1.16xlarges usually take a couple of minutes to
start, so don’t be alarmed if you’re stuck at Checking if host instance is
up...) . The console output here contains the “user-friendly” version of the
output. If you want to see detailed progress as it happens, tail -f the
latest logfile in firesim/deploy/logs/.

At this point, the f1.16xlarge instance in our Run Farm has all the
infrastructure necessary to run everything in our simulation.

So, let’s launch our simulation!

3.2.4.3. Running a simulation!

Finally, let’s run our simulation! To do so, run:

firesim runworkload

This command boots up the 8-port switch simulation and then starts 8 Rocket Chip
FPGA Simulations, then prints out the live status of the simulated
nodes and switch every 10s. When you do this, you will initially see output like:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim runworkload
FireSim Manager. Docs: http://docs.fires.im
Running: runworkload

Creating the directory: /home/centos/firesim-new/deploy/results-workload/2018-05-19--06-28-43-linux-uniform/
[172.30.2.178] Executing task 'instance_liveness'
[172.30.2.178] Checking if host instance is up...
[172.30.2.178] Executing task 'boot_switch_wrapper'
[172.30.2.178] Starting switch simulation for switch slot: 0.
[172.30.2.178] Executing task 'boot_simulation_wrapper'
[172.30.2.178] Starting FPGA simulation for slot: 0.
[172.30.2.178] Starting FPGA simulation for slot: 1.
[172.30.2.178] Starting FPGA simulation for slot: 2.
[172.30.2.178] Starting FPGA simulation for slot: 3.
[172.30.2.178] Starting FPGA simulation for slot: 4.
[172.30.2.178] Starting FPGA simulation for slot: 5.
[172.30.2.178] Starting FPGA simulation for slot: 6.
[172.30.2.178] Starting FPGA simulation for slot: 7.
[172.30.2.178] Executing task 'monitor_jobs_wrapper'

If you don’t look quickly, you might miss it, because it will be replaced with
a live status page once simulations are kicked-off:

FireSim Simulation Status @ 2018-05-19 06:28:56.087472
--
This workload's output is located in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--06-28-43-linux-uniform/
This run's log is located in:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-28-43-runworkload-ZHZEJED9MDWNSCV7.log
This status will update every 10s.
--
Instances
--
Instance IP: 172.30.2.178 | Terminated: False
--
Simulated Switches
--
Instance IP: 172.30.2.178 | Switch name: switch0 | Switch running: True
--
Simulated Nodes/Jobs
--
Instance IP: 172.30.2.178 | Job: linux-uniform1 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform0 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform3 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform2 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform5 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform4 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform7 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform6 | Sim running: True
--
Summary
--
1/1 instances are still running.
8/8 simulations are still running.
--

In cycle-accurate networked mode, this will only exit when any ONE of the
simulated nodes shuts down. So, let’s let it run and open another ssh
connection to the manager instance. From there, cd into your firesim
directory again and source sourceme-f1-manager.sh again to get our ssh key
setup. To access our simulated system, ssh into the IP address being printed by
the status page, from your manager instance. In our case, from the above
output, we see that our simulated system is running on the instance with IP
172.30.2.178. So, run:

[RUN THIS ON YOUR MANAGER INSTANCE!]
ssh 172.30.2.178

This will log you into the instance running the simulation. On this machine,
run screen -ls to get the list of all running simulation components.
Attaching to the screens fsim0 to fsim7 will let you attach to the
consoles of any of the 8 simulated nodes. You’ll also notice an additional
screen for the switch, however by default there is no interesting output printed
here for performance reasons.

For example, if we want to enter commands into node zero, we can attach
to its console like so:

screen -r fsim0

Voila! You should now see Linux booting on the simulated node and then be prompted
with a Linux login prompt, like so:

[truncated Linux boot output]
[0.020000] Registered IceNet NIC 00:12:6d:00:00:02
[0.020000] VFS: Mounted root (ext2 filesystem) on device 254:0.
[0.020000] devtmpfs: mounted
[0.020000] Freeing unused kernel memory: 140K
[0.020000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device
Starting logging: OK
Starting mdev...
mdev: /sys/dev: No such file or directory
modprobe: can't change directory to '/lib/modules': No such file or directory
Initializing random number generator... done.
Starting network: OK
Starting dropbear sshd: OK

Welcome to Buildroot
buildroot login:

If you also ran the single-node no-nic simulation you’ll notice a difference
in this boot output – here, Linux sees the NIC and its assigned MAC address and
automatically brings up the eth0 interface at boot.

Now, you can login to the system! The username is root and the password is
firesim. At this point, you should be presented with a regular console,
where you can type commands into the simulation and run programs. For example:

Welcome to Buildroot
buildroot login: root
Password:
uname -a
Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018 riscv64 GNU/Linux
#

At this point, you can run workloads as you’d like. To finish off this tutorial,
let’s poweroff the simulated system and see what the manager does. To do so,
in the console of the simulated system, run poweroff -f:

Welcome to Buildroot
buildroot login: root
Password:
uname -a
Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018 riscv64 GNU/Linux
poweroff -f

You should see output like the following from the simulation console:

poweroff -f
[3.748000] reboot: Power down
Power off
time elapsed: 360.5 s, simulation speed = 37.82 MHz
*** PASSED *** after 13634406804 cycles
Runs 13634406804 cycles
[PASS] FireSim Test
SEED: 1526711978
Script done, file is uartlog

[screen is terminating]

You’ll also notice that the manager polling loop exited! You’ll see output like this
from the manager:

--
Instances
--
Instance IP: 172.30.2.178 | Terminated: False
--
Simulated Switches
--
Instance IP: 172.30.2.178 | Switch name: switch0 | Switch running: True
--
Simulated Nodes/Jobs
--
Instance IP: 172.30.2.178 | Job: linux-uniform1 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform0 | Sim running: False
Instance IP: 172.30.2.178 | Job: linux-uniform3 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform2 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform5 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform4 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform7 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform6 | Sim running: True
--
Summary
--
1/1 instances are still running.
7/8 simulations are still running.
--
Teardown required, manually tearing down...
[172.30.2.178] Executing task 'kill_switch_wrapper'
[172.30.2.178] Killing switch simulation for switchslot: 0.
[172.30.2.178] Executing task 'kill_simulation_wrapper'
[172.30.2.178] Killing FPGA simulation for slot: 0.
[172.30.2.178] Killing FPGA simulation for slot: 1.
[172.30.2.178] Killing FPGA simulation for slot: 2.
[172.30.2.178] Killing FPGA simulation for slot: 3.
[172.30.2.178] Killing FPGA simulation for slot: 4.
[172.30.2.178] Killing FPGA simulation for slot: 5.
[172.30.2.178] Killing FPGA simulation for slot: 6.
[172.30.2.178] Killing FPGA simulation for slot: 7.
[172.30.2.178] Executing task 'screens'
Confirming exit...
[172.30.2.178] Executing task 'monitor_jobs_wrapper'
[172.30.2.178] Slot 0 completed! copying results.
[172.30.2.178] Slot 1 completed! copying results.
[172.30.2.178] Slot 2 completed! copying results.
[172.30.2.178] Slot 3 completed! copying results.
[172.30.2.178] Slot 4 completed! copying results.
[172.30.2.178] Slot 5 completed! copying results.
[172.30.2.178] Slot 6 completed! copying results.
[172.30.2.178] Slot 7 completed! copying results.
[172.30.2.178] Killing switch simulation for switchslot: 0.
FireSim Simulation Exited Successfully. See results in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--06-39-35-linux-uniform/
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-39-35-runworkload-4CDB78E3A4IA9IYQ.log

In the cluster case, you’ll notice that shutting down ONE simulator causes the
whole simulation to be torn down – this is because we currently do not implement
any kind of “disconnect” mechanism to remove one node from a globally-cycle-accurate
simulation.

If you take a look at the workload output directory given in the manager output (in this case, /home/centos/firesim-new/deploy/results-workload/2018-05-19--06-39-35-linux-uniform/), you’ll see the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/results-workload/2018-05-19--06-39-35-linux-uniform$ ls -la */*
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform0/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform0/os-release
-rw-rw-r-- 1 centos centos 7476 May 19 06:45 linux-uniform0/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform1/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform1/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform1/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform2/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform2/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform2/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform3/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform3/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform3/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform4/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform4/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform4/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform5/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform5/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform5/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform6/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform6/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform6/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform7/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform7/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform7/uartlog
-rw-rw-r-- 1 centos centos 153 May 19 06:45 switch0/switchlog

What are these files? They are specified to the manager in a configuration file
(firesim/deploy/workloads/linux-uniform.json) as files that we want
automatically copied back to our manager after we run a simulation, which is
useful for running benchmarks automatically. Note that there is a directory for
each simulated node and each simulated switch in the cluster. The
Defining Custom Workloads section describes this process in detail.

For now, let’s wrap-up our tutorial by terminating the f1.16xlarge instance
that we launched. To do so, run:

firesim terminaterunfarm

Which should present you with the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim terminaterunfarm
FireSim Manager. Docs: http://docs.fires.im
Running: terminaterunfarm

IMPORTANT!: This will terminate the following instances:
f1.16xlarges
['i-09e5491cce4d5f92d']
f1.4xlarges
[]
m4.16xlarges
[]
f1.2xlarges
[]
Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.

You must type yes then hit enter here to have your instances terminated. Once
you do so, you will see:

[truncated output from above]
Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.
yes
Instances terminated. Please confirm in your AWS Management Console.
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-50-37-terminaterunfarm-3VF0Z2KCAKKDY0ZU.log

At this point, you should always confirm in your AWS management console that
the instance is in the shutting-down or terminated states. You are ultimately
responsible for ensuring that your instances are terminated appropriately.

Congratulations on running a cluster FireSim simulation! At this point, you can
check-out some of the advanced features of FireSim in the sidebar to the left.
Or, hit next to continue to a tutorial that shows you how to build your own
custom FPGA images.

4. Building Your Own Hardware Designs (FireSim FPGA Images)

This section will guide you through building an AFI image for a FireSim
simulation.

4.1. Amazon S3 Setup

During the build process, the build system will need to upload a tar
file to Amazon S3 in order to complete the build process using Amazon’s
backend scripts (which convert the Vivado-generated tar into an AFI).
The manager will create this bucket for you automatically, you just need
to specify a name.

So, choose a bucket name, e.g. firesim-yourname. Bucket names must be
globally unique. If you choose one that’s already taken, the manager
will notice and complain when you tell it to build an AFI. To set your
bucket name, open deploy/config_build.ini in your editor and under the
[afibuild] header, replace

s3bucketname=firesim-yournamehere

with your own bucket name, e.g.:

s3bucketname=firesim-sagar

4.2. Build Recipes

In the deploy/config_build.ini file, you will notice that the [builds]
section currently contains several lines, which
indicates to the build system that you want to run all of these builds in
parallel, with the parameters listed in the relevant section of the
deploy/config_build_recipes.ini file. Here you can set parameters of the simulated
system, and also select the type of instance on which the Vivado build will be
deployed. From our experimentation, there are diminishing returns using
anything above a c5.4xlarge, so we default to that.

To start out, let’s build a simple design, firesim-singlecore-no-nic-lbp.
This is a design that has one core, no nic, and uses the latency-bandwidth pipe
memory model. To do so, comment out all of the other build entries in deploy/config_build.ini, besides the one we want.. So, you should
end up with something like this (a line beginning with a # is a comment):

[builds]
this section references builds defined in config_build_recipes.ini
if you add a build here, it will be built when you run buildafi
#firesim-singlecore-nic-lbp
firesim-singlecore-no-nic-lbp
#firesim-quadcore-nic-lbp
#firesim-quadcore-no-nic-lbp
#firesim-quadcore-nic-l2-llc4mb-ddr3
#firesim-quadcore-no-nic-l2-llc4mb-ddr3

4.3. Running a Build

Now, we can run a build like so:

firesim buildafi

This will run through the entire build process, taking the Chisel RTL
and producing an AFI/AGFI that runs on the FPGA. This whole process will
usually take a few hours. When the build
completes, you will see a directory in
deploy/results-build/, named after your build parameter
settings, that contains AGFI information (the AGFI_INFO file) and
all of the outputs of the Vivado build process (in the cl_firesim
subdirectory). Additionally, the manager will print out a path to a log file
that describes everything that happened, in-detail, during this run (this is a
good file to send us if you encounter problems). If you provided the manager
with your email address, you will also receive an email upon build completion,
that should look something like this:

[image: Build Completion Email]
Build Completion Email

Now that you know how to generate your own FPGA image, you can modify the target-design
to add your own features, then build a FireSim-compatible FPGA image automatically!
To learn more advanced FireSim features, you can choose a link under the “Advanced
Docs” section to the left.

Manager Usage (the firesim command)

Manager Details:

	1. Overview
	1.1. “Inputs” to the Manager

	1.2. Logging

	2. Manager Command Line Arguments
	2.1. --runtimeconfigfile FILENAME

	2.2. --buildconfigfile FILENAME

	2.3. --buildrecipesconfigfile FILENAME

	2.4. --hwdbconfigfile FILENAME

	2.5. --overrideconfigdata SECTION PARAMETER VALUE

	2.6. TASK

	3. Manager Tasks
	3.1. firesim managerinit

	3.2. firesim buildafi

	3.3. firesim shareagfi

	3.4. firesim launchrunfarm

	3.5. firesim terminaterunfarm

	3.6. firesim infrasetup

	3.7. firesim boot

	3.8. firesim kill

	3.9. firesim runworkload

	3.10. firesim runcheck

	4. Manager Configuration Files
	4.1. config_runtime.ini

	4.2. config_build.ini

	4.3. config_build_recipes.ini

	4.4. config_hwdb.ini

	5. Manager Environment Variables
	5.1. FIRESIM_RUNFARM_PREFIX

	6. Manager Network Topology Definitions (user_topology.py)
	6.1. user_topology.py contents:

	7. AGFI Metadata/Tagging

1. Overview

When you source sourceme-f1-manager.sh in your copy of the firesim repo,
you get access to a new command, firesim, which is the FireSim simulation
manager. If you’ve used tools like Vagrant or Docker, the firesim program
is to FireSim what vagrant and docker are to Vagrant and Docker
respectively. In essence, firesim lets us manage the entire lifecycle
of FPGA simulations, just like vagrant and docker do for VMs and
containers respectively.

1.1. “Inputs” to the Manager

The manager gets configuration information from several places:

	Command Line Arguments, consisting of:

	Paths to configuration files to use

	A task to run

	Arguments to the task

	Configuration Files

	Environment Variables

	Topology definitions for networked simulations (user_topology.py)

The following sections detail these inputs. Hit Next to continue.

1.2. Logging

The manager produces detailed logs when you run any command, which is useful
to share with the FireSim developers for debugging purposes in case you
encounter issues. The logs contain more detailed output than the manager
sends to stdout/stderr during normal operation, so it’s also useful if you
want to take a peek at the detailed commands manager is running to facilitate
builds and simulations. Logs are stored in firesim/deploy/logs/.

2. Manager Command Line Arguments

The manager provides built-in help output for the command line arguments it
supports if you run firesim --help

usage: firesim [-h] [-c RUNTIMECONFIGFILE] [-b BUILDCONFIGFILE]
 [-r BUILDRECIPESCONFIGFILE] [-a HWDBCONFIGFILE]
 [-x OVERRIDECONFIGDATA] [-f TERMINATESOMEF116]
 [-g TERMINATESOMEF12] [-i TERMINATESOMEF14]
 [-m TERMINATESOMEM416] [-q]

 {managerinit,buildafi,launchrunfarm,infrasetup,boot,kill,terminaterunfarm,runworkload,shareagfi,runcheck}

FireSim Simulation Manager.

positional arguments:
 {managerinit,buildafi,launchrunfarm,infrasetup,boot,kill,terminaterunfarm,runworkload,shareagfi,runcheck}
 Management task to run.

optional arguments:
 -h, --help show this help message and exit
 -c RUNTIMECONFIGFILE, --runtimeconfigfile RUNTIMECONFIGFILE
 Optional custom runtime/workload config file. Defaults
 to config_runtime.ini.
 -b BUILDCONFIGFILE, --buildconfigfile BUILDCONFIGFILE
 Optional custom build config file. Defaults to
 config_build.ini.
 -r BUILDRECIPESCONFIGFILE, --buildrecipesconfigfile BUILDRECIPESCONFIGFILE
 Optional custom build recipe config file. Defaults to
 config_build_recipes.ini.
 -a HWDBCONFIGFILE, --hwdbconfigfile HWDBCONFIGFILE
 Optional custom HW database config file. Defaults to
 config_hwdb.ini.
 -x OVERRIDECONFIGDATA, --overrideconfigdata OVERRIDECONFIGDATA
 Override a single value from one of the the RUNTIME
 e.g.: --overrideconfigdata "targetconfig linklatency
 6405".
 -f TERMINATESOMEF116, --terminatesomef116 TERMINATESOMEF116
 Only used by terminatesome. Terminates this many of
 the previously launched f1.16xlarges.
 -g TERMINATESOMEF12, --terminatesomef12 TERMINATESOMEF12
 Only used by terminatesome. Terminates this many of
 the previously launched f1.2xlarges.
 -i TERMINATESOMEF14, --terminatesomef14 TERMINATESOMEF14
 Only used by terminatesome. Terminates this many of
 the previously launched f1.4xlarges.
 -m TERMINATESOMEM416, --terminatesomem416 TERMINATESOMEM416
 Only used by terminatesome. Terminates this many of
 the previously launched m4.16xlarges.
 -q, --forceterminate For terminaterunfarm, force termination without
 prompting user for confirmation. Defaults to False

On this page, we will go through some of these options – others are more
complicated, so we will give them their own section on the following pages.

2.1. --runtimeconfigfile FILENAME

This lets you specify a custom runtime config file. By default, config_runtime.ini
is used. See FIRESIM_RUNFARM_PREFIX for what this config file does.

2.2. --buildconfigfile FILENAME

This lets you specify a custom build config file. By default, config_build.ini
is used. See config_build.ini for what this config file does.

2.3. --buildrecipesconfigfile FILENAME

This lets you specify a custom build recipes config file. By default,
config_build_recipes.ini is used. See config_build_recipes.ini for what
this config file does.

2.4. --hwdbconfigfile FILENAME

This lets you specify a custom hardware database config file. By default,
config_hwdb.ini is used. See config_hwdb.ini for what this config file does.

2.5. --overrideconfigdata SECTION PARAMETER VALUE

This lets you override a single value from the runtime config file. For
example, if you want to use a link latency of 3003 cycles for a particular run
(and your config_runtime.ini file specifies differently), you can pass
--overrideconfigdata targetconfig linklatency 6405 to the manager. This
can be used with any task that uses the runtime config.

2.6. TASK

This is the only required/positional command line argument to the manager. It
tells the manager what it should be doing. See the next section for a list of
tasks and what they do. Some tasks also take other command line arguments,
which are specified with those tasks.

3. Manager Tasks

This page outlines all of the tasks that the FireSim manager supports.

3.1. firesim managerinit

This is a setup command that does the following:

	Run aws configure, prompt for credentials

	Replace the default config files (config_runtime.ini, config_build.ini, config_build_recipes.ini, and config_hwdb.ini) with clean example versions.

	Prompt the user for email address and subscribe them to notifications for their own builds.

You can re-run this whenever you want to get clean configuration files – you
can just hit enter when prompted for aws configure credentials and your email
address, and both will keep your previously specified values.

If you run this command by accident and didn’t mean to overwrite your
configuration files, you’ll find backed-up versions in
firesim/deploy/sample-backup-configs/backup*.

3.2. firesim buildafi

This command builds a FireSim AGFI (FPGA Image) from the Chisel RTL for the
configurations that you specify. The process of defining configurations to
build is explained in the documentation for config_build.ini and
config_build_recipes.ini.

For each config, the build process entails:

	[Locally] Run the elaboration process for your hardware configuration

	[Locally] FAME-1 transform the design with MIDAS

	[Locally] Attach simulation models (I/O widgets, memory model, etc.)

	[Locally] Emit Verilog to run through the AWS FPGA Flow

	Launch an FPGA Dev AMI build instance for each configuration you want built.

	[Local/Remote] Prep build instances, copy generated verilog for hardware configuration to build instance.

	[Remote] Run Vivado Synthesis and P&R for the configuration

	[Local/Remote] Copy back all output generated by Vivado, including the final tar file

	[Local/AWS Infra] Submit the tar file to the AWS backend for conversion to an AFI

	[Local] Wait for the AFI to become available, then notify the user of completion by email.

This process happens in parallel for all of the builds you specify. The command
will exit when all builds are completed (but you will get notified as
INDIVIDUAL builds complete).

It is highly recommended that you either run this command in a ``screen`` or use
``mosh`` to access the build instance. Builds will not finish if the manager is
killed due to disconnection to the instance.

When you run a build for a particular configuration, a directory named
LAUNCHTIME-CONFIG_TRIPLET-BUILD_NAME is created in firesim/deploy/results-build/.
This directory will contain:

	AGFI_INFO: Describes the state of the AFI being built, while the manager is running. Upon build completion, this contains the AGFI/AFI that was produced, along with its metadata.

	cl_firesim:: This directory is essentially the Vivado project that built the FPGA image, in the state it was in when the Vivado build process completed. This contains reports, stdout from the build, and the final tar file produced by Vivado.

	cl_firesim_generated.sv: This is a copy of the generated verilog used to produce this build. You can also find a copy inside cl_firesim.

3.3. firesim shareagfi

This command allows you to share AGFIs that you have already built (that are
listed in config_hwdb.ini) with other users. It will take the
named hardware configurations that you list in the [agfistoshare] section of
config_build.ini, grab the respective AGFIs for each from
config_hwdb.ini, and share them across all F1 regions with the users listed
in the [sharewithaccounts] section of config_build.ini. You can also specify public=public in [sharewithaccounts] to make the AGFIs public.

You must own the AGFIs in order to do this – this will NOT let you share AGFIs
that someone else owns and gave you access to.

3.4. firesim launchrunfarm

This command launches a Run Farm on which you run simulations. Run Farms
consist of f1.16xlarge, f1.4xlarge, f1.2xlarge, and m4.16xlarge instances.
Before you run the command, you define the number of each that you want in
config_runtime.ini.

A launched Run Farm is tagged with a runfarmtag from
config_runtime.ini, which is used to disambiguate multiple parallel Run
Farms; that is, you can have many Run Farms running, each running a different
experiment at the same time, each with its own unique runfarmtag. One
convenient feature to add to your AWS management panel is the column for
fsimcluster, which contains the runfarmtag value. You can see how to do
that in the Add the fsimcluster column to your AWS management console section.

The other options in the [runfarm] section, runinstancemarket,
spotinterruptionbehavior, and spotmaxprice define how instances in
the Run Farm are launched. See the documentation for config_runtime.ini for
more details.

ERRATA: One current requirement is that you must define a target config in
the [targetconfig] section of config_runtime.ini that does not require
more resources than the Run Farm you are trying to launch. Thus, you should
also setup your [targetconfig] parameters before trying to launch the
corresponding Run Farm. This requirement will be removed in the future.

Once you setup your configuration and call firesim launchrunfarm, the command
will launch the requested numbers and types of instances. If all succeeds, you
will see the command print out instance IDs for the correct number/types of
launched instances (you do not need to pay attention to these or record them).
If an error occurs, it will be printed to console.

Once you run this command, your Run Farm will continue to run until you call
``firesim terminaterunfarm``. This means you will be charged for the running
instances in your Run Farm until you call ``terminaterunfarm``. You are
responsible for ensuring that instances are only running when you want them to
be by checking the AWS EC2 Management Panel.

3.5. firesim terminaterunfarm

This command terminates some or all of the instances in the Run Farm defined
in your config_runtime.ini file, depending on the command line arguments
you supply. By default, running firesim terminaterunfarm will terminate
ALL instances with the specified runfarmtag. When you run this command,
it will prompt for confirmation that you want to terminate the listed instances.
If you respond in the affirmative, it will move forward with the termination.

If you do not want to have to confirm the termination (e.g. you are using this
command in a script), you can give the command the --forceterminate command
line argument. For example, the following will TERMINATE ALL INSTANCES IN THE
RUN FARM WITHOUT PROMPTING FOR CONFIRMATION:

firesim terminaterunfarm --forceterminate

There a few additional commandline arguments that let you terminate only
some of the instances in a particular Run Farm: --terminatesomef116 INT,
--terminatesomef14 INT, --terminatesomef12 INT, and
--terminatesomem416 INT, which will terminate ONLY as many of each type of
instance as you specify.

Here are some examples:

[start with 2 f1.16xlarges, 2 f1.2xlarges, 2 m4.16xlarges]

firesim terminaterunfarm --terminatesomef116 1 --forceterminate

[now, we have: 1 f1.16xlarges, 2 f1.2xlarges, 2 m4.16xlarges]

[start with 2 f1.16xlarges, 2 f1.2xlarges, 2 m4.16xlarges]

firesim terminaterunfarm --terminatesomef116 1 --terminatesomef12 2 --forceterminate

[now, we have: 1 f1.16xlarges, 0 f1.2xlarges, 2 m4.16xlarges]

Once you call ``launchrunfarm``, you will be charged for running instances in
your Run Farm until you call ``terminaterunfarm``. You are responsible for
ensuring that instances are only running when you want them to be by checking
the AWS EC2 Management Panel.

3.6. firesim infrasetup

Once you have launched a Run Farm and setup all of your configuration options,
the infrasetup command will build all components necessary to run the
simulation and deploy those components to the machines in the Run Farm. Here
is a rough outline of what the command does:

	Constructs the internal representation of your simulation. This is a tree of
components in the simulation (simulated server blades, switches)

	For each type of server blade, query the AWS AFI API to get the build-triplet
needed to construct the software simulation driver, then build each driver

	For each type of switch in the simulation, generate the switch model binary

	For each host instance in the Run Farm, collect information about all the
resources necessary to run a simulation on that host instance, then copy
files and flash FPGAs with the required AGFIs.

Details about setting up your simulation configuration can be found in
FIRESIM_RUNFARM_PREFIX.

Once you run a simulation, you should re-run ``firesim infrasetup`` before
starting another one, even if it is the same exact simulation on the same Run
Farm.

You can see detailed output from an example run of infrasetup in the
Running a Single Node Simulation and Running a Cluster Simulation Tutorials.

3.7. firesim boot

Once you have run firesim infrasetup, this command will actually start
simulations. It begins by launching all switches (if they exist in your
simulation config), then launches all server blade simulations. This simply
launches simulations and then exits – it does not perform any monitoring.

This command is useful if you want to launch a simulation, then plan to
interact with the simulation by-hand (i.e. by directly interacting with the
console).

3.8. firesim kill

Given a simulation configuration and simulations running on a Run Farm, this
command force-terminates all components of the simulation. Importantly, this
does not allow any outstanding changes to the filesystem in the simulated
systems to be committed to the disk image.

3.9. firesim runworkload

This command is the standard tool that lets you launch simulations, monitor the
progress of workloads running on them, and collect results automatically when
the workloads complete. To call this command, you must have first called
firesim infrasetup to setup all required simulation infrastructure on the
remote nodes.

This command will first create a directory in firesim/deploy/results-workload/
named as LAUNCH_TIME-WORKLOADNAME, where results will be completed as simulations
complete.
This command will then automatically call firesim boot to start simulations.
Then, it polls all the instances in the Run Farm every 10 seconds to determine
the state of the simulated system. If it notices that a simulation has shutdown
(i.e. the simulation disappears from the output of screen -ls), it will
automatically copy back all results from the simulation, as defined in the
workload configuration (see the Defining Custom Workloads section).

For
non-networked simulations, it will wait for ALL simulations to complete (copying
back results as each workload completes), then exit.

For
globally-cycle-accurate networked simulations, the global simulation will stop
when any single node powers off. Thus, for these simulations, runworkload
will copy back results from all nodes and force them to terminate by calling
kill when ANY SINGLE ONE of them shuts down cleanly.

A simulation shuts down cleanly when the workload running on the simulator calls poweroff.

3.10. firesim runcheck

This command is provided to let you debug configuration options without launching
instances. In addition to the output produced at command line/in the log, you will
find a pdf diagram of the topology you specify, annotated with information about
the workloads, hardware configurations, and abstract host mappings for each
simulation (and optionally, switch) in your design. These diagrams are located
in firesim/deploy/generated-topology-diagrams/, named after your topology.

Here is an example of such a diagram (click to expand/zoom):

[image: Example diagram from running ``firesim runcheck``]
Example diagram for an 8-node cluster with one ToR switch

4. Manager Configuration Files

This page contains a centralized reference for all of the configuration options
in config_runtime.ini, config_build.ini, config_build_recipes.ini,
and config_hwdb.ini.

4.1. config_runtime.ini

Here is a sample of this configuration file:

RUNTIME configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation of all of these params.

[runfarm]
runfarmtag=mainrunfarm

f1_16xlarges=1
m4_16xlarges=0
f1_4xlarges=0
f1_2xlarges=0

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=example_8config
no_net_num_nodes=2
linklatency=6405
switchinglatency=10
netbandwidth=200
profileinterval=-1

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-nic-l2-llc4mb-ddr3

[tracing]
enable=no
startcycle=0
endcycle=-1

[workload]
workloadname=linux-uniform.json
terminateoncompletion=no

Below, we outline each section and parameter in detail.

4.1.1. [runfarm]

The [runfarm] options below allow you to specify the number, types, and
other characteristics of instances in your FireSim Run Farm, so that the
manager can automatically launch them, run workloads on them, and terminate
them.

4.1.1.1. runfarmtag

Use runfarmtag to differentiate between different Run Farms in FireSim.
Having multiple config_runtime.ini files with different runfarmtag
values allows you to run many experiments at once from the same manager instance.

The instances launched by the launchrunfarm command will be tagged with
this value. All later operations done by the manager rely on this tag, so
you should not change it unless you are done with your current Run Farm.

Per AWS restrictions, this tag can be no longer than 255 characters.

4.1.1.2. f1_16xlarges, m4_16xlarges, f1_4xlarges, f1_2xlarges

Set these three values respectively based on the number and types of instances
you need. While we could automate this setting, we choose not to, so that
users are never surprised by how many instances they are running.

Note that these values are ONLY used to launch instances. After launch, the
manager will query the AWS API to find the instances of each type that have the
runfarmtag set above assigned to them.

4.1.1.3. runinstancemarket

You can specify either spot or ondemand here, to use one of those
markets on AWS.

4.1.1.4. spotinterruptionbehavior

When runinstancemarket=spot, this value determines what happens to an instance
if it receives the interruption signal from AWS. You can specify either
hibernate, stop, or terminate.

4.1.1.5. spotmaxprice

When runinstancemarket=spot, this value determines the max price you are
willing to pay per instance, in dollars. You can also set it to ondemand
to set your max to the on-demand price for the instance.

4.1.2. [targetconfig]

The [targetconfig] options below allow you to specify the high-level
configuration of the target you are simulating. You can change these parameters
after launching a Run Farm (assuming you have the correct number of instances),
but in many cases you will need to re-run the infrasetup command to make
sure the correct simulation infrastructure is available on your instances.

4.1.2.1. topology

This field dictates the network topology of the simulated system. Some examples:

no_net_config: This runs N (see no_net_num_nodes below) independent
simulations, without a network simulation. You can currently only use this
option if you build one of the NoNIC hardware configs of FireSim.

example_8config: This requires a single f1.16xlarge, which will
simulate 1 ToR switch attached to 8 simulated servers.

example_16config: This requires two f1.16xlarge instances and one
m4.16xlarge instance, which will
simulate 2 ToR switches, each attached to 8 simulated servers, with the two
ToR switches connected by a root switch.

example_64config: This requires eight f1.16xlarge instances and one
m4.16xlarge instance, which will simulate 8 ToR switches, each attached to
8 simulated servers (for a total of 64 nodes), with the eight ToR switches
connected by a root switch.

Additional configurations are available in deploy/runtools/user_topology.py
and more can be added there. See the Manager Network Topology Definitions (user_topology.py) section
for more info.

4.1.2.2. no_net_num_nodes

This determines the number of simulated nodes when you are using
topology=no_net_config.

4.1.2.3. linklatency

In a networked simulation, this allows you to specify the link latency of the
simulated network in CYCLES. For example, 6405 cycles is roughly 2 microseconds
at 3.2 GHz. A current limitation is that this value (in cycles) must be
a multiple of 7. Furthermore, you must not exceed the buffer size specified
in the NIC’s simulation widget.

4.1.2.4. switchinglatency

In a networked simulation, this specifies the minimum port-to-port switching
latency of the switch models, in CYCLES.

4.1.2.5. netbandwidth

In a networked simulation, this specifies the maximum output bandwidth that a
NIC is allowed to produce as an integer in Gbit/s. Currently, this must be a
number between 1 and 200, allowing you to model NICs between 1 and 200 Gbit/s.

4.1.2.6. defaulthwconfig

This sets the server configuration launched by default in the above topologies.
Heterogeneous configurations can be achieved by manually specifying different
names within the topology itself, but all the example_Nconfig configurations
are homogeneous and use this value for all nodes.

You should set this to one of the hardware configurations you have defined already in
config_hwdb.ini. You should set this to the NAME (section title) of the
hardware configuration from config_hwdb.ini, NOT the actual agfi itself
(NOT something like agfi-XYZ...).

4.1.3. [workload]

This section defines the software that will run on the simulated system.

4.1.3.1. workloadname

This selects a workload to run across the set of simulated nodes.
A workload consists of a series of jobs that need to be run on simulated
nodes (one job per node).

Workload definitions are located in firesim/deploy/workloads/*.json.

Some sample workloads:

linux-uniform.json: This runs the default FireSim Linux distro on as many nodes
as you specify when setting the [targetconfig] parameters.

spec17-intrate.json: This runs SPECint 2017’s rate benchmarks. In this type of
workload, you should launch EXACTLY the correct number of nodes necessary to run the
benchmark. If you specify fewer nodes, the manager will warn that not all jobs were
assigned to a simulation. If you specify too many simulations and not enough
jobs, the manager will not launch the jobs.

Others can be found in the aforementioned directory.

4.1.3.2. terminateoncompletion

Set this to no if you want your Run Farm to keep running once the workload
has completed. Set this to yes if you want your Run Farm to be TERMINATED
after the workload has completed and results have been copied off.

4.2. config_build.ini

Here is a sample of this configuration file:

BUILDTIME/AGFI management configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation of all of these params.

[afibuild]

s3bucketname=firesim-AWSUSERNAME
buildinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand
postbuildhook=

[builds]
this section references builds defined in config_build_recipes.ini
if you add a build here, it will be built when you run buildafi
Legacy recipe without an L2
firesim-quadcore-nic-llc4mb-ddr3
firesim-singlecore-no-nic-l2-lbp
#firesim-singlecore-nic-l2-lbp
#firesim-quadcore-no-nic-l2-lbp
#firesim-quadcore-nic-l2-lbp
firesim-quadcore-no-nic-l2-llc4mb-ddr3
firesim-quadcore-nic-l2-llc4mb-ddr3
#fireboom-singlecore-no-nic-l2-lbp
fireboom-singlecore-no-nic-l2-llc4mb-ddr3
#fireboom-singlecore-nic-l2-lbp
fireboom-singlecore-nic-l2-llc4mb-ddr3
#firesim-supernode-singlecore-nic-llc4mb-ddr3
#firesim-supernode-quadcore-nic-llc4mb-ddr3
firesim-supernode-singlecore-nic-lbp
fireboom-singlecore-no-nic-l2-llc4mb-ddr3-ramopts
for MICRO 2019 tutorial. May be removed in the future.
firesim-singlecore-sha3-nic-l2-llc4mb-ddr3
firesim-singlecore-sha3-no-nic-l2-llc4mb-ddr3
firesim-singlecore-sha3-nic-l2-llc4mb-ddr3-print
firesim-singlecore-sha3-no-nic-l2-llc4mb-ddr3-print
#fireboom-dualcore-no-nic-l2-llc4mb-ddr3
#fireboom-dualcore-nic-l2-llc4mb-ddr3
firerocketboom-1rx1b-no-nic-l2-ddr3-llc4mb

[agfistoshare]
Legacy recipe without an L2
firesim-quadcore-nic-llc4mb-ddr3
firesim-singlecore-no-nic-l2-lbp
#firesim-singlecore-nic-l2-lbp
#firesim-quadcore-no-nic-l2-lbp
#firesim-quadcore-nic-l2-lbp
firesim-quadcore-no-nic-l2-llc4mb-ddr3
firesim-quadcore-nic-l2-llc4mb-ddr3
#fireboom-singlecore-no-nic-l2-lbp
fireboom-singlecore-no-nic-l2-llc4mb-ddr3
#fireboom-singlecore-nic-l2-lbp
fireboom-singlecore-nic-l2-llc4mb-ddr3
#firesim-supernode-singlecore-nic-llc4mb-ddr3
#firesim-supernode-quadcore-nic-llc4mb-ddr3
firesim-supernode-singlecore-nic-lbp
fireboom-singlecore-no-nic-l2-llc4mb-ddr3-ramopts
for MICRO 2019 tutorial. May be removed in the future.
firesim-singlecore-sha3-nic-l2-llc4mb-ddr3
firesim-singlecore-sha3-no-nic-l2-llc4mb-ddr3
firesim-singlecore-sha3-nic-l2-llc4mb-ddr3-print
firesim-singlecore-sha3-no-nic-l2-llc4mb-ddr3-print
#fireboom-dualcore-no-nic-l2-llc4mb-ddr3
#fireboom-dualcore-nic-l2-llc4mb-ddr3
firerocketboom-1rx1b-no-nic-l2-ddr3-llc4mb

[sharewithaccounts]
somebodysname=123456789012

Below, we outline each section and parameter in detail.

4.2.1. [afibuild]

This exposes options for AWS resources used in the process of building FireSim
AGFIs (FPGA Images).

4.2.1.1. s3bucketname

This is used behind the scenes in the AGFI creation process. You will only
ever need to access this bucket manually if there is a failure in AGFI creation
in Amazon’s backend.

Naming rules: this must be all lowercase and you should stick to letters and numbers.

The first time you try to run a build, the FireSim manager will try to create
the bucket you name here. If the name is unavailable, it will complain and you
will need to change this name. Once you choose a working name, you should never
need to change it.

In general, firesim-yournamehere is a good choice.

4.2.1.2. buildinstancemarket

You can specify either spot or ondemand here, to use one of those
markets on AWS.

4.2.1.3. spotinterruptionbehavior

When buildinstancemarket=spot, this value determines what happens to an
instance if it receives the interruption signal from AWS. You can specify
either hibernate, stop, or terminate.

4.2.1.4. spotmaxprice

When buildinstancemarket=spot, this value determines the max price you are
willing to pay per instance, in dollars. You can also set it to ondemand
to set your max to the on-demand price for the instance.

4.2.2. [builds]

In this section, you can list as many build entries as you want to run
for a particular call to the buildafi command (see
config_build_recipes.ini below for how to define a build entry). For
example, if we want to run the builds named [awesome-firesim-config] and [quad-core-awesome-firesim-config], we would
write:

[builds]
awesome-firesim-config
quad-core-awesome-firesim-config

4.2.3. [agfistoshare]

This is used by the shareagfi command to share the specified agfis with the
users specified in the next ([sharewithaccounts]) section. In this section,
you should specify the section title (i.e. the name you made up) for a hardware
configuration in config_hwdb.ini. For example, to share the hardware config:

[firesim-quadcore-nic-l2-llc4mb-ddr3]
this is a comment that describes my favorite configuration!
agfi=agfi-0a6449b5894e96e53
deploytripletoverride=None
customruntimeconfig=None

you would use:

[agfistoshare]
firesim-quadcore-nic-l2-llc4mb-ddr3

4.2.4. [sharewithaccounts]

A list of AWS account IDs that you want to share the AGFIs listed in
[agfistoshare] with when calling the manager’s shareagfi command. You
should specify names in the form usersname=AWSACCTID. The left-hand-side is
just for human readability, only the actual account IDs listed here matter. If you specify public=public here, the AGFIs are shared publicly, regardless of any other entires that are present.

4.3. config_build_recipes.ini

Here is a sample of this configuration file:

Build-time design configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation of all of these params.

this file contains sections that describe hardware designs that /can/ be built.
edit config_build.ini to actually "turn on" a config to be built when you run
buildafi

Single-core, Rocket-based recipes

[firesim-singlecore-nic-l2-lbp]
DESIGN=FireSim
TARGET_CONFIG=L2SingleBank512K_FireSimRocketChipSingleCoreConfig
PLATFORM_CONFIG=BaseF1Config
instancetype=c5.4xlarge
deploytriplet=None

[firesim-singlecore-no-nic-l2-lbp]
DESIGN=FireSimNoNIC
TARGET_CONFIG=L2SingleBank512K_FireSimRocketChipSingleCoreConfig
PLATFORM_CONFIG=BaseF1Config_F75MHz
instancetype=c5.4xlarge
deploytriplet=None

[firesim-singlecore-nic-lbp]
DESIGN=FireSim
TARGET_CONFIG=FireSimRocketChipSingleCoreConfig
PLATFORM_CONFIG=BaseF1Config
instancetype=c5.4xlarge
deploytriplet=None

[firesim-singlecore-no-nic-lbp]
DESIGN=FireSimNoNIC
TARGET_CONFIG=FireSimRocketChipSingleCoreConfig
PLATFORM_CONFIG=BaseF1Config_F130MHz
instancetype=c5.4xlarge
deploytriplet=None

#[firesim-quadcore-nic-lbp]
#DESIGN=FireSim
#TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
#PLATFORM_CONFIG=BaseF1Config
#instancetype=c5.4xlarge
#deploytriplet=None
#
#[firesim-quadcore-no-nic-lbp]
#DESIGN=FireSimNoNIC
#TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
#PLATFORM_CONFIG=BaseF1Config
#instancetype=c5.4xlarge
#deploytriplet=None

Quad-core, Rocket-based recipes

[firesim-quadcore-nic-l2-llc4mb-ddr3]
DESIGN=FireSim
TARGET_CONFIG=L2SingleBank512K_DDR3FRFCFSLLC4MB_FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=BaseF1Config_F90MHz
instancetype=c5.4xlarge
deploytriplet=None

[firesim-quadcore-no-nic-l2-llc4mb-ddr3]
DESIGN=FireSimNoNIC
TARGET_CONFIG=L2SingleBank512K_DDR3FRFCFSLLC4MB_FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=BaseF1Config_F90MHz
instancetype=c5.4xlarge
deploytriplet=None

[firesim-quadcore-nic-llc4mb-ddr3]
DESIGN=FireSim
TARGET_CONFIG=DDR3FRFCFSLLC4MB_FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=BaseF1Config_F90MHz
instancetype=c5.4xlarge
deploytriplet=None

[firesim-quadcore-no-nic-llc4mb-ddr3]
DESIGN=FireSimNoNIC
TARGET_CONFIG=DDR3FRFCFSLLC4MB_FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=BaseF1Config_F90MHz
instancetype=c5.4xlarge
deploytriplet=None

Single-core, BOOM-based targets
[fireboom-singlecore-no-nic-l2-lbp]
DESIGN=FireSimNoNIC
TARGET_CONFIG=L2SingleBank512K_FireSimBoomConfig
PLATFORM_CONFIG=BaseF1Config_F75MHz
instancetype=c5.4xlarge
deploytriplet=None

[fireboom-singlecore-no-nic-l2-llc4mb-ddr3]
DESIGN=FireSimNoNIC
TARGET_CONFIG=L2SingleBank512K_DDR3FRFCFSLLC4MB_FireSimBoomConfig
PLATFORM_CONFIG=BaseF1Config_F75MHz
instancetype=c5.4xlarge
deploytriplet=None

[fireboom-singlecore-nic-l2-llc4mb-ddr3]
DESIGN=FireSim
TARGET_CONFIG=L2SingleBank512K_DDR3FRFCFSLLC4MB_FireSimBoomConfig
PLATFORM_CONFIG=BaseF1Config_F50MHz
instancetype=c5.4xlarge
deploytriplet=None

[fireboom-singlecore-no-nic-lbp]
DESIGN=FireSimNoNIC
TARGET_CONFIG=FireSimBoomConfig
PLATFORM_CONFIG=BaseF1Config
instancetype=c5.4xlarge
deploytriplet=None

[fireboom-singlecore-no-nic-llc4mb-ddr3]
DESIGN=FireSimNoNIC
TARGET_CONFIG=DDR3FRFCFSLLC4MB_FireSimBoomConfig
PLATFORM_CONFIG=BaseF1Config_F80MHz
instancetype=c5.4xlarge
deploytriplet=None

[fireboom-singlecore-nic-llc4mb-ddr3]
DESIGN=FireSim
TARGET_CONFIG=DDR3FRFCFSLLC4MB_FireSimBoomConfig
PLATFORM_CONFIG=BaseF1Config_F80MHz
instancetype=c5.4xlarge
deploytriplet=None

Dual-core, BOOM-based targets
[fireboom-dualcore-no-nic-l2-lbp]
DESIGN=FireSimNoNIC
TARGET_CONFIG=L2SingleBank512K_FireSimBoomDualCoreConfig
PLATFORM_CONFIG=BaseF1Config_F75MHz
instancetype=c5.4xlarge
deploytriplet=None

[fireboom-dualcore-no-nic-l2-llc4mb-ddr3]
DESIGN=FireSimNoNIC
TARGET_CONFIG=L2SingleBank512K_DDR3FRFCFSLLC4MB_FireSimBoomDualCoreConfig
PLATFORM_CONFIG=BaseF1Config_F75MHz
instancetype=c5.4xlarge
deploytriplet=None

[fireboom-dualcore-nic-l2-llc4mb-ddr3]
DESIGN=FireSim
TARGET_CONFIG=L2SingleBank512K_DDR3FRFCFSLLC4MB_FireSimBoomDualCoreConfig
PLATFORM_CONFIG=BaseF1Config_F50MHz
instancetype=c5.4xlarge
deploytriplet=None

[fireboom-dualcore-no-nic-lbp]
DESIGN=FireSimNoNIC
TARGET_CONFIG=FireSimBoomDualCoreConfig
PLATFORM_CONFIG=BaseF1Config
instancetype=c5.4xlarge
deploytriplet=None

[fireboom-dualcore-no-nic-llc4mb-ddr3]
DESIGN=FireSimNoNIC
TARGET_CONFIG=DDR3FRFCFSLLC4MB_FireSimBoomDualCoreConfig
PLATFORM_CONFIG=BaseF1Config_F80MHz
instancetype=c5.4xlarge
deploytriplet=None

[fireboom-dualcore-nic-llc4mb-ddr3]
DESIGN=FireSim
TARGET_CONFIG=DDR3FRFCFSLLC4MB_FireSimBoomDualCoreConfig
PLATFORM_CONFIG=BaseF1Config_F80MHz
instancetype=c5.4xlarge
deploytriplet=None

Quad-core, BOOM-based targets
[fireboom-quadcore-nic-l2-llc4mb-ddr3]
DESIGN=FireSim
TARGET_CONFIG=L2SingleBank512K_DDR3FRFCFSLLC4MB_FireSimBoomQuadCoreConfig
PLATFORM_CONFIG=BaseF1Config_F50MHz
instancetype=c5.4xlarge
deploytriplet=None

As above, with Golden Gate multi-ported RAM optimizations
[fireboom-quadcore-nic-l2-llc4mb-ddr3-ramopt]
DESIGN=FireSim
TARGET_CONFIG=L2SingleBank512K_DDR3FRFCFSLLC4MB_FireSimBoomQuadCoreConfig
PLATFORM_CONFIG=BaseF1Config_F50MHz_MCRams
instancetype=c5.4xlarge
deploytriplet=None

Supernode configurations -- multiple instances of an SoC in a single simulator
[firesim-supernode-singlecore-nic-lbp]
DESIGN=FireSimSupernode
TARGET_CONFIG=SupernodeFireSimRocketChipConfig
PLATFORM_CONFIG=BaseF1Config_F85MHz
instancetype=c5.4xlarge
deploytriplet=None

[firesim-supernode-quadcore-nic-lbp]
DESIGN=FireSimSupernode
TARGET_CONFIG=SupernodeFireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=BaseF1Config_F75MHz
instancetype=c5.4xlarge
deploytriplet=None

[firesim-supernode-singlecore-nic-llc4mb-ddr3]
DESIGN=FireSimSupernode
TARGET_CONFIG=DDR3FRFCFSLLC4MB_SupernodeFireSimRocketChipConfig
PLATFORM_CONFIG=BaseF1Config_F90MHz
instancetype=c5.4xlarge
deploytriplet=None

[firesim-supernode-quadcore-nic-llc4mb-ddr3]
DESIGN=FireSimSupernode
TARGET_CONFIG=DDR3FRFCFSLLC4MB_SupernodeFireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=BaseF1Config_F75MHz
instancetype=c5.4xlarge
deploytriplet=None

MIDAS Examples -- BUILD SUPPORT ONLY; Can't launch driver correctly on runfarm
[midasexamples-gcd]
TARGET_PROJECT=midasexamples
DESIGN=GCD
TARGET_CONFIG=NoConfig
PLATFORM_CONFIG=DefaultF1Config
instancetype=c5.4xlarge
deploytriplet=None

Golden Gate Multi-Cycle RAM Optimization Demo Recipes
RAM Optimizations enabled by adding _MCRams PLATFORM_CONFIG string
[firesim-quadcore-no-nic-l2-llc4mb-ddr3-ramopts]
DESIGN=FireSimNoNIC
TARGET_CONFIG=L2SingleBank512K_DDR3FRFCFSLLC4MB_FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=BaseF1Config_MCRams_F90MHz
instancetype=c5.4xlarge
deploytriplet=None

[fireboom-singlecore-no-nic-l2-llc4mb-ddr3-ramopts]
DESIGN=FireSimNoNIC
TARGET_CONFIG=L2SingleBank512K_DDR3FRFCFSLLC4MB_FireSimBoomConfig
PLATFORM_CONFIG=BaseF1Config_MCRams_F90MHz
instancetype=c5.4xlarge
deploytriplet=None

ADDITIONAL MICRO DEMO RECIPES

SHA-3 Demo Recipes
[firesim-singlecore-sha3-nic-l2-llc4mb-ddr3]
DESIGN=FireSim
TARGET_CONFIG=DDR3FRFCFSLLC4MB_FireSimRocketChipSha3L2Config
PLATFORM_CONFIG=BaseF1Config_F120MHz
instancetype=c5.4xlarge
deploytriplet=None

[firesim-singlecore-sha3-no-nic-l2-llc4mb-ddr3]
DESIGN=FireSimNoNIC
TARGET_CONFIG=DDR3FRFCFSLLC4MB_FireSimRocketChipSha3L2Config
PLATFORM_CONFIG=BaseF1Config_F120MHz
instancetype=c5.4xlarge
deploytriplet=None

[firesim-singlecore-sha3-nic-l2-llc4mb-ddr3-print]
DESIGN=FireSim
TARGET_CONFIG=DDR3FRFCFSLLC4MB_FireSimRocketChipSha3L2PrintfConfig
PLATFORM_CONFIG=WithPrintfSynthesis_BaseF1Config_F120MHz
instancetype=c5.4xlarge
deploytriplet=None

[firesim-singlecore-sha3-no-nic-l2-llc4mb-ddr3-print]
DESIGN=FireSimNoNIC
TARGET_CONFIG=DDR3FRFCFSLLC4MB_FireSimRocketChipSha3L2PrintfConfig
PLATFORM_CONFIG=WithPrintfSynthesis_BaseF1Config_F120MHz
instancetype=c5.4xlarge
deploytriplet=None

[firerocketboom-1rx1b-no-nic-l2-ddr3-llc4mb]
DESIGN=FireSimNoNIC
TARGET_CONFIG=L2SingleBank512K_DDR3FRFCFSLLC4MB_FireSimRocketBoomConfig
PLATFORM_CONFIG=BaseF1Config_F75MHz
instancetype=c5.4xlarge
deploytriplet=None

Below, we outline each section and parameter in detail.

4.3.1. Build definition sections, e.g. [awesome-firesim-config]

In this file, you can specify as many build definition sections as you want,
each with a header like [awesome-firesim-config] (i.e. a nice, short name
you made up). Such a section must contain the following fields:

4.3.1.1. DESIGN

This specifies the basic target design that will be built. Unless you
are defining a custom system, this should either be FireSim, for
systems with a NIC, or FireSimNoNIC, for systems without a NIC. These
are defined in firesim/sim/src/main/scala/firesim/Targets.scala. We
describe this in greater detail in Generating Different
Targets).

4.3.1.2. TARGET_CONFIG

This specifies the hardware configuration of the target being simulated. Some
examples include FireSimRocketChipConfig and FireSimRocketChipQuadCoreConfig.
These are defined in firesim/sim/src/main/scala/firesim/TargetConfigs.scala.
We describe this in greater detail in Generating Different
Targets).

4.3.1.3. PLATFORM_CONFIG

This specifies hardware parameters of the simulation environment - for example,
selecting between a Latency-Bandwidth Pipe or DDR3 memory models.
These are defined in firesim/sim/src/main/scala/firesim/SimConfigs.scala.
We specify the host FPGA frequency in the PLATFORM_CONFIG by appending a frequency
Config with an underscore (ex. BaseF1Config_F160MHz).
We describe this in greater detail in Generating Different
Targets).

4.3.1.4. instancetype

This defines the type of instance that the build will run on. Generally, running
on a c5.4xlarge is sufficient. In our experience, using more powerful instances
than this provides little gain.

4.3.1.5. deploytriplet

This allows you to override the deploytriplet stored with the AGFI.
Otherwise, the DESIGN/TARGET_CONFIG/PLATFORM_CONFIG you specify
above will be used. See the AGFI Tagging section for more details. Most likely,
you should leave this set to None. This is usually only used if you have
proprietary RTL that you bake into an FPGA image, but don’t want to share with
users of the simulator.

4.3.1.6. TARGET_PROJECT (Optional)

This specifies the target project in which the target is defined (this is described
in greater detail here). If
TARGET_PROJECT is undefined the manager will default to firesim.
Setting TARGET_PROJECT is required for building the MIDAS examples
(TARGET_PROJECT=midasexamples) with the manager, or for building a
user-provided target project.

4.4. config_hwdb.ini

Here is a sample of this configuration file:

Hardware config database for FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation of all of these params.

Hardware configs represent a combination of an agfi, a deploytriplet override
(if needed), and a custom runtime config (if needed)

The AGFIs provided below are public and available to all users.
Only AGFIs for the latest release of FireSim are guaranteed to be available.
If you are using an older version of FireSim, you will need to generate your
own images.

[fireboom-singlecore-nic-l2-llc4mb-ddr3]
agfi=agfi-034446a72078958bf
deploytripletoverride=None
customruntimeconfig=None

[fireboom-singlecore-no-nic-l2-llc4mb-ddr3]
agfi=agfi-06b58ae1ea302ace3
deploytripletoverride=None
customruntimeconfig=None

[fireboom-singlecore-no-nic-l2-llc4mb-ddr3-ramopts]
agfi=agfi-0a06502cc7c58b625
deploytripletoverride=None
customruntimeconfig=None

[firerocketboom-1rx1b-no-nic-l2-ddr3-llc4mb]
agfi=agfi-0cc77cc4cf98bd869
deploytripletoverride=None
customruntimeconfig=None

[firesim-quadcore-nic-l2-llc4mb-ddr3]
agfi=agfi-0df8a925e514efb6a
deploytripletoverride=None
customruntimeconfig=None

[firesim-quadcore-no-nic-l2-llc4mb-ddr3]
agfi=agfi-0a8470ccd41803f9d
deploytripletoverride=None
customruntimeconfig=None

[firesim-quadcore-nic-llc4mb-ddr3]
agfi=agfi-0dae3e34749496fe0
deploytripletoverride=None
customruntimeconfig=None

[firesim-singlecore-sha3-nic-l2-llc4mb-ddr3]
agfi=agfi-0b3b731fbbc3534cf
deploytripletoverride=None
customruntimeconfig=None

[firesim-singlecore-sha3-nic-l2-llc4mb-ddr3-print]
agfi=agfi-02cb8a85c9dc309ec
deploytripletoverride=None
customruntimeconfig=None

[firesim-singlecore-sha3-no-nic-l2-llc4mb-ddr3]
agfi=agfi-0b22b8732efd763df
deploytripletoverride=None
customruntimeconfig=None

[firesim-singlecore-sha3-no-nic-l2-llc4mb-ddr3-print]
agfi=agfi-0120c872049eac274
deploytripletoverride=None
customruntimeconfig=None

[firesim-supernode-singlecore-nic-lbp]
agfi=agfi-0ef33fc78be7fe4e7
deploytripletoverride=None
customruntimeconfig=None

This file tracks hardware configurations that you can deploy as simulated nodes
in FireSim. Each such configuration contains a name for easy reference in higher-level
configurations, defined in the section header, an agfi, which represents the
FPGA image, a custom runtime config, if one is needed, and a deploy triplet
override if one is necessary.

When you build a new AGFI, you should put the default version of it in this
file so that it can be referenced from your other configuration files.

The following is an example section from this file - you can add as many of
these as necessary:

[firesim-quadcore-nic-l2-llc4mb-ddr3]
this is a comment that describes my favorite configuration!
agfi=agfi-0a6449b5894e96e53
deploytripletoverride=None
customruntimeconfig=None

4.4.1. [NAME_GOES_HERE]

In this example, firesim-quadcore-nic-l2-llc4mb-ddr3 is the name that will be
used to reference this hardware design in other configuration locations. The following
items describe this hardware configuration:

4.4.1.1. agfi

This represents the AGFI (FPGA Image) used by this hardware configuration.

4.4.1.2. deploytripletoverride

This is an advanced feature - under normal conditions, you should leave this set to None, so that the
manager uses the configuration triplet that is automatically stored with the
AGFI at build time. Advanced users can set this to a different
value to build and use a different driver when deploying simulations. Since
the driver depends on logic now hardwired into the
FPGA bitstream, drivers cannot generally be changed without requiring FPGA
recompilation.

4.4.1.3. customruntimeconfig

This is an advanced feature - under normal conditions, you can use the default
parameters generated automatically by the simulator by setting this field to
None. If you want to customize runtime parameters for certain parts of
the simulation (e.g. the DRAM model’s runtime parameters), you can place
a custom config file in sim/custom-runtime-configs/. Then, set this field
to the relative name of the config. For example,
sim/custom-runtime-configs/GREATCONFIG.conf becomes
customruntimeconfig=GREATCONFIG.conf.

4.4.2. Add more hardware config sections, like [NAME_GOES_HERE_2]

You can add as many of these entries to config_hwdb.ini as you want, following the format
discussed above (i.e. you provide agfi, deploytripletoverride, or customruntimeconfig).

5. Manager Environment Variables

This page contains a centralized reference for the environment variables used
by the manager.

5.1. FIRESIM_RUNFARM_PREFIX

This environment variable is used to prefix all Run Farm tags with some prefix.
This is useful for separating run farms between multiple copies of FireSim.

This is set in sourceme-f1-manager.sh, so you can change it and commit it
(e.g. if you’re maintaining a branch for special runs). It can be unset or set
to the empty string.

6. Manager Network Topology Definitions (user_topology.py)

Custom network topologies are specified as Python snippets that construct a
tree. You can see examples of these in firesim/deploy/runtools/user_topology.py,
shown below. Better documentation of this API will be available once it stabilizes.

Fundamentally, you create a list of roots, which consists of switch or server
nodes, then construct a tree by adding downlinks to these roots. Since links
are bi-directional, adding a downlink from node A to node B implicitly adds
an uplink from B to A.

You can add additional topology generation methods here, then use them in
config_runtime.ini.

6.1. user_topology.py contents:

""" Define your additional topologies here. The FireSimTopology class inherits
from UserToplogies and thus can instantiate your topology. """

from runtools.firesim_topology_elements import *

class UserTopologies(object):
 """ A class that just separates out user-defined/configurable topologies
 from the rest of the boilerplate in FireSimTopology() """

 def clos_m_n_r(self, m, n, r):
 """ DO NOT USE THIS DIRECTLY, USE ONE OF THE INSTANTIATIONS BELOW. """
 """ Clos topol where:
 m = number of root switches
 n = number of links to nodes on leaf switches
 r = number of leaf switches

 and each leaf switch has a link to each root switch.

 With the default mapping specified below, you will need:
 m m4.16xlarges.
 n f1.16xlarges.

 TODO: improve this later to pack leaf switches with <= 4 downlinks onto
 one 16x.large.
 """

 rootswitches = [FireSimSwitchNode() for x in range(m)]
 self.roots = rootswitches
 leafswitches = [FireSimSwitchNode() for x in range(r)]
 servers = [[FireSimServerNode() for x in range(n)] for y in range(r)]
 for rswitch in rootswitches:
 rswitch.add_downlinks(leafswitches)

 for leafswitch, servergroup in zip(leafswitches, servers):
 leafswitch.add_downlinks(servergroup)

 def custom_mapper(fsim_topol_with_passes):
 for i, rswitch in enumerate(rootswitches):
 fsim_topol_with_passes.run_farm.m4_16s[i].add_switch(rswitch)

 for j, lswitch in enumerate(leafswitches):
 fsim_topol_with_passes.run_farm.f1_16s[j].add_switch(lswitch)
 for sim in servers[j]:
 fsim_topol_with_passes.run_farm.f1_16s[j].add_simulation(sim)

 self.custom_mapper = custom_mapper

 def clos_2_8_2(self):
 """ clos topol with:
 2 roots
 8 nodes/leaf
 2 leaves. """
 self.clos_m_n_r(2, 8, 2)

 def clos_8_8_16(self):
 """ clos topol with:
 8 roots
 8 nodes/leaf
 16 leaves. = 128 nodes."""
 self.clos_m_n_r(8, 8, 16)

 def fat_tree_4ary(self):
 # 4-ary fat tree as described in
 # http://ccr.sigcomm.org/online/files/p63-alfares.pdf
 coreswitches = [FireSimSwitchNode() for x in range(4)]
 self.roots = coreswitches
 aggrswitches = [FireSimSwitchNode() for x in range(8)]
 edgeswitches = [FireSimSwitchNode() for x in range(8)]
 servers = [FireSimServerNode() for x in range(16)]
 for switchno in range(len(coreswitches)):
 core = coreswitches[switchno]
 base = 0 if switchno < 2 else 1
 dls = range(base, 8, 2)
 dls = map(lambda x: aggrswitches[x], dls)
 core.add_downlinks(dls)
 for switchbaseno in range(0, len(aggrswitches), 2):
 switchno = switchbaseno + 0
 aggr = aggrswitches[switchno]
 aggr.add_downlinks([edgeswitches[switchno], edgeswitches[switchno+1]])
 switchno = switchbaseno + 1
 aggr = aggrswitches[switchno]
 aggr.add_downlinks([edgeswitches[switchno-1], edgeswitches[switchno]])
 for edgeno in range(len(edgeswitches)):
 edgeswitches[edgeno].add_downlinks([servers[edgeno*2], servers[edgeno*2+1]])

 def custom_mapper(fsim_topol_with_passes):
 """ In a custom mapper, you have access to the firesim topology with passes,
 where you can access the run_farm nodes:

 fsim_topol_with_passes.run_farm.{f1_16s, f1_2s, m4_16s}

 To map, call add_switch or add_simulation on run farm instance
 objs in the aforementioned arrays.

 Because of the scope of this fn, you also have access to whatever
 stuff you created in the topology itself, which we expect will be
 useful for performing the mapping."""

 # map the fat tree onto one m4.16xlarge (for core switches)
 # and two f1.16xlarges (two pods of aggr/edge/4sims per f1.16xlarge)
 for core in coreswitches:
 fsim_topol_with_passes.run_farm.m4_16s[0].add_switch(core)

 for aggrsw in aggrswitches[:4]:
 fsim_topol_with_passes.run_farm.f1_16s[0].add_switch(aggrsw)
 for aggrsw in aggrswitches[4:]:
 fsim_topol_with_passes.run_farm.f1_16s[1].add_switch(aggrsw)

 for edgesw in edgeswitches[:4]:
 fsim_topol_with_passes.run_farm.f1_16s[0].add_switch(edgesw)
 for edgesw in edgeswitches[4:]:
 fsim_topol_with_passes.run_farm.f1_16s[1].add_switch(edgesw)

 for sim in servers[:8]:
 fsim_topol_with_passes.run_farm.f1_16s[0].add_simulation(sim)
 for sim in servers[8:]:
 fsim_topol_with_passes.run_farm.f1_16s[1].add_simulation(sim)

 self.custom_mapper = custom_mapper

 def example_multilink(self):
 self.roots = [FireSimSwitchNode()]
 midswitch = FireSimSwitchNode()
 lowerlayer = [midswitch for x in range(16)]
 self.roots[0].add_downlinks(lowerlayer)
 servers = [FireSimServerNode()]
 midswitch.add_downlinks(servers)

 def example_multilink_32(self):
 self.roots = [FireSimSwitchNode()]
 midswitch = FireSimSwitchNode()
 lowerlayer = [midswitch for x in range(32)]
 self.roots[0].add_downlinks(lowerlayer)
 servers = [FireSimServerNode()]
 midswitch.add_downlinks(servers)

 def example_multilink_64(self):
 self.roots = [FireSimSwitchNode()]
 midswitch = FireSimSwitchNode()
 lowerlayer = [midswitch for x in range(64)]
 self.roots[0].add_downlinks(lowerlayer)
 servers = [FireSimServerNode()]
 midswitch.add_downlinks(servers)

 def example_cross_links(self):
 self.roots = [FireSimSwitchNode() for x in range(2)]
 midswitches = [FireSimSwitchNode() for x in range(2)]
 self.roots[0].add_downlinks(midswitches)
 self.roots[1].add_downlinks(midswitches)
 servers = [FireSimServerNode() for x in range(2)]
 midswitches[0].add_downlinks([servers[0]])
 midswitches[1].add_downlinks([servers[1]])

 def small_hierarchy_8sims(self):
 self.custom_mapper = 'mapping_use_one_f1_16xlarge'
 self.roots = [FireSimSwitchNode()]
 midlevel = [FireSimSwitchNode() for x in range(4)]
 servers = [[FireSimServerNode() for x in range(2)] for x in range(4)]
 self.roots[0].add_downlinks(midlevel)
 for swno in range(len(midlevel)):
 midlevel[swno].add_downlinks(servers[swno])

 def small_hierarchy_2sims(self):
 self.custom_mapper = 'mapping_use_one_f1_16xlarge'
 self.roots = [FireSimSwitchNode()]
 midlevel = [FireSimSwitchNode() for x in range(1)]
 servers = [[FireSimServerNode() for x in range(2)] for x in range(1)]
 self.roots[0].add_downlinks(midlevel)
 for swno in range(len(midlevel)):
 midlevel[swno].add_downlinks(servers[swno])

 def example_1config(self):
 self.roots = [FireSimSwitchNode()]
 servers = [FireSimServerNode() for y in range(1)]
 self.roots[0].add_downlinks(servers)

 def example_2config(self):
 self.roots = [FireSimSwitchNode()]
 servers = [FireSimServerNode() for y in range(2)]
 self.roots[0].add_downlinks(servers)

 def example_4config(self):
 self.roots = [FireSimSwitchNode()]
 servers = [FireSimServerNode() for y in range(4)]
 self.roots[0].add_downlinks(servers)

 def example_8config(self):
 self.roots = [FireSimSwitchNode()]
 servers = [FireSimServerNode() for y in range(8)]
 self.roots[0].add_downlinks(servers)

 def example_16config(self):
 self.roots = [FireSimSwitchNode()]
 level2switches = [FireSimSwitchNode() for x in range(2)]
 servers = [[FireSimServerNode() for y in range(8)] for x in range(2)]

 for root in self.roots:
 root.add_downlinks(level2switches)

 for l2switchNo in range(len(level2switches)):
 level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

 def example_32config(self):
 self.roots = [FireSimSwitchNode()]
 level2switches = [FireSimSwitchNode() for x in range(4)]
 servers = [[FireSimServerNode() for y in range(8)] for x in range(4)]

 for root in self.roots:
 root.add_downlinks(level2switches)

 for l2switchNo in range(len(level2switches)):
 level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

 def example_64config(self):
 self.roots = [FireSimSwitchNode()]
 level2switches = [FireSimSwitchNode() for x in range(8)]
 servers = [[FireSimServerNode() for y in range(8)] for x in range(8)]

 for root in self.roots:
 root.add_downlinks(level2switches)

 for l2switchNo in range(len(level2switches)):
 level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

 def example_128config(self):
 self.roots = [FireSimSwitchNode()]
 level1switches = [FireSimSwitchNode() for x in range(2)]
 level2switches = [[FireSimSwitchNode() for x in range(8)] for x in range(2)]
 servers = [[[FireSimServerNode() for y in range(8)] for x in range(8)] for x in range(2)]

 self.roots[0].add_downlinks(level1switches)

 for switchno in range(len(level1switches)):
 level1switches[switchno].add_downlinks(level2switches[switchno])

 for switchgroupno in range(len(level2switches)):
 for switchno in range(len(level2switches[switchgroupno])):
 level2switches[switchgroupno][switchno].add_downlinks(servers[switchgroupno][switchno])

 def example_256config(self):
 self.roots = [FireSimSwitchNode()]
 level1switches = [FireSimSwitchNode() for x in range(4)]
 level2switches = [[FireSimSwitchNode() for x in range(8)] for x in range(4)]
 servers = [[[FireSimServerNode() for y in range(8)] for x in range(8)] for x in range(4)]

 self.roots[0].add_downlinks(level1switches)

 for switchno in range(len(level1switches)):
 level1switches[switchno].add_downlinks(level2switches[switchno])

 for switchgroupno in range(len(level2switches)):
 for switchno in range(len(level2switches[switchgroupno])):
 level2switches[switchgroupno][switchno].add_downlinks(servers[switchgroupno][switchno])

 @staticmethod
 def supernode_flatten(arr):
 res = []
 for x in arr:
 res = res + x
 return res

 def supernode_example_6config(self):
 self.roots = [FireSimSwitchNode()]
 servers = [FireSimSuperNodeServerNode()] + [FireSimDummyServerNode() for x in range(5)]
 self.roots[0].add_downlinks(servers)

 def supernode_example_4config(self):
 self.roots = [FireSimSwitchNode()]
 servers = [FireSimSuperNodeServerNode()] + [FireSimDummyServerNode() for x in range(3)]
 self.roots[0].add_downlinks(servers)
 def supernode_example_8config(self):
 self.roots = [FireSimSwitchNode()]
 servers = UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in range(2)])
 self.roots[0].add_downlinks(servers)
 def supernode_example_16config(self):
 self.roots = [FireSimSwitchNode()]
 servers = UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in range(4)])
 self.roots[0].add_downlinks(servers)
 def supernode_example_32config(self):
 self.roots = [FireSimSwitchNode()]
 servers = UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in range(8)])
 self.roots[0].add_downlinks(servers)

 def supernode_example_64config(self):
 self.roots = [FireSimSwitchNode()]
 level2switches = [FireSimSwitchNode() for x in range(2)]
 servers = [UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in range(8)]) for x in range(2)]
 for root in self.roots:
 root.add_downlinks(level2switches)
 for l2switchNo in range(len(level2switches)):
 level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

 def supernode_example_128config(self):
 self.roots = [FireSimSwitchNode()]
 level2switches = [FireSimSwitchNode() for x in range(4)]
 servers = [UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in range(8)]) for x in range(4)]
 for root in self.roots:
 root.add_downlinks(level2switches)
 for l2switchNo in range(len(level2switches)):
 level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

 def supernode_example_256config(self):
 self.roots = [FireSimSwitchNode()]
 level2switches = [FireSimSwitchNode() for x in range(8)]
 servers = [UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in range(8)]) for x in range(8)]
 for root in self.roots:
 root.add_downlinks(level2switches)
 for l2switchNo in range(len(level2switches)):
 level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

 def supernode_example_512config(self):
 self.roots = [FireSimSwitchNode()]
 level1switches = [FireSimSwitchNode() for x in range(2)]
 level2switches = [[FireSimSwitchNode() for x in range(8)] for x in range(2)]
 servers = [[UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in range(8)]) for x in range(8)] for x in range(2)]
 self.roots[0].add_downlinks(level1switches)
 for switchno in range(len(level1switches)):
 level1switches[switchno].add_downlinks(level2switches[switchno])
 for switchgroupno in range(len(level2switches)):
 for switchno in range(len(level2switches[switchgroupno])):
 level2switches[switchgroupno][switchno].add_downlinks(servers[switchgroupno][switchno])

 def supernode_example_1024config(self):
 self.roots = [FireSimSwitchNode()]
 level1switches = [FireSimSwitchNode() for x in range(4)]
 level2switches = [[FireSimSwitchNode() for x in range(8)] for x in range(4)]
 servers = [[UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in range(8)]) for x in range(8)] for x in range(4)]
 self.roots[0].add_downlinks(level1switches)
 for switchno in range(len(level1switches)):
 level1switches[switchno].add_downlinks(level2switches[switchno])
 for switchgroupno in range(len(level2switches)):
 for switchno in range(len(level2switches[switchgroupno])):
 level2switches[switchgroupno][switchno].add_downlinks(servers[switchgroupno][switchno])

 def supernode_example_deep64config(self):
 self.roots = [FireSimSwitchNode()]
 level1switches = [FireSimSwitchNode() for x in range(2)]
 level2switches = [[FireSimSwitchNode() for x in range(1)] for x in range(2)]
 servers = [[UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in range(8)]) for x in range(1)] for x in range(2)]
 self.roots[0].add_downlinks(level1switches)
 for switchno in range(len(level1switches)):
 level1switches[switchno].add_downlinks(level2switches[switchno])
 for switchgroupno in range(len(level2switches)):
 for switchno in range(len(level2switches[switchgroupno])):
 level2switches[switchgroupno][switchno].add_downlinks(servers[switchgroupno][switchno])

 def dual_example_8config(self):
 """ two separate 8-node clusters for experiments, e.g. memcached mutilate. """
 self.roots = [FireSimSwitchNode(), FireSimSwitchNode()]
 servers = [FireSimServerNode() for y in range(8)]
 servers2 = [FireSimServerNode() for y in range(8)]
 self.roots[0].add_downlinks(servers)
 self.roots[1].add_downlinks(servers2)

 def triple_example_8config(self):
 """ three separate 8-node clusters for experiments, e.g. memcached mutilate. """
 self.roots = [FireSimSwitchNode(), FireSimSwitchNode(), FireSimSwitchNode()]
 servers = [FireSimServerNode() for y in range(8)]
 servers2 = [FireSimServerNode() for y in range(8)]
 servers3 = [FireSimServerNode() for y in range(8)]
 self.roots[0].add_downlinks(servers)
 self.roots[1].add_downlinks(servers2)
 self.roots[2].add_downlinks(servers3)

 def no_net_config(self):
 self.roots = [FireSimServerNode() for x in range(self.no_net_num_nodes)]

 # Spins up all of the precompiled, unnetworked targets
 def all_no_net_targets_config(self):
 hwdb_entries = [
 "fireboom-singlecore-no-nic-l2-llc4mb-ddr3",
 "fireboom-singlecore-no-nic-l2-llc4mb-ddr3-ramopts",
 "firesim-quadcore-no-nic-l2-llc4mb-ddr3",
 "firesim-singlecore-no-nic-lbp",
]
 assert len(hwdb_entries) == self.no_net_num_nodes
 self.roots = [FireSimServerNode(hwdb_entries[x]) for x in range(self.no_net_num_nodes)]

######Used only for tutorial purposes####################
def example_sha3hetero_2config(self):
self.roots= [FireSimSwitchNode()]
servers = [FireSimServerNode(server_hardware_config=
"fireboom-singlecore-nic-l2-llc4mb-ddr3"),
FireSimServerNode(server_hardware_config=
"firesim-singlecore-sha3-nic-l2-llc4mb-ddr3")]
self.roots[0].add_downlinks(servers)

7. AGFI Metadata/Tagging

When you build an AGFI in FireSim, the AGFI description stored by AWS is
populated with metadata that helps the manager decide how to deploy
a simulation. The important metadata is listed below, along with how each field
is set and used:

	firesim-buildtriplet: This always reflects the triplet combination used to BUILD the AGFI.

	firesim-deploytriplet: This reflects the triplet combination that is used to DEPLOY the AGFI. By default, this is the same as firesim-buildtriplet. In certain cases however, your users may not have access to a particular configuration, but a simpler configuration may be sufficient for building a compatible software driver (e.g. if you have proprietary RTL in your FPGA image that doesn’t interface with the outside system). In this case, you can specify a custom deploytriplet at build time. If you do not do so, the manager will automatically set this to be the same as firesim-buildtriplet.

	firesim-commit: This is the commit hash of the version of FireSim used to build this AGFI. If the AGFI was created from a dirty copy of the FireSim repo, “-dirty” will be appended to the commit hash.

Workloads

Attention

FireSim is moving to a new workload-generation tool FireMarshal.
These instructions will be deprecated in future releases of FireSim.

This section describes workload definitions in FireSim.

Workloads:

	Defining Custom Workloads
	Uniform Workload JSON

	Non-uniform Workload JSON (explicit job per simulated node)

	SPEC 2017
	Intspeed

	Intrate

	Running Fedora on FireSim

	ISCA 2018 Experiments
	Prerequisites

	Building Benchmark Binaries/Rootfses

	Figure 5: Ping Latency vs. Configured Link Latency

	Figure 6: Network Bandwidth Saturation

	Figure 7: Memcached QoS / Thread Imbalance

	Figure 8: Simulation Rate vs. Scale

	Figure 9: Simulation Rate vs. Link Latency

	Running all experiments at once

	GAP Benchmark Suite

Defining Custom Workloads

Workloads in FireSim consist of a series of Jobs that are assigned to
be run on individual simulations. Currently, we require that a Workload defines
either:

	A single type of job, that is run on as many simulations as specfied by the user.
These workloads are usually suffixed with -uniform, which indicates that
all nodes in the workload run the same job. An example of such a workload is
firesim/deploy/workloads/linux-uniform.json.

	Several different jobs, in which case there must be exactly as many
jobs as there are running simulated nodes. An example of such a workload is
firesim/deploy/workloads/ping-latency.json.

FireSim supports can take these workload definitions and perform two functions:

	Building workloads using firesim/deploy/workloads/gen-benchmark-rootfs.py

	Deploying workloads using the manager

In the following subsections, we will go through the two aforementioned example
workload configurations, describing how these two functions use each part
of the json file inline.

ERRATA: You will notice in the following json files the field “workloads”
this should really be named “jobs” – we will fix this in a future release.

ERRATA: The following instructions assume the default buildroot-based linux
distribution (br-disk). In order to customize Fedora, you should build the
basic Fedora image (as described in Running Fedora on FireSim) and modify the image
directly (or use FireMarshal to generate the
workload). Imporantly, Fedora currently does not support the “command” option
for workloads.

Uniform Workload JSON

firesim/deploy/workloads/linux-uniform.json is an example of a “uniform”
style workload, where each simulated node runs the same software configuration.

Let’s take a look at this file:

{
 "benchmark_name" : "linux-uniform",
 "common_bootbinary" : "br-base-bin",
 "common_rootfs" : "br-base.img",
 "common_outputs" : ["/etc/os-release"],
 "common_simulation_outputs" : ["uartlog", "memory_stats.csv"]
}

There is also a corresponding directory named after this workload/file:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/workloads/linux-uniform$ ls -la
total 4
drwxrwxr-x 2 centos centos 42 May 17 21:58 .
drwxrwxr-x 13 centos centos 4096 May 18 17:14 ..
lrwxrwxrwx 1 centos centos 41 May 17 21:58 br-base-bin -> ../../../sw/firesim-software/images/br-base-bin
lrwxrwxrwx 1 centos centos 41 May 17 21:58 br-base.img -> ../../../sw/firesim-software/images/br-base.img

We will elaborate on this later.

Looking at the JSON file, you’ll notice that this is a relatively simple
workload definition.

In this “uniform” case, the manager will name simulations after the
benchmark_name field, appending a number for each simulation using the
workload (e.g. linux-uniform0, linux-uniform1, and so on). It is
standard pratice to keep benchmark_name, the json filename, and the above
directory name the same. In this case, we have set all of them to
linux-uniform.

Next, the common_bootbinary field represents the binary that the simulations
in this workload are expected to boot from. The manager will copy this binary
for each of the nodes in the simulation (each gets its own copy). The common_bootbinary path is
relative to the workload’s directory, in this case
firesim/deploy/workloads/linux-uniform. You’ll notice in the above output
from ls -la that this is actually just a symlink to br-base-bin that
is built by the FireMarshal tool.

Similarly, the common_rootfs field represents the disk image that the simulations
in this workload are expected to boot from. The manager will copy this root
filesystem image for each of the nodes in the simulation (each gets its own copy).
The common_rootfs path is
relative to the workload’s directory, in this case
firesim/deploy/workloads/linux-uniform. You’ll notice in the above output
from ls -la that this is actually just a symlink to br-base.img that
is built by the FireMarshal tool.

The common_outputs field is a list of outputs that the manager will copy out of
the root filesystem image AFTER a simulation completes. In this simple example,
when a workload running on a simulated cluster with firesim runworkload
completes, /etc/os-release will be copied out from each rootfs and placed
in the job’s output directory within the workload’s output directory (See
the firesim runworkload section). You can add multiple paths
here.

The common_simulation_outputs field is a list of outputs that the manager
will copy off of the simulation host machine AFTER a simulation completes. In
this example, when a workload running on a simulated cluster with
firesim runworkload
completes, the uartlog (an automatically generated file that contains the
full console output of the simulated system) and memory_stats.csv files
will be copied out of the simulation’s base directory on the host instance and
placed in the job’s output directory within the workload’s output directory
(see the firesim runworkload section). You can add multiple
paths here.

ERRATA: “Uniform” style workloads currently do not support being
automatically built – you can currently hack around this by building the
rootfs as a single-node non-uniform workload, then deleting the workloads
field of the JSON to make the manager treat it as a uniform workload. This will
be fixed in a future release.

Non-uniform Workload JSON (explicit job per simulated node)

Now, we’ll look at the ping-latency workload, which explicitly defines a
job per simulated node.

{
 "common_bootbinary" : "bbl-vmlinux",
 "benchmark_name" : "ping-latency",
 "deliver_dir" : "/",
 "common_args" : [],
 "common_files" : ["bin/pinglatency.sh"],
 "common_outputs" : [],
 "common_simulation_outputs" : ["uartlog"],
 "no_post_run_hook": "",
 "workloads" : [
 {
 "name": "pinger",
 "files": [],
 "command": "pinglatency.sh && poweroff -f",
 "simulation_outputs": [],
 "outputs": []
 },
 {
 "name": "pingee",
 "files": [],
 "command": "while true; do sleep 1000; done",
 "simulation_outputs": [],
 "outputs": []
 },
 {
 "name": "idler-1",
 "files": [],
 "command": "while true; do sleep 1000; done",
 "simulation_outputs": [],
 "outputs": []
 },
 {
 "name": "idler-2",
 "files": [],
 "command": "while true; do sleep 1000; done",
 "simulation_outputs": [],
 "outputs": []
 },
 {
 "name": "idler-3",
 "files": [],
 "command": "while true; do sleep 1000; done",
 "simulation_outputs": [],
 "outputs": []
 },
 {
 "name": "idler-4",
 "files": [],
 "command": "while true; do sleep 1000; done",
 "simulation_outputs": [],
 "outputs": []
 },
 {
 "name": "idler-5",
 "files": [],
 "command": "while true; do sleep 1000; done",
 "simulation_outputs": [],
 "outputs": []
 },
 {
 "name": "idler-6",
 "files": [],
 "command": "while true; do sleep 1000; done",
 "simulation_outputs": [],
 "outputs": []
 }
]
}

Additionally, let’s take a look at the state of the ping-latency directory
AFTER the workload is built:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/workloads/ping-latency$ ls -la
total 15203216
drwxrwxr-x 3 centos centos 4096 May 18 07:45 .
drwxrwxr-x 13 centos centos 4096 May 18 17:14 ..
lrwxrwxrwx 1 centos centos 41 May 17 21:58 bbl-vmlinux -> ../linux-uniform/br-base-bin
-rw-rw-r-- 1 centos centos 7 May 17 21:58 .gitignore
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-1.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-2.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-3.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-4.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-5.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:46 idler-6.ext2
drwxrwxr-x 3 centos centos 16 May 17 21:58 overlay
-rw-r--r-- 1 centos centos 1946009600 May 18 07:44 pingee.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:44 pinger.ext2
-rw-rw-r-- 1 centos centos 2236 May 17 21:58 ping-latency-graph.py

First, let’s identify some of these files:

	bbl-vmlinux: This workload just uses the default linux binary generated for the linux-uniform workload.

	.gitignore: This just ignores the generated rootfses, which we’ll learn about below.

	idler-[1-6].ext2, pingee.ext2, pinger.ext2: These are rootfses that are generated from the json script above. We’ll learn how to do this shortly.

Additionally, let’s look at the overlay subdirectory:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/workloads/ping-latency/overlay$ ls -la */*
-rwxrwxr-x 1 centos centos 249 May 17 21:58 bin/pinglatency.sh

This is a file that’s actually committed to the repo, that runs the benchmark we want to
run on one of our simulated systems. We’ll see how this is used soon.

Now, let’s take a look at how we got here. First, let’s review some of the new
fields present in this JSON file:

	common_files: This is an array of files that will be included in ALL of the job rootfses when they’re built. This is relative to a path that we’ll pass to the script that generates rootfses.

	workloads: This time, you’ll notice that we have this array, which is populated by objects that represent individual jobs. Each job has some additional fields:

	name: In this case, jobs are each assigned a name manually. These names MUST BE UNIQUE within a particular workload.

	files: Just like common_files, but specific to this job.

	command: This is the command that will be run automatically immediately when the simulation running this job boots up. This is usually the command that starts the workload we want.

	simulation_outputs: Just like common_simulation_outputs, but specific to this job.

	outputs: Just like common_outputs, but specific to this job.

In this example, we specify one node that boots up and runs the
pinglatency.sh benchmark, then powers off cleanly and 7 nodes that just
idle waiting to be pinged.

Given this JSON description, our existing pinglatency.sh script in the
overlay directory, and the base rootfses generated in firesim-software,
the following command will automatically generate all of the rootfses that you
see in the ping-latency directory.

[from the workloads/ directory]
python gen-benchmark-rootfs.py -w ping-latency.json -r -b ../../sw/firesim-software/images/br-base.img -s ping-latency/overlay

Notice that we tell this script where the json file lives, where the base rootfs image is, and where we expect to find files
that we want to include in the generated disk images. This script will take care of the rest and we’ll end up with
idler-[1-6].ext2, pingee.ext2, and pinger.ext2!

You’ll notice a Makefile in the workloads/ directory – it contains many
similar commands for all of the workloads included with FireSim.

Once you generate the rootfses for this workload, you can run it with the manager
by setting workload=ping-latency.json in config_runtime.ini. The manager
will automatically look for the generated rootfses (based on workload and job names
that it reads from the json) and distribute work appropriately.

Just like in the uniform case, it will copy back the results that we specify
in the json file. We’ll end up with a directory in firesim/deploy/results-workload/
named after the workload name, with a subdirectory named after each job in the workload,
which will contain the output files we want.

SPEC 2017

SPEC2017 is supported using the firesim-2017 branch of Speckle, which
provides the tooling required to cross-compile SPEC for RISCV. These
instructions presuppose you’ve have a license for, and have installed SPEC on
your machine either EC2 or locally. Additionally, your SPEC environment must be setup;
SPEC_DIR must be set. If you are building binaries on a different machine,
you should be able to trivially copy Speckle’s generated overlay directories to
EC2.

Some notes:

	Benchmarks use reference inputs by default. train or test inputs can be used by specifying an argument in make: make spec-int{rate,speed} input={test,train,ref}

	You may need to increase the size of the RootFS in buildroot in firesim/sw/firesim-software/images.

	No support for fp{rate, speed} benchmarks yet.

Attention

Regarding BOOM. Users wishing to run SPEC on BOOM must change the
default architecture from -march=rv64imafdc to -march=rv64imafd in
Speckle’s target SPEC configuration (riscv.cfg), as BOOM does not
support compressed instructions

Intspeed

The intspeed workload definition splits the xz benchmark into two jobs
(these are two independent inputs) to achieve better load balance across the
simulations (9T dynamic instructions becomes 4T and 5T.)

To Build Binaries And RootFSes:

cd firesim/deploy/workloads/
make spec17-intspeed

Run Resource requirements:

f1_16xlarges=0
m4_16xlarges=0
f1_2xlarges=11

To Run:

./run-workload.sh workloads/spec17-intspeed.ini --withlaunch

On a single-core rocket-based SoC with a DDR3 + 256 KiB LLC model, with a 160
MHz host clock, the longest benchmarks (xz, mcf) complete in about 1
day. All other benchmarks finish in under 15 hours.

Intrate

By default, the intrate workload definition spins up four copies of each
benchmark, which may be entirely inappropriate for your target machine. This
can be changed by modifying the json.

To Build Binaries and RootFSes:

cd firesim/deploy/workloads/
make spec17-intrate

Run Resource Requirements:

f1_16xlarges=0
m4_16xlarges=0
f1_2xlarges=10

To Run:

./run-workload.sh workloads/spec17-intrate.ini --withlaunch

Simulation times are host and target dependent. For reference, on a
four-core rocket-based SoC with a DDR3 + 1 MiB LLC model, with a 160
MHz host clock, the longest benchmarks complete in about 30 hours when
running four copies.

Running Fedora on FireSim

All workload-generation related commands and code are in firesim/sw/firesim-software.

FireMarshal comes with a Fedora-based workload that you can use right out of
the box in workloads/fedora-base.json. We begin by building the
workload (filesystem and boot-binary):

./marshal build workloads/fedora-base.json

The first time you build a workload may take a long time (we need to download
and decompress a pre-built fedora image), but subsequent builds of the same
base will use cached results. Once the command completes, you should see two
new files in images/: fedora-base-bin and fedora-base.img. These
are the boot-binary (linux + boot loader) and root filesystem (respectively).
We can now launch this workload in qemu:

./marshal launch workloads/fedora-base.json

You should now see linux booting and be presented with a login prompt. Sign in
as ‘root’ with password ‘firesim’. From here you can download files, use the
package manager (e.g. ‘dnf install’), and generally use the image as if it had
booted on real hardware with an internet connection. Any changes you make here
will be persistent between reboots. Once you are done exploring, simply
shutdown the workload:

$ poweroff

It is typically not a good idea to modify the *-base workloads directly since
many other workloads might inherit those changes. To make sure that we’ve
cleaned out any changes, let’s clean and rebuild the workload:

./marshal clean workloads/fedora-base.json
./marshal build workloads/fedora-base.json

Note that this build took significantly less time than the first; FireMarshal
caches intermediate build steps whenever possible. The final step is to run
this workload on the real firesim RTL with full timing accuracy. For the basic
fedora distribution, we will use the pre-made firesim config at
firesim/deploy/workloads/fedora-uniform.json. Simply change the
workloadname option in firesim/deploy/config_runtime.ini to
“fedora-uniform.json” and then follow the standard FireSim procedure for
booting a workload (e.g. Running a Single Node Simulation or Running a Cluster Simulation).

Attention

For the standard distributions we provide pre-built firesim
workloads. In general, FireMarshal can derive a FireSim workload from
the FireMarshal configuration using the install command. For more
information, see the official FireMarshal documentation [https://firemarshal.readthedocs.io/en/latest/].

ISCA 2018 Experiments

This page contains descriptions of the experiments in our ISCA 2018 paper [https://sagark.org/assets/pubs/firesim-isca2018.pdf] and instructions for
reproducing them on your own simulations.

One important difference between the configuration used in the ISCA
2018 paper and the open-source release of FireSim is that the ISCA
paper used a proprietary L2 cache design that is not open-source.
Instead, the open-source FireSim uses an LLC model that models the
behavior of having an L2 cache as part of the memory model. Even with
the LLC model, you should be able to see the same trends in these
experiments, but exact numbers may vary.

Each section below describes the resources necessary to run the experiment.
Some of these experiments require a large number of instances – you should
make sure you understand the resource requirements before you run one of the
scripts.

Compatiblity: These were last tested with commit
4769e5d86acf6a9508d2b5a63141dc80a6ef20a6 (Oct. 2019) of FireSim. After this commit,
the Linux version in FireSim has been bumped past Linux 4.15. To reproduce workloads
that rely on OS behavior that has changed, like
memcached-thread-imbalance, you must use the last tested Oct. 2019 commit.

Prerequisites

These guides assume that you have previously followed the
single-node/cluster-scale experiment guides in the FireSim documentation. Note
that these are advanced experiments, not introductory tutorials.

Building Benchmark Binaries/Rootfses

We include scripts to automatically build all of the benchmark rootfs images
that will be used below. To build them, make sure you have already run
./marshal build workloads/br-base.json in firesim/sw/firesim-software, then run:

cd firesim/deploy/workloads/
make allpaper

Figure 5: Ping Latency vs. Configured Link Latency

Resource requirements:

f1_16xlarges=1
m4_16xlarges=0
f1_2xlarges=0

To Run:

cd firesim/deploy/workloads/
./run-ping-latency.sh withlaunch

Figure 6: Network Bandwidth Saturation

Resource requirements:

f1_16xlarges=2
m4_16xlarges=1
f1_2xlarges=0

To Run:

cd firesim/deploy/workloads/
./run-bw-test.sh withlaunch

Figure 7: Memcached QoS / Thread Imbalance

Resource requirements:

f1_16xlarges=3
m4_16xlarges=0
f1_2xlarges=0

To Run:

cd firesim/deploy/workloads/
./run-memcached-thread-imbalance.sh withlaunch

Figure 8: Simulation Rate vs. Scale

Resource requirements:

f1_16xlarges=32
m4_16xlarges=5
f1_2xlarges=0

To Run:

cd firesim/deploy/workloads/
./run-simperf-test-scale.sh withlaunch

A similar benchmark is also provided for supernode mode, see run-simperf-test-scale-supernode.sh.

Figure 9: Simulation Rate vs. Link Latency

Resource requirements:

f1_16xlarges=1
m4_16xlarges=0
f1_2xlarges=0

To Run:

cd firesim/deploy/workloads/
./run-simperf-test-latency.sh withlaunch

A similar benchmark for supernode mode will be provided soon. See https://github.com/firesim/firesim/issues/244

Running all experiments at once

This script simply executes all of the above scripts in parallel. One caveat
is that the bw-test script currently cannot run in parallel with the others,
since it requires patching the switches. This will be resolved in a future
release.

cd firesim/deploy/workloads/
./run-all.sh

GAP Benchmark Suite

You can run the reference implementation of the GAP (Graph Algorithm Performance)
Benchmark Suite. We provide scripts that cross-compile the graph kernels for RISCV.

For more information about the benchmark itself, please refer to the site:
http://gap.cs.berkeley.edu/benchmark.html

Some notes:

	Only the Kron input graph is currently supported.

	Benchmark uses graph500 input graph size of 2^20 vertices by default. test input size has 2^10 vertices and can be used by specifying an argument into make: make gapbs input=test

	The reference input size with 2^27 verticies is not currently supported.

By default, the gapbs workload definition runs the benchmark multithreaded with number of threads equal to the number of cores. To change the number of threads, you need to edit firesim/deploy/workloads/runscripts/gapbs-scripts/gapbs.sh. Additionally, the workload does not verify the output of the benchmark by default. To change this, add a --verify parameter to the json.

To Build Binaries and RootFSes:

cd firesim/deploy/workloads/
make gapbs

Run Resource Requirements:

f1_16xlarges=0
m4_16xlarges=0
f1_2xlarges=6

To Run:

./run-workload.sh workloads/gapbs.ini --withlaunch

Simulation times are host and target dependent. For reference, on a
four-core rocket-based SoC with a DDR3 + 1 MiB LLC model, with a 90
MHz host clock, test and graph500 input sizes finish in a few minutes.

FireMarshal

Workload generation in FireSim is handled by a tool called FireMarshal in
firesim/sw/firesim-software/.

Workloads in FireMarshal consist of a series of Jobs that are assigned
to logical nodes in the target system. If no jobs are specified, then the
workload is considered uniform and only a single image will be produced for
all nodes in the system. Workloads are described by a json file and a
corresponding workload directory and can inherit their definitions from
existing workloads. Typically, workload configurations are kept in
sw/firesim-software/workloads/ although you can use any directory you like.
We provide a few basic workloads to start with including buildroot or
Fedora-based linux distributions and bare-metal.

Once you define a workload, the marshal command will produce a
corresponding boot-binary and rootfs for each job in the workload. This binary
and rootfs can then be launched on qemu or spike (for functional simulation), or
installed to firesim for running on real RTL.

For more information, see the official FireMarshal documentation [https://firemarshal.readthedocs.io/en/latest/] and the quickstart guide
below:

	Quick Start

Quick Start

All workload-generation related commands and code are in firesim/sw/firesim-software.

FireMarshal comes with a few basic workloads that you can build right out of
the box (in workloads/). In this example, we will build and test the
buildroot-based linux distribution (called br-base).

We begin by building the workload. This will build the linux binary, the platform
specific drivers (and initramfs), and the root filesystem:

./marshal build workloads/br-base.json

The first time you build a workload may take a long time (buildroot must
download and cross-compile a large number of packages), but subsequent builds
of the same base will use cached results. Once the command completes, you
should see two new files in images/: br-base-bin and br-base.img.
These are the boot-binary (linux, initramfs, and boot loader) and root filesystem
(respectively). We can now launch this workload in qemu:

./marshal launch workloads/br-base.json

You should now see linux booting and be presented with a login prompt. Sign in
as ‘root’ with password ‘firesim’. From here you can manipulate files, run
commands, and generally use the image as if it had booted on real hardware. Any
changes you make here will be persistent between reboots. Once you are done
exploring, simply shutdown the workload:

$ poweroff

It is typically not a good idea to modify the *-base workloads directly since
many other workloads might inherit those changes. To make sure that we’ve
cleaned out any changes, let’s clean and rebuild the workload:

./marshal clean workloads/br-base.json
./marshal build workloads/br-base.json

Note that this build took significantly less time than the first; FireMarshal
caches intermediate build steps whenever possible. The final step is to run
this workload on the real firesim RTL with full timing accuracy. To do that we
must first install the workload:

./marshal install workloads/br-base.json

This command creates a firesim workload file at
firesim/deploy/workloads/br-base.json. You can now run this workload using
the standard FireSim commands (e.g. Running a Single Node Simulation, just change the
workloadname option to “br-base.json” from “linux-uniform.json”).

Attention

While the FireMarshal install command is the recommended way to create
firesim configurations, you can still hand-create firesim workloads if needed.
For example, the linux-uniform workload described in Running a Single Node Simulation is
a manually created workload that uses the br-base-bin and br-base.img files
directly.

Targets

FireSim generates SoC models by transforming RTL emitted by a Chisel
generator, such as the Rocket SoC generator. Subject to
conditions outlined in Restrictions on Target RTL, if it can be
generated by Chisel, it can be simulated in FireSim.

Restrictions on Target RTL

Current limitations in Golden Gate place the following restrictions on the (FIR)RTL that can be
transformed and thus used in FireSim:

	The RTL must not contain multiple clock domains.

	Black boxes must be “clock-gateable” by replacing its input clock with a gated equivalent.

	Asynchronous reset must only be implemented using Rocket Chip’s black box async reset.
These are replaced with synchronously reset registers using a FIRRTL transformation.

Provided Target Designs

Target Generator Organization

FireSim provides multiple projects, each for a different type of target. Each
project has its own chisel generator that invokes Golden Gate, its own driver
sources, and a makefrag that plugs into the Make-based build system that
resides in sim/. These projects are:

	firesim (Default): rocket chip-based targets. These include targets with
either BOOM or rocket pipelines, and should be your starting point if you’re
building an SoC with the Rocket Chip generator.

	midasexamples: the Golden Gate example designs [https://github.com/ucb-bar/midas-examples], a set of simple chisel
circuits like GCD, that demonstrate how to use Golden Gate. These are useful test
cases for bringing up new Golden Gate features.

	fasedtests: designs to do integration testing of FASED memory-system timing models.

Projects have the following directory structure:

sim/
├-Makefile # Top-level makefile for projects where FireSim is the top-level repo
├-Makefrag # Target-agnostic makefrag, with recipes to generate drivers and RTL simulators
├-src/main/scala/{target-project}/
│ └─Makefrag # Defines target-specific make variables and recipes.
├-src/main/cc/{target-project}/
│ ├─{driver-csrcs}.cc # The target's simulation driver, and sofware-model sources
│ └─{driver-headers}.h
└-src/main/makefrag/{target-project}/
 ├─Generator.scala # Contains the main class that generates target RTL and calls Golden Gate
 └─{other-scala-sources}.scala

Specifying A Target Instance

To generate a specific instance of a target, the build system leverages four Make variables:

	TARGET_PROJECT: this points the Makefile (sim/Makefile) at the right
target-specific Makefrag, which defines the generation and MIDAS-level
software-simulation recipes. The makefrag for the default target project is
defined at sim/src/main/makefrag/firesim.

	DESIGN: the name of the top-level Chisel module to generate (a Scala class name). These are defined
in FireChip Chipyard generator.

	TARGET_CONFIG: specifies a Config instance that is consumed by the target design’s
generator. For the default firesim target project, predefined configs are described in
in the FireChip Chipyard generator.

	PLATFORM_CONFIG: specifies a Config instance that is consumed by
Golden Gate and specifies compiler-level and host-land
parameters, such as whether to enable assertion synthesis, or multi-ported RAM optimizations.
Common platform configs are described in firesim-lib/sim/src/main/scala/configs/CompilerConfigs.scala).

TARGET_CONFIG and PLATFORM_CONFIG are strings that are used to construct a
Config instance (derives from RocketChip’s parameterization system, Config, see
freechips.rocketchip.config [https://github.com/freechipsproject/rocket-chip/blob/master/src/main/scala/config/Config.scala]). These strings are of the form
“{…_}{<Class Name>_}<Class Name>”. Only the final, base class name is
compulsory: class names that are prepended with “_” are used to create a
compound Config instance.

// Specify by setting TARGET_CONFIG=Base
class Base extends Config((site, here, up) => {...})
class Override1 extends Config((site, here, up) => {...})
class Override2 extends Config((site, here, up) => {...})
// Specify by setting TARGET_CONFIG=Compound
class Compound extends Config(new Override2 ++ new Override1 ++ new Base)
// OR by setting TARGET_CONFIG=Override2_Override1_Base
// Can specify undefined classes this way. ex: TARGET_CONFIG=Override2_Base

With this scheme, you don’t need to define a Config class for every instance you
wish to generate. We use this scheme to specify FPGA frequencies (eg.
“BaseF1Config_F90MHz”) in manager build recipes, but it’s also very useful for doing
sweeping over a parameterization space.

Note that the precedence of Configs decreases from left to right in a string. Appending a config to an existing one will only have an effect if it
sets a field not already set in higher precendence Configs. For example, “BaseF1Config_F90MHz” is equivalent to
“BaseF1Config_F90MHz_F80MHz” as DesiredHostFrequency resolves to 90 MHz,
but “F90MHz_BaseF1Config” is distinct from “F80MHz_F90MHz_BaseF1Config” in
that DesiredHostFrequency resolves to 90 and 80 MHz respectively.

How a particular Config resolves it’s Field s can be unintuitive for complex
compound Config s. One precise way to check a config is doing what you
expect is to open the scala REPL, instantiate an instance of the desired
Config, and inspect its fields.

$ make sbt # Launch into SBT's shell with extra FireSim arguments

sbt:firechip> console # Launch the REPL

scala> val inst = (new firesim.firesim.FireSimRocketChipConfig).toInstance # Make an instance

inst: freechips.rocketchip.config.Config = FireSimRocketChipConfig

scala> import freechips.rocketchip.subsystem._ # Get some important Fields

import freechips.rocketchip.subsystem.RocketTilesKey

scala> inst(RocketTilesKey).size # Query number of cores

res2: Int = 1

scala> inst(RocketTilesKey).head.dcache.get.nWays # Query L1 D$ associativity

res3: Int = 4

Rocket Chip Generator-based SoCs (firesim project)

Using the Make variables listed above, we give examples of generating different targets using
the default Rocket Chip-based target project.

Rocket-based SoCs

Three design classes use Rocket scalar in-order pipelines.

Single core, Rocket pipeline (default)

make DESIGN=FireSim TARGET_CONFIG=FireSimRocketChipConfig

Single-core, Rocket pipeline, no network interface

make DESIGN=FireSimNoNIC TARGET_CONFIG=FireSimRocketChipConfig

Quad-core, Rocket pipeline

make DESIGN=FireSim TARGET_CONFIG=FireSimRocketChipQuadCoreConfig

BOOM-based SoCs

The BOOM (Berkeley Out-of-Order Machine [https://github.com/ucb-bar/riscv-boom]) superscalar out-of-order pipelines can also be used with the same design classes that the Rocket pipelines use. Only the TARGET_CONFIG needs to be changed, as shown below:

Single-core BOOM

make DESIGN=FireSim TARGET_CONFIG=FireSimBoomConfig

Single-core BOOM, no network interface

make DESIGN=FireSimNoNIC TARGET_CONFIG=FireSimBoomConfig

Generating A Different FASED Memory-Timing Model Instance

Golden Gate’s memory-timing model generator, FASED, can elaborate a space of
different DRAM model instances: we give some typical ones here. These targets
use the Makefile-defined defaults of DESIGN=FireSim PLATFORM_CONFIG=BaseF1Config.

Quad-rank DDR3 first-ready, first-come first-served memory access scheduler

	::

	make TARGET_CONFIG=DDR3FRFCFS_FireSimRocketChipConfig

As above, but with a 4 MiB (maximum simulatable capacity) last-level-cache model

make TARGET_CONFIG=DDR3FRFCFSLLC4MB_FireSimRocketChipConfig

FASED timing-model configurations are passed to the FASED Bridges
in your Target’s FIRRTL, and so must be prepended to TARGET_CONFIG.

Midas Examples (midasexamples project)

This project can generate a handful of toy target-designs (set with the make
variable DESIGN). Each of these designs has their own chisel source file and serves to demostrate
the features of Golden Gate.

Some notable examples are:

	GCD: the “Hello World!” of hardware.

	WireInterconnect: demonstrates how combinational paths can be modeled with Golden Gate.

	PrintfModule: demonstrates synthesizable printfs

	AssertModule: demonstrates synthesizable assertions

To generate a target, set the make variable
TARGET_PROJECT=midasexamples. so that the right project makefrag is
sourced.

Examples

To generate the GCD midasexample:

make DESIGN=GCD TARGET_PROJECT=midasexamples

FASED Tests (fasedtests project)

This project generates target designs capable of driving considerably more
bandwidth to an AXI4-memory slave than current FireSim targets. These are used to do
integration and stress testing of FASED instances.

Examples

Generate a synthesizable AXI4Fuzzer (based off of Rocket Chip’s TL fuzzer), driving a
DDR3 FR-FCFS-based FASED instance.

make TARGET_PROJECT=fasedtests DESIGN=AXI4Fuzzer TARGET_CONFIG=FRFCFSConfig

As above, now configured to drive 10 million transactions through the instance.

make TARGET_PROJECT=fasedtests DESIGN=AXI4Fuzzer TARGET_CONFIG=NT10e7_FRFCFSConfig

Debugging

This section describes methods of debugging the target design and the simulation in FireSim.

Debugging:

	Debugging & Testing with RTL Simulation
	Target-Level Simulation

	MIDAS-Level Simulation

	FPGA-Level Simulation

	Scala Tests

	Debugging Using FPGA Integrated Logic Analyzers (ILA)
	Annotating Signals

	Setting a ILA Depth

	Using the ILA at Runtime

	Debugging Using TracerV
	Building a Design with TracerV

	Enabling Tracing at Runtime

	Interpreting the Trace Result

	Assertion Synthesis
	Enabling Assertion Synthesis

	Runtime Behavior

	Related Publications

	Printf Synthesis
	Enabling Printf Synthesis

	Runtime Arguments

	Related Publications

Debugging & Testing with RTL Simulation

Simulation of a single FireSim node using software RTL simulators like
Verilator, Synopsys VCS, or XSIM, is the most productive way to catch bugs
before generating an AGFI.

FireSim provides flows to do RTL simulation at three different levels of
the design/abstraction hierarchy. Ordered from least to most detailed, they are:

	Target-Level: This simulates just the RTL of the target-design (Rocket
Chip). There are no host-level features being simulated. Supported
simulators: VCS, Verilator.

	MIDAS-Level: This simulates the target-design after it’s been transformed
by MIDAS. The target- and host-clock are decoupled. FPGA-hosted simulation
models are present. Abstract models for host-FPGA provided services, like
DRAM, memory-mapped IO, and PCIS are used here. Supported simulators: VCS,
Verilator.

	FPGA-Level: This is a complete simulation of the design that will passed
to the FPGA tools, including clock-domain crossings, width adapters, PLLS,
FPGA-periphery blocks like DRAM and PCI-E controllers. This leverages the
simulation flow provided by AWS. Supported simulators: VCS, Vivado XSIM.

Generally, MIDAS-level simulations are only slightly slower than target-level
ones. Moving to FPGA-Level is very expensive. This illustrated in the chart
below.

	Level

	Waves

	VCS

	Verilator

	Verilator -O1

	Verilator -O2

	XSIM

	Target

	Off

	4.8 kHz

	3.9 kHz

	6.6 kHz

	N/A

	N/A

	Target

	On

	0.8 kHz

	3.0 kHz

	5.1 kHz

	N/A

	N/A

	MIDAS

	Off

	3.8 kHz

	2.4 kHz

	4.5 kHz

	5.3 KHz

	N/A

	MIDAS

	On

	2.9 kHz

	1.5 kHz

	2.7 kHz

	3.4 KHz

	N/A

	FPGA

	On

	2.3 Hz

	N/A

	N/A

	N/A

	0.56 Hz

Note that using more agressive optimization levels when compiling the
Verilated-design dramatically lengths compile time:

	Level

	Waves

	VCS

	Verilator

	Verilator -O1

	Verilator -O2

	MIDAS

	Off

	35s

	48s

	3m32s

	4m35s

	MIDAS

	On

	35s

	49s

	5m27s

	6m33s

Notes: Default configurations of a single-core, Rocket-based instance running
rv64ui-v-add. Frequencies are given in target-Hz. Presently, the default
compiler flags passed to Verilator and VCS differ from level to level. Hence,
these numbers are only intended to ball park simulation speeds, not provide a
scientific comparison between simulators. VCS numbers collected on Millenium,
Verilator numbers collected on a c4.4xlarge. (ML verilator version: 4.002, TL
verilator version: 3.904)

Target-Level Simulation

This is described in the documentation for Chipyard [https://chipyard.readthedocs.io/en/latest/Simulation/Software-RTL-Simulators.html].

MIDAS-Level Simulation

MIDAS-level simulations are run out of the firesim/sim directory. Currently, FireSim
lacks support for MIDAS-level simulation of the NIC since DMA_PCIS is not yet
supported. So here we’ll be setting DESIGN=FireSimNoNIC. To compile a simulator,
type:

[in firesim/sim]
make <verilator|vcs>

To compile a simulator with full-visibility waveforms, type:

make <verilator|vcs>-debug

As part of target-generation, Rocket Chip emits a make fragment with recipes
for running suites of assembly tests. MIDAS puts this in
firesim/sim/generated-src/f1/<DESIGN>-<TARGET_CONFIG>-<PLATFORM_CONFIG>/firesim.d.
Make sure your $RISCV environment variable is set by sourcing
firesim/sourceme-f1-manager.sh or firesim/env.sh, and type:

make run-<asm|bmark>-tests EMUL=<vcs|verilator>

To run only a single test, the make target is the full path to the output.
Specifically:

make EMUL=<vcs|verilator> $PWD/output/f1/<DESIGN>-<TARGET_CONFIG>-<PLATFORM_CONFIG>/<RISCV-TEST-NAME>.<vpd|out>

A .vpd target will use (and, if required, build) a simulator with waveform dumping enabled,
whereas a .out target will use the faster waveform-less simulator.

Examples

Run all RISCV-tools assembly and benchmark tests on a verilated simulator.

[in firesim/sim]
make DESIGN=FireSimNoNIC
make DESIGN=FireSimNoNIC -j run-asm-tests
make DESIGN=FireSimNoNIC -j run-bmark-tests

Run all RISCV-tools assembly and benchmark tests on a verilated simulator with waveform dumping.

make DESIGN=FireSimNoNIC verilator-debug
make DESIGN=FireSimNoNIC -j run-asm-tests-debug
make DESIGN=FireSimNoNIC -j run-bmark-tests-debug

Run rv64ui-p-simple (a single assembly test) on a verilated simulator.

make DESIGN=FireSimNoNIC
make DESIGN=FireSimNoNIC $(pwd)/output/f1/FireSimNoNIC-FireSimRocketChipConfig-BaseF1Config/rv64ui-p-simple.out

Run rv64ui-p-simple (a single assembly test) on a VCS simulator with waveform dumping.

make DESIGN=FireSimNoNIC vcs-debug
make DESIGN=FireSimNoNIC EMUL=vcs $(pwd)/output/f1/FireSimNoNIC-FireSimRocketChipConfig-BaseF1Config/rv64ui-p-simple.vpd

FPGA-Level Simulation

There is currently no support for DMA_PCIS, so
we’ll restrict ourselves to instances without a NIC by setting DESIGN=FireSimNoNIC. As
with MIDAS-level simulations, FPGA-level simulations run out of
firesim/sim.

Since FPGA-level simulation is up to 1000x slower than MIDAS-level simulation,
FPGA-level simulation should only be used in two cases:

	MIDAS-level simulation of the simulation is working, but running the
simulator on the FPGA is not.

	You’ve made changes to the AWS Shell/IP/cl_firesim.sv in aws-fpga
and want to test them.

FPGA-level simulation consists of two components:

	A FireSim-f1 driver that talks to a simulated DUT instead of the FPGA

	The DUT, a simulator compiled with either XSIM or VCS, that receives commands from the aforementioned
FireSim-f1 driver

Usage

To run a simulation you need to make both the DUT and driver targets by typing:

make xsim
make xsim-dut <VCS=1> & # Launch the DUT
make run-xsim SIM_BINARY=<PATH/TO/BINARY/FOR/TARGET/TO/RUN> # Launch the driver

When following this process, you should wait until make xsim-dut prints
opening driver to xsim before running make run-xsim (getting these prints from
make xsim-dut will take a while). Additionally, you will want to use
DESIGN=FireSimNoNIC, since the XSim scripts included with aws-fpga do
not support DMA PCIS.

Once both processes are running, you should see:

opening driver to xsim
opening xsim to driver

This indicates that the DUT and driver are successfully communicating.
Eventually, the DUT will print a commit trace Rocket Chip. There will
be a long pause (minutes, possibly an hour, depending on the size of the
binary) after the first 100 instructions, as the program is being loaded
into FPGA DRAM.

XSIM is used by default, and will work on EC2 instances with the FPGA developer
AMI. If you have a license, setting VCS=1 will use VCS to compile the DUT
(4x faster than XSIM). Berkeley users running on the Millennium machines should
be able to source firesim/scripts/setup-vcsmx-env.sh to setup their
environment for VCS-based FPGA-level simulation.

The waveforms are dumped in the FPGA build directories(
firesim/platforms/f1/aws-fpga/hdk/cl/developer_designs/cl_<DESIGN>-<TARGET_CONFIG>-<PLATFORM_CONFIG>).

For XSIM:

<BUILD_DIR>/verif/sim/vivado/test_firesim_c/tb.wdb

And for VCS:

<BUILD_DIR>/verif/sim/vcs/test_firesim_c/test_null.vpd

When finished, be sure to kill any lingering processes if you interrupted simulation prematurely.

Scala Tests

To make it easier to do RTL-simulation-based regression testing, the scala
tests wrap calls to Makefiles, and run a limited set of tests on a set of selected
designs, including all of the MIDAS examples and FireSimNoNIC.

The selected tests, target configurations, as well as the type of RTL simulator
to compile can be modified by changing the scala tests that reside at
firesim/sim/src/test/scala/<target-project>/.

To run all tests for a given project, with the sbt console open, do the familiar:

test

To run only tests on Rocket-Chip based targets, in the firechip SBT project run:

testOnly firesim.firesim.*

To run only the MIDAS examples, in the firesim SBT project:

testOnly firesim.midasexamples.*

Debugging Using FPGA Integrated Logic Analyzers (ILA)

Sometimes it takes too long to simulate FireSim on RTL simulators, and
in some occasions we would also like to debug the simulation infrastructure
itself. For these purposes, we can use the Xilinx Integrated Logic Analyzer
resources on the FPGA.

ILAs allows real time sampling of pre-selected signals during FPGA runtime,
and provided and interface for setting trigger and viewing samples waveforms
from the FPGA. For more information about ILAs, please refer to the Xilinx
guide on the topic.

MIDAS, in its targetutils package, provides annotations for labeling
signals directly in the Chisel source. These will be consumed by a downstream
FIRRTL pass which wires out the annotated signals, and binds them to an
appropriately sized ILA instance.

Annotating Signals

In order to annotate a signal, we must import the
midas.targetutils.FpgaDebug annotator. FpgaDebug’s apply method accepts a
vararg of chisel3.Data. Invoke it as follows:

import midas.targetutils.FpgaDebug

class SomeModuleIO(implicit p: Parameters) extends SomeIO()(p){
 val out1 = Output(Bool())
 val in1 = Input(Bool())
 FpgaDebug(out1, in1)
}

You can annotate signals throughout FireSim, including in MIDAS and
Rocket-Chip Chisel sources, with the only exception being the Chisel3 sources
themselves (eg. in Chisel3.util.Queue).

Note: In case the module with the annotated signal is instantiated multiple times,
all instatiations of the annotated signal will be wired to the ILA.

Setting a ILA Depth

The ILA depth parameter specifies the duration in cycles to capture annotated signals
around a trigger. Increasing this parameter may ease debugging, but will also increase
FPGA resource utilization. The default depth is 1024 cycles. The desired depth can be
configured much like the desired HostFrequency by appending a mixin to the
PLATFORM_CONFIG. See Provided Target Designs for details on PLATFORM_CONFIG.

Below is an example PLATFORM_CONFIG that can be used in the build_recipes config file.

PLATFORM_CONFIG=BaseF1Config_ILADepth8192

Using the ILA at Runtime

Prerequisite: Make sure that ports 8443, 3121 and 10201 are enabled in the firesim AWS security group.

In order to use the ILA, we must enable the GUI interface on our manager instance.
In the past, AWS had a custom setup_gui.sh script. However, this was recently deprecated due to compatibility
issues with various packages. Therefore, AWS currently recommends using NICE DVC [https://docs.aws.amazon.com/dcv/latest/adminguide/what-is-dcv.html] as a GUI client. You should download a DVC client [https://docs.aws.amazon.com/dcv/latest/userguide/client.html], and then run the following commands on your FireSim manager instance:

sudo yum -y groupinstall "GNOME Desktop"
sudo yum -y install glx-utils
sudo rpm --import https://s3-eu-west-1.amazonaws.com/nice-dcv-publish/NICE-GPG-KEY
wget https://d1uj6qtbmh3dt5.cloudfront.net/2019.0/Servers/nice-dcv-2019.0-7318-el7.tgz
tar xvf nice-dcv-2019.0-7318-el7.tgz
cd nice-dcv-2019.0-7318-el7
sudo yum -y install nice-dcv-server-2019.0.7318-1.el7.x86_64.rpm
sudo yum -y install nice-xdcv-2019.0.224-1.el7.x86_64.rpm
sudo systemctl enable dcvserver
sudo systemctl start dcvserver
sudo passwd centos
sudo systemctl stop firewalld
dcv create-session --type virtual --user centos centos

These commands will setup Linux desktop pre-requisites, install the NICE DVC server, ask you to setup the password to the centos user, disable firewalld,
and finally create a DVC session. You can now connect to this session through the DVC client.

After access the GUI interface, open a terminal, and open vivado.
Follow the instructions in the AWS-FPGA guide for connecting xilinx hardware manager on vivado (running on a remote machine) to the debug target [https://github.com/aws/aws-fpga/blob/master/hdk/docs/Virtual_JTAG_XVC.md#connecting-xilinx-hardware-manager-vivado-lab-edition-running-on-a-remote-machine-to-the-debug-target-fpga-enabled-ec2-instance] .

where <hostname or IP address> is the internal IP of the simulation instance (not
the manager instance. i.e. The IP starting with 192.168.X.X).
The probes file can be found in the manager instance under the path
firesim/deploy/results-build/<build_identifier>/cl_firesim/build/checkpoints/<probes_file.ltx>

Select the ILA with the description of WRAPPER_INST/CL/CL_FIRESIM_DEBUG_WIRING_TRANSFORM, and you may now use the ILA just as if it was on
a local FPGA.

Debugging Using TracerV

FireSim can provide a cycle-by-cycle trace of the CPU’s architectural state
over the course of execution. This can be useful for profiling or debugging.
The tracing functionality is provided by the TracerV widget.

Building a Design with TracerV

In all FireChip designs TracerV is generated by default. Other targets can
enable it by attaching a TracerV Bridge to the RISC-V trace port of one-or-more cores.

Enabling Tracing at Runtime

To improve simulation preformance, FireSim does not collect data from the
TracerV Bridge by default. To enable collection, modify the tracing section to your
config_runtime.ini.

[tracing]
enable=yes

Now when you run a workload, a trace output file will be placed in the
sim_slot_<slot #> directory on the F1 instance under the name TRACEFILE.
Tracing the entirety of a long-running job like a Linux-based workload can
generate a pretty large image, and you may only care about the state within a
certain timeframe. Therefore, FireSim allows you to specify a start cycle and
end cycle for collecting data. By default, it starts at cycle 0 and ends at
the last cycle of the simulation. To change this, modify the following under
the “tracing” section of your config_runtime.ini.

startcycle=XXXX
endcycle=YYYY

Interpreting the Trace Result

Assertion Synthesis

Golden Gate can synthesize assertions present in FIRRTL (implemented as stop
statements) that would otherwise be lost in the FPGA synthesis flow. Rocket
and BOOM include hundreds of such assertions which, when synthesized, can
provide great insight into why the target may be failing.

Enabling Assertion Synthesis

To enable assertion synthesis prepend WithSynthAsserts Config to your
PLATFORM_CONFIG. During compilation, Golden Gate will print the
number of assertions it’s synthesized. In the target’s generated-src/
directory, you’ll find a *.asserts file with the definitions of all
synthesized assertions. If assertion synthesis has been enabled, the
synthesized_assertions_t bridge driver will be automatically instantiated.

Runtime Behavior

If an assertion is caught during simulation, the driver will print the
assertion cause, the path to module instance in which it fired, a source
locator, and the cycle on which the assertion fired. Simulation will then
terminate.

An example of an assertion caught in a dual-core instance of BOOM is given
below:

id: 1190, module: IssueSlot_4, path: FireSimNoNIC.tile_1.core.issue_units_0.slots_3]
Assertion failed
 at issue_slot.scala:214 assert (!slot_p1_poisoned)
 at cycle: 2142042185

Related Publications

Assertion synthesis was first presented in our FPL2018 paper, DESSERT [https://people.eecs.berkeley.edu/~biancolin/papers/dessert-fpl18.pdf].

Printf Synthesis

Golden Gate can synthesize printfs present in FIRRTL (implemented as printf
statements) that would otherwise be lost in the FPGA synthesis flow. Rocket and
BOOM have printfs of their commit logs and other useful transaction
streams.

C0: 409 [1] pc=[008000004c] W[r10=0000000000000000][1] R[r 0=0000000000000000] R[r20=0000000000000003] inst=[f1402573] csrr a0, mhartid
C0: 410 [0] pc=[008000004c] W[r 0=0000000000000000][0] R[r 0=0000000000000000] R[r20=0000000000000003] inst=[f1402573] csrr a0, mhartid
C0: 411 [0] pc=[008000004c] W[r 0=0000000000000000][0] R[r 0=0000000000000000] R[r20=0000000000000003] inst=[f1402573] csrr a0, mhartid
C0: 412 [1] pc=[0080000050] W[r 0=0000000000000000][0] R[r10=0000000000000000] R[r 0=0000000000000000] inst=[00051063] bnez a0, pc + 0
C0: 413 [1] pc=[0080000054] W[r 5=0000000080000054][1] R[r 0=0000000000000000] R[r 0=0000000000000000] inst=[00000297] auipc t0, 0x0
C0: 414 [1] pc=[0080000058] W[r 5=0000000080000064][1] R[r 5=0000000080000054] R[r16=0000000000000003] inst=[01028293] addi t0, t0, 16
C0: 415 [1] pc=[008000005c] W[r 0=0000000000010000][1] R[r 5=0000000080000064] R[r 5=0000000080000064] inst=[30529073] csrw mtvec, t0

Synthesizing these printfs lets you capture the same logs on a running FireSim instance.

Enabling Printf Synthesis

To synthesize a printf, in your Chisel source you need to annotate the specific
printfs you’d like to capture. Presently, due to a limitation in Chisel and
FIRRTL’s annotation system, you need to annotate the arguments to the printf, not the printf itself,
like so:

printf(midas.targetutils.SynthesizePrintf("x%d p%d 0x%x\n", rf_waddr, rf_waddr, rf_wdata))

Be judicious, as synthesizing many, frequently active printfs will slow down your simulator.

Once your printfs have been annotated, to enable printf synthesis prepend the WithPrintfSynthesis configuraiton mixin to your
PLATFORM_CONFIG in config_build_recipes.ini.
For example, if you previous PLATFORM_CONFIG was PLATFORM_CONFIG=BaseF1Config_F120MHz, then change it to PLATFORM_CONFIG=WithPrintfSynthesis_BaseF1Config_F120MHz. Notice that you must prepend the mixin (rather than appending).
During compilation, Golden Gate will print the
number of printfs it’s synthesized. In the target’s generated header
(<DESIGN>-const.h), you’ll find metadata for each of the printfs Golden Gate synthesized.
This is passed as argument to the constructor of the synthesized_prints_t
bridge driver, which will be automatically instantiated in FireSim driver.

Runtime Arguments

	+print-file

	Specifies the file into which the synthesized printf log should written.

	+print-start

	Specifies the target-cycle at which the printf trace should be captured in the
simulator. Since capturing high-bandwidth printf traces will slow down
simulation, this allows the user to reach the region-of-interest at full simulation speed.

	+print-end

	Specifies the target cycle at which to stop pulling the synthesized print
trace from the simulator.

	+print-binary

	By default, a captured printf trace will be written to file formatted
as it would be emitted by a software RTL simulator. Setting this dumps the
raw binary coming off the FPGA instead, improving simulation rate.

	+print-no-cycle-prefix

	(Formatted output only) This removes the cycle prefix from each printf to
save bandwidth in cases where the printf already includes a cycle field. In
binary-output mode, since the target cycle is implicit in the token stream,
this flag has no effect.

Related Publications

Printf synthesis was first presented in our FPL2018 paper, DESSERT [https://people.eecs.berkeley.edu/~biancolin/papers/dessert-fpl18.pdf].

Supernode - Multiple Simulated SoCs Per FPGA

Supernode allows users to run multiple simulated SoCs per-FPGA in order to improve
FPGA resource utilization and reduce cost. For example, in the case of using
FireSim to simulate a datacenter scale system, supernode mode allows realistic
rack topology simulation (32 simulated nodes) using a single f1.16xlarge
instance (8 FPGAs).

Below, we outline the build and runtime configuration changes needed to utilize
supernode designs. Supernode is currently only enabled for RocketChip designs
with NICs. More details about supernode can be found in the FireSim ISCA 2018
Paper [https://sagark.org/assets/pubs/firesim-isca2018.pdf].

Introduction

By default, supernode packs 4 identical designs into a single FPGA, and
utilizes all 4 DDR channels available on each FPGA on AWS F1 instances. It
currently does so by generating a wrapper top level target which encapsualtes
the four simulated target nodes. The packed nodes are treated as 4 separate
nodes, are assigned their own individual MAC addresses, and can perform any
action a single node could: run different programs, interact with each other
over the network, utilize different block device images, etc. In the networked
case, 4 separate network links are presented to the switch-side.

Building Supernode Designs

Here, we outline some of the changes between supernode and regular simulations
that are required to build supernode designs.

The Supernode target configuration wrapper can be found in Chipyard in
chipyard/generators/firechip/src/main/scala/TargetConfigs.scala. An example wrapper
configuration is:

class SupernodeFireSimRocketChipConfig extends Config(new WithNumNodes(4)
++ new FireSimRocketChipConfig)

In this example, SupernodeFireSimRocketChipConfig is the wrapper, while
FireSimRocketChipConfig is the target node configuration. To simulate a
different target configuration, we will generate a new supernode wrapper, with
the new target configuration. For example, to simulate 4 quad-core nodes on one
FPGA, you can use:

class SupernodeFireSimRocketChipQuadCoreConfig extends Config(new
WithNumNodes(4) ++ new FireSimRocketChipQuadCoreConfig)

Next, when defining the build recipe, we must remmber to use the supernode
configuration: The DESIGN parameter should always be set to
FireSim, while the TARGET_CONFIG parameter should be set to
the wrapper configuration that was defined in
chipyard/generators/firechip/src/main/scala/TargetConfigs.scala. The
PLATFORM_CONFIG can be selected the same as in regular FireSim
configurations. For example:

DESIGN=FireSim
TARGET_CONFIG=SupernodeFireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimDDR3FRFCFSLLC4MBConfig90MHz
instancetype=c5.4xlarge
deploytriplet=None

We currently provide a single pre-built AGFI for supernode of 4 quad-core
RocketChips with DDR3 memory models. You can build your own AGFI, using the supplied samples in
config_build_recipes.ini. Importantly, in order to meet FPGA timing
contraints, Supernode target may require lower host clock frequencies.
host clock frequencies can be configured as parts of the PLATFORM_CONFIG in
config_build_recipes.ini.

Running Supernode Simulations

Running FireSim in supernode mode follows the same process as in
“regular” mode. Currently, the only difference is that the main simulation
screen remains with the name fsim0, while the three other simulation screens
can be accessed by attaching screen to uartpty1, uartpty2, uartpty3
respectively. All simulation screens will generate uart logs (uartlog1,
uartlog2, uartlog3). Notice that you must use sudo in order to
attach to the uartpty or view the uart logs. The additional uart logs will not
be copied back to the manager instance by default (as in a “regular” FireSim
simulation). It is neccessary to specify the copying of the additional uartlogs
(uartlog1, uartlog2, uartlog3) in the workload definition.

Supernode topologies utilize a FireSimSuperNodeServerNode class in order to
represent one of the 4 simulated target nodes which also represents a single
FPGA mapping, while using a FireSimDummyServerNode class which represent
the other three simulated target nodes which do not represent an FPGA mapping.
In supernode mode, topologies should always add nodes in pairs of 4, as one
FireSimSuperNodeServerNode and three FireSimDummyServerNode s.

Various example Supernode topologies are provided, ranging from 4 simulated
target nodes to 1024 simulated target nodes.

Below are a couple of useful examples as templates for writing custom
Supernode topologies.

A sample Supernode topology of 4 simulated target nodes which can fit on a
single f1.2xlarge is:

def supernode_example_4config(self):
 self.roots = [FireSimSwitchNode()]
 servers = [FireSimSuperNodeServerNode()] + [FireSimDummyServerNode() for x in range(3)]
 self.roots[0].add_downlinks(servers)

A sample Supernode topology of 32 simulated target nodes which can fit on a
single f1.16xlarge is:

def supernode_example_32config(self):
 self.roots = [FireSimSwitchNode()]
 servers = UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in range(8)])
 self.roots[0].add_downlinks(servers)

Supernode config_runtime.ini requires selecting a supernode agfi in conjunction with a defined supernode topology.

Work in Progress!

We are currently working on restructuring supernode to support a
wider-variety of use cases (including non-networked cases, and increased
packing of nodes). More documentation will follow.
Not all FireSim features are currently available on Supernode. As a
rule-of-thumb, target-related features have a higher likelihood of being
supported “out-of-the-box”, while features which involve external interfaces
(such as TracerV) has a lesser likelihood of being supported “out-of-the-box”

Miscellaneous Tips

Add the fsimcluster column to your AWS management console

Once you’ve deployed a simulation once with the manager, the AWS management console
will allow you to add a custom column that will allow you to see at-a-glance
which FireSim run farm an instance belongs to.

To do so, click the gear in the top right of the AWS management console. From
there, you should see a checkbox for fsimcluster. Enable it to see the column.

FPGA Dev AMI Remote Desktop Setup

To Remote Desktop into your manager instance, you must do the following:

curl https://s3.amazonaws.com/aws-fpga-developer-ami/1.5.0/Scripts/setup_gui.sh -o /home/centos/src/scripts/setup_gui.sh
sudo sed -i 's/enabled=0/enabled=1/g' /etc/yum.repos.d/CentOS-CR.repo
/home/centos/src/scripts/setup_gui.sh
keep manager paramiko compatibility
sudo pip2 uninstall gssapi

See

https://forums.aws.amazon.com/message.jspa?messageID=848073#848073

and

https://forums.aws.amazon.com/ann.jspa?annID=5710

Experimental Support for SSHing into simulated nodes and accessing the internet from within simulations

This is assuming that you are simulating a 1-node networked cluster. These instructions
will let you both ssh into the simulated node and access the outside internet from within
the simulated node:

	Set your config files to simulate a 1-node networked cluster (example_1config)

	Run firesim launchrunfarm && firesim infrasetup and wait for them to complete

	cd to firesim/target-design/switch/

	Go into the newest directory that is prefixed with switch0-

	Edit the switchconfig.h file so that it looks like this:

// THIS FILE IS MACHINE GENERATED. SEE deploy/buildtools/switchmodelconfig.py

#ifdef NUMCLIENTSCONFIG
#define NUMPORTS 2
#endif
#ifdef PORTSETUPCONFIG
ports[0] = new ShmemPort(0);
ports[1] = new SSHPort(1);
#endif

#ifdef MACPORTSCONFIG
uint16_t mac2port[3] {1, 2, 0};
#endif

	Run make then cp switch switch0

	Run scp switch0 YOUR_RUN_FARM_INSTANCE_IP:switch_slot_0/switch0

	On the RUN FARM INSTANCE, run:

sudo ip tuntap add mode tap dev tap0 user $USER
sudo ip link set tap0 up
sudo ip addr add 172.16.0.1/16 dev tap0
sudo ifconfig tap0 hw ether 8e:6b:35:04:00:00
sudo sysctl -w net.ipv6.conf.tap0.disable_ipv6=1

	Run firesim runworkload. Confirm that the node has booted to the login prompt in the fsim0 screen.

	To ssh into the simulated machine, you will need to first ssh onto the Run Farm instance, then ssh into the IP address of the simulated node (172.16.0.2), username root, password firesim. You should also prefix with TERM=linux to get backspace to work correctly: So:

ssh YOUR_RUN_FARM_INSTANCE_IP
from within the run farm instance:
TERM=linux ssh root@172.16.0.2

11. To also be able to access the internet from within the simulation, run the following
on the RUN FARM INSTANCE:

sudo sysctl -w net.ipv4.ip_forward=1
export EXT_IF_TO_USE=$(ifconfig -a | sed 's/[\t].*//;/^\(lo:\|\)$/d' | sed 's/[\t].*//;/^\(tap0:\|\)$/d' | sed 's/://g')
sudo iptables -A FORWARD -i $EXT_IF_TO_USE -o tap0 -m state --state RELATED,ESTABLISHED -j ACCEPT
sudo iptables -A FORWARD -i tap0 -o $EXT_IF_TO_USE -j ACCEPT
sudo iptables -t nat -A POSTROUTING -o $EXT_IF_TO_USE -j MASQUERADE

	Then run the following in the simulation:

route add default gw 172.16.0.1 eth0
echo "nameserver 8.8.8.8" >> /etc/resolv.conf
echo "nameserver 8.8.4.4" >> /etc/resolv.conf

At this point, you will be able to access the outside internet, e.g. ping google.com or wget google.com.

Navigating the FireSim Codebase

This is a large codebase with tons of dependencies, so navigating it can be
difficult. By default, a tags file is generated when you run
./build-setup.sh which aids in jumping around the codebase. This file is
generated by Exuberant Ctags and many editors support using this file to jump
around the codebase. You can also regenerate the tags file if you make code changes
by running ./gen-tags.sh in your FireSim repo.

For example, to use these tags to jump around the codebase in vim, add the following to
your .vimrc:

set tags=tags;/

Then, you can move the cursor over something you want to jump to and hit
ctrl-] to jump to the definition and ctrl-t to jump back out. E.g. in
top-level configurations in FireSim, you can jump all the way down through the
Rocket Chip codebase and even down to Chisel.

FireSim Asked Questions

I just bumped the FireSim repository to a newer commit and simulations aren’t running. What is going on?

Anytime there is an AGFI bump, FireSim simulations will break/hang due to outdated AFGI.
To get the new default AGFI’s you must run the manager initialization again by doing the following:

cd firesim
source sourceme-f1-manager.sh
firesim managerinit

Is there a good way to keep track of what AGFI corresponds to what FireSim commit?

When building an AGFI during firesim buildafi, FireSim keeps track of what FireSim repository commit was used to build the AGFI.
To view a list of AGFI’s that you have built and what you have access to, you can run the following command:

cd firesim
source sourceme-f1-manager.sh
aws ec2 describe-fpga-images --fpga-image-ids # List all AGFI images

You can also view a specific AGFI image by giving the AGFI ID (found in deploy/config_hwdb.ini) through the following command:

cd firesim
source sourceme-f1-manager.sh
aws ec2 describe-fpga-images --filter Name=fpga-image-global-id,Values=agfi-<Your ID Here> # List particular AGFI image

After querying an AGFI, you can find the commit hash of the FireSim repository used to build the AGFI within the “Description”
field.

For more information, you can reference the AWS documentation at https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-fpga-images.html.

Overview & Philosophy

Underpinning FireSim is Golden Gate (MIDAS II), a FIRRTL-based compiler and C++ library, which
is used to transform Chisel-generated RTL into a deterministic FPGA-accelerated
simulator.

Golden Gate vs FPGA Prototyping

Key to understanding the design of Golden Gate, is understanding that Golden Gate-generated
simulators are not FPGA prototypes. Unlike in a prototype, Golden Gate-generated simulators decouple the
target-design clock from the FPGA-host clock (we say it is host-decoupled): one cycle in the target machine is
simulated over a one-or-more FPGA clock cycles. In constrast, a
conventional FPGA-prototype “emulates” the SoC by implementing the target
directly in FPGA logic, with each FPGA-clock edge executing a clock edge of the
SoC.

Why Use Golden Gate & FireSim

The host decoupling by Golden Gate-generated simulators enables:

	Deterministic simulation
Golden Gate creates a closed simulation environment such that bugs in the target can be reproduced
despite timing-differences (eg. DRAM refresh, PCI-E transport latency) in the underlying host.
The simulators for the same target can be generated for different host-FPGAs but will maintain
the same target behavior.

	FPGA-host optimizations
Structures in ASIC RTL that map poorly to FPGA logic can be replaced with models
that preserve the target RTL’s behavior, but take more host cycles to save resources.
eg. A 5R, 3W-ported register file with a dual-ported BRAM over 4 cycles.

	Distributed simulation & software co-simulation
Since models are decoupled from host time, it becomes much easier to host
components of the simulator on multiple FPGAs, and on a host-CPU, while still
preserving simulation determinism. This feature serves as the basis for building
cycle-accurate scale-out systems with FireSim.

	FPGA-hosted, timing-faithful models of I/O devices
Most simple FPGA-prototypes use FPGA-attached DRAM to model the target’s
DRAM memory system. If the available memory system does not match that of
the target, the target’s simulated performance will be artificially
fast or slow. Host-decoupling permits writing detailed timing models that
provide host-independent, deterministic timing of the target’s memory system,
while still use FPGA-host resources like DRAM as a functional store.

Why Not Golden Gate

Ultimately, Golden Gate-generated simulators introduce overheads not present in an
FPGA-prototype that may increase FPGA resource use, decrease fmax, and
decrease overall simulation throughput 1. Those looking to develop
soft-cores or develop a complete FPGA-based platform with their own boards and
I/O devices would be best served by implementing their design directly on an FPGA. For
those looking to building a system around Rocket-Chip, we’d suggest looking at
SiFive’s Freedom platform [https://github.com/sifive/freedom] to start.

How is Host-Decoupling Implemented?

Host-decoupling in Golden Gate-generated simulators is implemented by decomposing the
target machine into a dataflow graph of latency-insensitive models. As a user
of FireSim, understanding this dataflow abstraction is essential for debugging
your system and for developing your own software models and bridges. We
describe it in the next section.

	1

	These overheads varying depending on the features implemented and optimizations applied. Certain optimizations, currently in development, may increase fmax or decrease resource utilization over the equivalent prototype.

Target Abstraction & Host Decoupling

Golden Gate-generated simulators are deterministic, cycle-exact representations of
the source RTL fed to the compiler. To achieve this, Golden Gate consumes input RTL
(as FIRRTL) and transforms it into a latency-insensitive bounded dataflow
network (LI-BDN) representation of the same RTL.

The Target as a Dataflow Graph

Dataflow graphs in Golden Gate consist of models, tokens, and channels:

	Models – the nodes of the graph, these capture the behavior of the target machine by consuming and producing tokens.

	Tokens – the messages of dataflow graph, these represent a hardware value as they would appear on a wire after they have converged for a given cycle.

	Channels – the edges of the graph, these connect the output port of one model to the input of another.

In this system, time advances locally in each model. A model advances once
cycle in simulated time when it consumes one token from each of its input ports
and enqueues one token into each of its output ports. Models are
latency-insensitive: they can tolerate variable input token latency as well
as backpressure on output channels. Give a sequence of input tokens for each
input port, a correctly implemented model will produce the same sequence of
tokens on each of its outputs, regardless of when those input tokens arrive.

We give an example below of a dataflow graph representation of a 32-bit adder, simulating two cycles of execution.

Model Implementations

In Golden Gate, there are two dimensions of model implementation:

1) CPU- or FPGA-hosted: simply, where the model is going to execute.
CPU-hosted models, being software, are more flexible and easy
to debug but slow. Conversely, FPGA-hosted models are fast, but more difficult to write and debug.

2) Cycle-Exact or Abstract: cycle-exact models faithfully implement a chunk of
the SoC’s RTL~(this formalized later), where as abstract models are
handwritten and trade fidelity for reduced complexity, better simulation performance,
improved resource utilization, etc…

Hybrid, CPU-FPGA-hosted models are common. Here, a common pattern is write an RTL
timing-model and a software functional model.

Expressing the Target Graph

The target graph is captured in the FIRRTL for your target. The bulk of the RTL
for your system will be transformed by Golden Gate into one or more
cycle-exact, FPGA-hosted models. You introduce abstract, FPGA-hosted models and
CPU-hosted models into the graph by using Target-to-Host Bridges. During
compilation, Golden Gate extracts the target-side of the bridge, and
instantiates your custom RTL, called an BridgeModule, which together with a
CPU-hosted Bridge Driver, gives you the means to model arbitrary
target-behavior. We expand on this in the Bridge section.

Latency-Insensitive Bounded Dataflow Networks

In order for the resulting simulator to be a faithful representation of the
target RTL, models must adhere to three properties. We refer the reader to
the LI-BDN paper [https://dspace.mit.edu/bitstream/handle/1721.1/58834/Vijayaraghavan-2009-Bounded%20Dataflow%20Networks%20and%20Latency-Insensitive%20Circuits.pdf?sequence=1&isAllowed=y]
for the formal definitions of these properties. English language equivalents
follow.

Partial Implementation: The model output token behavior matches the
cycle-by-cyle output of the reference RTL, given the same input provided to
both the reference RTL and the model (as a arbitrarily delayed token stream).
Cycle exact models must implement PI, whereas abstract models do not.

The remaining two properties ensure the graph does not deadlock, and must be
implemented by both cycle-exact and abstract models.

Self-Cleaning: A model that has enqueued N tokens into each of it’s output
ports must eventually dequeue N tokens from each of it’s input ports.

No Extranenous Dependencies: If a given output channel of an
LI-BDN simulation model has received a number of tokens no greater
than any other channel, and if the model receives all input tokens
required to compute the next output token for that channel, the model
must eventually enqueue that output token, regardless of future
external activity. Here, a model enqueueing an output token is
synonymous with the corresponding output channel “receiving” the
token.

Target-to-Host Bridges

A custom model in a FireSim Simulation, either CPU-hosted or FPGA-hosted, is
deployed by a Target-to-Host Bridge, or Bridge for short. Bridges provide the
means to inject hardware and software models that produce and consume token streams.

Bridges enable:

	Software co-simulation. Ex. Before writing RTL for your accelerator, you can instantiate a custom bridge that
calls out to a software model running on the CPU.

	Resource savings by replacing components of the target with models that use
fewer FPGA resources or run entirely software.

The use of Bridges in a FireSim simulation has many analogs to doing
mixed-language (Verilog-C++) simulation of the same system in software. Where
possible, we’ll draw analogies.

Use Cases

	Deterministic, host-agnostic I/O models. This is the most common use case.
Here you instantiate bridges at the I/O boundary of your chip, to provide
a simulation models of the environment your design is executing in. For an
FPGA-hosted model, see FASED memory timing models. For co-simulated models
see the UARTBridge, BlockDeviceBridge, and SerialBridge.

	Verification against a software golden model. Attach an bridge (anywhere
in your target RTL) to an interface you’d like to monitor, (e.g., a
processor trace port). In the host, you can pipe the token stream coming off
this interface to a software model running on a CPU (e.g, a functional ISA
simulator). See TracerV.

	Distributed simulation. The original FireSim application. You can stitch
together networks of simulated machines by instantiating bridges at your
SoC boundary. Then write software models and bridge drivers that move
tokens between each FPGA. See the SimpleNICBridge.

Defining A Bridge

Bridges have a target side, consisting of a specially annotated Module, and host side,
which consist of an FPGA-hosted BridgeModule and an optional CPU-hosted BridgeDriver.

In a mixed-language software simulation, a Verilog VPI interface, (i.e, a tick
fucntion) is analogous to the target side of a bridge, with the C++ backing
that interface being the host side.

Target Side

In your target-side implementation, you will define a Scala trait that extends
Bridge. This trait indicates that the module will declared and connected to in
the target design, but that its implementation will be provided by a simulation
Bridge. Once the trait is mixed into a Chisel BlackBox or a Module, that module
will be extracted by Golden Gate, and its interface with the rest of the target
design will be driven by your host-side implementation.

This trait has two type parameters and two abstract members you’ll need define
for your Bridge. Note that since you must mix Bridge into either a Chisel
BlackBox or a Module, you’ll of course need to define the IO for that module.
That’s the interface you’ll use to connect to your target RTL.

Type Parameters:

#. Host Interface Type [HPType]: The Chisel type of your Bridge’s target-land interface. This describes how the target interface
has been divided into seperate token channels. One example, HostPort[T], divides a Chisel Bundle into a single bi-directional token stream.
#. Host Module Type: The type of the Chisel Module you want Golden Gate to connect in-place of your black box.

Abstract Members:

	Host Interface Mock: In your bridge trait you’ll create an instance of
your Host Interface of type HPType, which you’ll use to communicate to
Golden Gate how the target-land IO of this black box is being divided into
channels. The constructor of thisr must accept the target-land IO
interface, a hardware type, that it may correctly divide it into channels,
and annotate the right fields of your Bridge instance.

	Constructor Arg: A Scala case class you’d like to pass to your host-land
BridgeModule’s constructor. This will be serialized into an annotation and
consumed later by Golden Gate. In this case class you should capture all
target-land configuration information you’ll need in your Module’s
generator.

Finally at the bottom of your Bridge’s class definition you’ll need to call generateAnnotations().
This will emit an “BridgeAnnotation” attached to module that indicates:

	This module is an Bridge.

	The class name of the BridgeModule’s generator (e.g., firesim.bridges.UARTModule)

	The serialized constructor argument for that generator (e.g. firesim.bridges.UARTKey)

	A list of channel names; string references to Channel annotations

And a series of FAMEChannelConnectionAnnotations, which target the module’s I/O to group them into token channels.

You can freely instantiate your Bridge anywhere in your Target RTL: at the I/O
boundary of your chi or deep in its module hierarchy. Since all of the Golden
Gate-specific metadata is captured in FIRRTL annotations, you can generate your
target design and simulate it a target-level RTL simulation or even pass it off
to ASIC CAD tools – Golden Gate’s annotations will simply be unused.

What Happens Next?

If you do pass your FIRRTL & Annotations to Golden Gate. It will find your
module, remove it, and wire its dangling target-interface to the top-level of
the design. During host-decoupling transforms, Golden Gate aggregates fields of
your bridge’s target IO based on ChannelAnnotations, and wraps them up into
new Decoupled interfaces that match your Host Interface definition. Finally,
once Golden Gate is done performing compiler transformations, it iterates
through each Bridge annotation, generates your Module, passing it the
serialized constructor argument, and connects it to the tokenized interface
presented by the now host-decoupled target.

Host-side Implementation

Host-side implementations have two components.
#. A FPGA-hosted BridgeModule.
#. An optional, CPU-hosted, bridge driver.

In general, bridges have both a module and a driver: in FASED memory timing
models, the BridgeDriver configures timing parameters at the start of
simulation, and periodically reads instrumentation during execution. In the
Block Device model, a Driver periodically polls hardware queues checking for
new functional requests to be served. In the NIC model, the BridgeDriver moves
tokens in bulk between the software switch model and the BridgeModule, which
simply queues up tokens as they arrive.

Communication between a BridgeModule and BridgeDriver is implemented with two types of transport:

	MMIO: On the hardware-side this is implemented over a 32-bit AXI4-lite bus.
Reads and writes to this bus are made by BridgeDrivers using simif_t::read()
and simif_t::write(). BridgeModules register memory mapped registers using
methods defined in Widget, addresses for these registers are passed to the
drivers in a generated C++ header.

	DMA: On the hardware-side this is implemented with a wide (e.g., 512-bit) AXI4
bus, that is mastered by the CPU. BridgeDrivers initiate bulk transactions
by passing buffers to simif_t::push() and simif_t::pull() (DMA from the
FPGA). DMA is typically used to stream tokens into and out of
out of large FIFOs in the BridgeModule.

Compile-Time (Parameterization) vs Runtime Configuration

As when compiling a software-RTL simulator, the simulated design
is configured over two phases:

	Compile Time. By parameterization the target RTL and BridgeModule
generators, and by enabling Golden Gate optimization and debug
transformations. This changes the simulator’s RTL and thus requires a
FPGA-recompilation. This is equivalent to, but considerably slower than,
invoking VCS to compile a new simulator.

	Runtime. By specifying plus args (e.g., +mm_latency=1) that are passed to
the BridgeDrivers. This is isomorphic to passing plus args to a VCS
simulator, in fact, in many cases the plus args passed to a VCS simulator
and a FireSim simulator can be the same.

Target-Side vs Host-Side Parameterization

Unlike in a VCS simulation, FireSim simulations have an additional phase of RTL
elaboration, during which BridgeModules are generated (they are implemented as
Chisel generators).

The parameterization of your bridge module can be captured in two places.

	Target-side: Here parameterization information is provided both as free
parameters to the target’s generator, and extracted from the context in
which the Bridge is instantiated. The latter might include things like width
of specific interfaces or bounds on the behavior the target might expose to
the Bridge (e.g., a maximum number of inflight requests). All of this
information must be captured in a single serializable constructor argument,
generally a case class (see Endpoint.constructorArg).

	Host-side: This is parameterization information captured in Golden Gate’s
Parameters object. This should be used to provide host-land implementation
hints (that don’t change the simulated behavior of the system), or to
provide arguments that cannot be serialized to the annotation file.

In general, if you can capture target-behavior-changing parameterization information from
the target-side you should. This makes it easier to prevent divergence between
a RTL simulation and FireSim simulation of the same FIRRTL. It’s also easier to
configure multiple instances of the same type of bridge from the target-side.

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to FireSim’s documentation!

 		
 FireSim Basics

 		
 Two common use cases:

 		
 Single-Node Simulation, in Parallel

 		
 Datacenter/Cluster Simulation

 		
 Other Use Cases

 		
 Background/Terminology

 		
 Using FireSim/The FireSim Workflow

 		
 Initial Setup/Installation

 		
 First-time AWS User Setup

 		
 Creating an AWS Account

 		
 AWS Credit at Berkeley

 		
 Requesting Limit Increases

 		
 Configuring Required Infrastructure in Your AWS Account

 		
 Select a region

 		
 Key Setup

 		
 Check your EC2 Instance Limits

 		
 Start a t2.nano instance to run the remaining configuration commands

 		
 Run scripts from the t2.nano

 		
 Terminate the t2.nano

 		
 Subscribe to the AWS FPGA Developer AMI

 		
 Setting up your Manager Instance

 		
 Launching a “Manager Instance”

 		
 Setting up the FireSim Repo

 		
 Completing Setup Using the Manager

 		
 Running FireSim Simulations

 		
 Running a Single Node Simulation

 		
 Building target software

 		
 Setting up the manager configuration

 		
 Launching a Simulation!

 		
 Running a Cluster Simulation

 		
 Returning to a clean configuration

 		
 Building target software

 		
 Setting up the manager configuration

 		
 Launching a Simulation!

 		
 Building Your Own Hardware Designs (FireSim FPGA Images)

 		
 Amazon S3 Setup

 		
 Build Recipes

 		
 Running a Build

 		
 Manager Usage (the firesim command)

 		
 Overview

 		
 “Inputs” to the Manager

 		
 Logging

 		
 Manager Command Line Arguments

 		
 –runtimeconfigfile FILENAME

 		
 –buildconfigfile FILENAME

 		
 –buildrecipesconfigfile FILENAME

 		
 –hwdbconfigfile FILENAME

 		
 –overrideconfigdata SECTION PARAMETER VALUE

 		
 TASK

 		
 Manager Tasks

 		
 firesim managerinit

 		
 firesim buildafi

 		
 firesim shareagfi

 		
 firesim launchrunfarm

 		
 firesim terminaterunfarm

 		
 firesim infrasetup

 		
 firesim boot

 		
 firesim kill

 		
 firesim runworkload

 		
 firesim runcheck

 		
 Manager Configuration Files

 		
 config_runtime.ini

 		
 config_build.ini

 		
 config_build_recipes.ini

 		
 config_hwdb.ini

 		
 Manager Environment Variables

 		
 FIRESIM_RUNFARM_PREFIX

 		
 Manager Network Topology Definitions (user_topology.py)

 		
 user_topology.py contents:

 		
 AGFI Metadata/Tagging

 		
 Workloads

 		
 Defining Custom Workloads

 		
 Uniform Workload JSON

 		
 Non-uniform Workload JSON (explicit job per simulated node)

 		
 SPEC 2017

 		
 Intspeed

 		
 Intrate

 		
 Running Fedora on FireSim

 		
 ISCA 2018 Experiments

 		
 Prerequisites

 		
 Building Benchmark Binaries/Rootfses

 		
 Figure 5: Ping Latency vs. Configured Link Latency

 		
 Figure 6: Network Bandwidth Saturation

 		
 Figure 7: Memcached QoS / Thread Imbalance

 		
 Figure 8: Simulation Rate vs. Scale

 		
 Figure 9: Simulation Rate vs. Link Latency

 		
 Running all experiments at once

 		
 GAP Benchmark Suite

 		
 FireMarshal

 		
 Quick Start

 		
 Targets

 		
 Restrictions on Target RTL

 		
 Provided Target Designs

 		
 Target Generator Organization

 		
 Specifying A Target Instance

 		
 Rocket Chip Generator-based SoCs (firesim project)

 		
 Rocket-based SoCs

 		
 BOOM-based SoCs

 		
 Generating A Different FASED Memory-Timing Model Instance

 		
 Midas Examples (midasexamples project)

 		
 Examples

 		
 FASED Tests (fasedtests project)

 		
 Examples

 		
 Debugging

 		
 Debugging & Testing with RTL Simulation

 		
 Target-Level Simulation

 		
 MIDAS-Level Simulation

 		
 FPGA-Level Simulation

 		
 Scala Tests

 		
 Debugging Using FPGA Integrated Logic Analyzers (ILA)

 		
 Annotating Signals

 		
 Setting a ILA Depth

 		
 Using the ILA at Runtime

 		
 Debugging Using TracerV

 		
 Building a Design with TracerV

 		
 Enabling Tracing at Runtime

 		
 Interpreting the Trace Result

 		
 Assertion Synthesis

 		
 Enabling Assertion Synthesis

 		
 Runtime Behavior

 		
 Related Publications

 		
 Printf Synthesis

 		
 Enabling Printf Synthesis

 		
 Runtime Arguments

 		
 Related Publications

 		
 Supernode - Multiple Simulated SoCs Per FPGA

 		
 Introduction

 		
 Building Supernode Designs

 		
 Running Supernode Simulations

 		
 Work in Progress!

 		
 Miscellaneous Tips

 		
 Add the fsimcluster column to your AWS management console

 		
 FPGA Dev AMI Remote Desktop Setup

 		
 Experimental Support for SSHing into simulated nodes and accessing the internet from within simulations

 		
 Navigating the FireSim Codebase

 		
 FireSim Asked Questions

 		
 I just bumped the FireSim repository to a newer commit and simulations aren’t running. What is going on?

 		
 Is there a good way to keep track of what AGFI corresponds to what FireSim commit?

 		
 Overview & Philosophy

 		
 Golden Gate vs FPGA Prototyping

 		
 Why Use Golden Gate & FireSim

 		
 Why Not Golden Gate

 		
 How is Host-Decoupling Implemented?

 		
 Target Abstraction & Host Decoupling

 		
 The Target as a Dataflow Graph

 		
 Model Implementations

 		
 Expressing the Target Graph

 		
 Latency-Insensitive Bounded Dataflow Networks

 		
 Target-to-Host Bridges

 		
 Use Cases

 		
 Defining A Bridge

 		
 Target Side

 		
 What Happens Next?

 		
 Host-side Implementation

 		
 Compile-Time (Parameterization) vs Runtime Configuration

 		
 Target-Side vs Host-Side Parameterization

_images/firesim_env.png

_images/runcheck_example.png
runtools.run_farm.F1_16 object at 0x7f478f081750

FireSimSwitchNode:0

downlinks: 00:12:6D:00:00:02, 00:12:6D:00:00:03, 00:12:6D:00:00:04, 00:12:6D:00:00:05, 00:12:6D:00:00:06, 00:12:6D:00:00:07, 00:12:6D:00:00:08, 00:12:6D:00:00:09
switchingtable: 8, 8,0, 1, 2,3, 4, 5,6,7

_—— @ T~ 0O

FireSimServerNode:0 FireSimServerNode: 1 FireSimServerNode:2 FireSimServerNode:3 FireSimServerNode:4 FireSimServerNode:5 FireSimServerNode:6 FireSimServerNode:7

MAC: 00:12:6D:00:00:02 MAC: 00:12:6D:00:00:03 MAC: 00:12:6D:00:00:04 MAC: 00:12:6D:00:00:05 MAC: 00:12:6D:00:00:06
linux-uniform0 linux-uniform1 linux-uniform2 linux-uniform3 linux-uniform4

MAC: 00:12:6D:00:00:07 MAC: 00:12:6D:00:00:08 MAC: 00:12:6D:00:00:09
linux-uniform5 linux-uniform6 linux-uniform7

RuntimeHW Config: firesim-quadcore-nic-ddr3-llc4mb RuntimeHW Config: firesim-quadcore-nic-ddr3-llc4mb RuntimeHW Config: firesim-quadcore-nic-ddr3-llc4mb RuntimeHW Config: firesim-quadcore-nic-ddr3-llc4mb RuntimeHW Config: firesim-quadcore-nic-ddr3-llc4mb
DeployTriplet: FireSim-FireSimRocketChipQuadCoreConfig-FireSim DDR3FRFCFSLLC4MBConfig DeployTriplet: FireSim-FireSimRocketChipQuadCoreConfig-FireSimDDR3FRFCFSLLC4MBConfig DeployTriplet: FireSim-FireSimRocketChipQuadCoreConfig-FireSim DDR3FRFCFSLLC4MBConfig DeployTriplet: FireSim-FireSimRocketChipQuadCoreConfig-FireSimDDR3FRFCFSLLC4MBConfig DeployTriplet: FireSim-FireSimRocketChipQuadCoreConfig-FireSimDDR3FRFCFSLLC4MBConfig
AGFTI: agfi-09e85ffabe3543903 AGFTI: agfi-09e85ffabe3543903 AGFTI: agfi-09e85ffabe3543903 AGFT: agfi-09e85ffabe3543903 AGFI: agfi-09e85ffabe3543903
CustomRuntimeConf: None CustomRuntimeConf: None CustomRuntimeConf: None CustomRuntimeConf: None CustomRuntimeConf: None

RuntimeHW Config: firesim-quadcore-nic-ddr3-llc4mb RuntimeHW Config: firesim-quadcore-nic-ddr3-llc4mb RuntimeHW Config: firesim-quadcore-nic-ddr3-llc4mb
DeployTriplet: FireSim-FireSimRocketChipQuadCoreConfig-FireSim DDR3FRFCFSLLC4MBConfig DeployTriplet: FireSim-FireSimRocketChipQuadCoreConfig-FireSimDDR3FRFCFSLLC4MBContfig DeployTriplet: FireSim-FireSimRocketChipQuadCoreConfig-FireSim DDR3FRFCFSLLC4MBConfig
AGFT: agfi-09e85ffabe3543903 AGFI: agfi-09e85ffabe3543903 AGFTI: agfi-09e85ffabe3543903
CustomRuntimeConf: None CustomRuntimeConf: None CustomRuntimeConf: None

_images/build_complete_email.png
FireSim FPGA Build Completed inbox

AWS Notifications no-reply@sns.amazonaws.com via amazonses.com
to sagark «

Your AGFI has been created!

Add

[firesim-singlecore-no-nic-lbp]
agfi=agfi-0b722a14f72b48efc

deploytripletoverride=None

customruntimeconfig=None

to your config_agfidb.ini to use this hardware configuration.

If you wish to stop receiving notifications from this topic, please click or visit the link below to unsubscribe:

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

