
FireSim Documentation
Release 1.15.0

Sagar Karandikar, Howard Mao,
Donggyu Kim, David Biancolin,

Alon Amid,
Berkeley Architecture Research

Oct 01, 2022

GETTING STARTED:

1 FireSim Basics 3
1.1 Three common use cases: . 3

1.1.1 Single-Node Simulation In Parallel Using On-Premise FPGAs 3
1.1.2 Single-Node Simulation In Parallel Using Cloud FPGAs 3
1.1.3 Datacenter/Cluster Simulation . 4

1.2 Other Use Cases . 4
1.3 Background/Terminology . 4
1.4 Using FireSim/The FireSim Workflow . 5

2 Initial Setup/Installation 7
2.1 First-time AWS User Setup . 7

2.1.1 Creating an AWS Account . 7
2.1.2 AWS Credit at Berkeley . 7
2.1.3 Requesting Limit Increases . 7

2.2 Configuring Required Infrastructure in Your AWS Account . 8
2.2.1 Select a region . 8
2.2.2 Key Setup . 8
2.2.3 Check your EC2 Instance Limits . 8
2.2.4 Start a t2.nano instance to run the remaining configuration commands 9
2.2.5 Run scripts from the t2.nano . 9
2.2.6 Terminate the t2.nano . 10
2.2.7 Subscribe to the AWS FPGA Developer AMI . 10

2.3 Setting up your Manager Instance . 10
2.3.1 Launching a “Manager Instance” . 10
2.3.2 Setting up the FireSim Repo . 18
2.3.3 Completing Setup Using the Manager . 19

3 Running FireSim Simulations 21
3.1 Running a Single Node Simulation . 21

3.1.1 Building target software . 21
3.1.2 Setting up the manager configuration . 22
3.1.3 Launching a Simulation! . 26

3.2 Running a Cluster Simulation . 31
3.2.1 Returning to a clean configuration . 31
3.2.2 Building target software . 31
3.2.3 Setting up the manager configuration . 32
3.2.4 Launching a Simulation! . 35

4 Building Your Own Hardware Designs (FireSim FPGA Images) 43
4.1 Amazon S3 Setup . 43

i

4.2 Build Recipes . 43
4.3 Running a Build . 44

5 Manager Usage (the firesim command) 45
5.1 Overview . 45

5.1.1 “Inputs” to the Manager . 45
5.1.2 Logging . 45

5.2 Manager Command Line Arguments . 46
5.2.1 --runtimeconfigfile FILENAME . 47
5.2.2 --buildconfigfile FILENAME . 48
5.2.3 --buildrecipesconfigfile FILENAME . 48
5.2.4 --hwdbconfigfile FILENAME . 48
5.2.5 --overrideconfigdata SECTION PARAMETER VALUE . 48
5.2.6 --launchtime TIMESTAMP . 48
5.2.7 TASK . 48

5.3 Manager Tasks . 48
5.3.1 firesim managerinit --platform {f1,vitis} . 48
5.3.2 firesim buildafi . 49
5.3.3 firesim buildbitstream . 49
5.3.4 firesim builddriver . 50
5.3.5 firesim tar2afi . 51
5.3.6 firesim shareagfi . 51
5.3.7 firesim launchrunfarm . 51
5.3.8 firesim terminaterunfarm . 52
5.3.9 firesim infrasetup . 53
5.3.10 firesim boot . 54
5.3.11 firesim kill . 54
5.3.12 firesim runworkload . 54
5.3.13 firesim runcheck . 54

5.4 Manager Configuration Files . 55
5.4.1 config_runtime.yaml . 55
5.4.2 config_build.yaml . 61
5.4.3 config_build_recipes.yaml . 64
5.4.4 config_hwdb.yaml . 69
5.4.5 Run Farm Recipes (run-farm-recipes/*) . 71
5.4.6 Build Farm Recipes (build-farm-recipes/*) . 79
5.4.7 Bit Builder Recipes (bit-builder-recipes/*) . 82

5.5 Manager Environment Variables . 84
5.5.1 FIRESIM_RUNFARM_PREFIX . 85

5.6 Manager Network Topology Definitions (user_topology.py) . 85
5.6.1 user_topology.py contents: . 85

5.7 AGFI Metadata/Tagging . 94

6 Workloads 95
6.1 Defining Custom Workloads . 95

6.1.1 Uniform Workload JSON . 95
6.1.2 Non-uniform Workload JSON (explicit job per simulated node) 97

6.2 FireMarshal . 99
6.3 SPEC 2017 . 99
6.4 Running Fedora on FireSim . 100
6.5 ISCA 2018 Experiments . 100

6.5.1 Prerequisites . 100
6.5.2 Building Benchmark Binaries/Rootfses . 100
6.5.3 Figure 5: Ping Latency vs. Configured Link Latency . 101

ii

6.5.4 Figure 6: Network Bandwidth Saturation . 101
6.5.5 Figure 7: Memcached QoS / Thread Imbalance . 101
6.5.6 Figure 8: Simulation Rate vs. Scale . 101
6.5.7 Figure 9: Simulation Rate vs. Link Latency . 102
6.5.8 Running all experiments at once . 102

6.6 GAP Benchmark Suite . 102
6.7 [DEPRECATED] Defining Custom Workloads . 103

6.7.1 Uniform Workload JSON . 104
6.7.2 Non-uniform Workload JSON (explicit job per simulated node) 105

7 Targets 109
7.1 Restrictions on Target RTL . 109

7.1.1 Including Verilog IP . 109
7.1.2 Multiple Clock Domains . 110

7.2 Target-Side FPGA Constraints . 111
7.2.1 RAM Inference Hints . 111

7.3 Provided Target Designs . 112
7.3.1 Target Generator Organization . 112
7.3.2 Specifying A Target Instance . 112

7.4 Rocket Chip Generator-based SoCs (firesim project) . 114
7.4.1 Rocket-based SoCs . 114
7.4.2 BOOM-based SoCs . 114
7.4.3 Generating A Different FASED Memory-Timing Model Instance 114

7.5 Midas Examples (midasexamples project) . 115
7.5.1 Examples . 115

7.6 FASED Tests (fasedtests project) . 115
7.6.1 Examples . 115

8 Debugging in Software 117
8.1 Debugging & Testing with Metasimulation . 117

8.1.1 Supported Host Simulators . 117
8.1.2 Running Metasimulations using the FireSim Manager . 118
8.1.3 Understanding a Metasimulation Waveform . 119
8.1.4 Scala Tests . 121
8.1.5 Running Metasimulations through Make . 121
8.1.6 Metasimulation vs. Target simulation performance . 122

9 Debugging and Profiling on the FPGA 125
9.1 Capturing RISC-V Instruction Traces with TracerV . 125

9.1.1 Building a Design with TracerV . 125
9.1.2 Enabling Tracing at Runtime . 125
9.1.3 Selecting a Trace Output Format . 126
9.1.4 Setting a TracerV Trigger . 126
9.1.5 Interpreting the Trace Result . 128
9.1.6 Caveats . 129

9.2 Assertion Synthesis: Catching RTL Assertions on the FPGA . 129
9.2.1 Enabling Assertion Synthesis . 129
9.2.2 Runtime Behavior . 129
9.2.3 Related Publications . 130

9.3 Printf Synthesis: Capturing RTL printf Calls when Running on the FPGA 130
9.3.1 Enabling Printf Synthesis . 130
9.3.2 Runtime Arguments . 131
9.3.3 Related Publications . 131

9.4 AutoILA: Simple Integrated Logic Analyzer (ILA) Insertion . 131

iii

9.4.1 Enabling AutoILA . 132
9.4.2 Annotating Signals . 132
9.4.3 Setting a ILA Depth . 132
9.4.4 Using the ILA at Runtime . 132

9.5 AutoCounter: Profiling with Out-of-Band Performance Counter Collection 133
9.5.1 Chisel Interface . 133
9.5.2 Enabling AutoCounter in Golden Gate . 134
9.5.3 Rocket Chip Cover Functions . 134
9.5.4 AutoCounter Runtime Parameters . 134
9.5.5 AutoCounter CSV Output Format . 135
9.5.6 Using TracerV Trigger with AutoCounter . 136
9.5.7 AutoCounter using Synthesizable Printfs . 136
9.5.8 Reset & Timing Considerations . 136

9.6 TracerV + Flame Graphs: Profiling Software with Out-of-Band Flame Graph Generation 136
9.6.1 What are Flame Graphs? . 136
9.6.2 Prerequisites . 137
9.6.3 Enabling Flame Graph generation in config_runtime.yaml 137
9.6.4 Producing DWARF information to supply to the TracerV driver 138
9.6.5 Modifying your workload description . 138
9.6.6 Running a simulation . 139
9.6.7 Caveats . 139

9.7 Dromajo Co-simulation with BOOM designs . 139
9.7.1 Building a Design with Dromajo . 139
9.7.2 Running a FireSim Simulation . 139
9.7.3 Troubleshooting Dromajo Simulations with Meta-Simulations 140

9.8 Debugging a Hanging Simulator . 141
9.8.1 Case 1: Target hang. 141
9.8.2 Case 2: Simulator hang due to FPGA-side token starvation. 141
9.8.3 Case 3: Simulator hang due to driver-side deadlock. 142
9.8.4 Simulator Heartbeat PlusArgs . 142

10 Non-Source Dependency Management 143
10.1 Updating a Package Version . 143
10.2 Multiple Environments . 145
10.3 Adding a New Dependency . 145
10.4 Building From Source . 146
10.5 Running conda with sudo . 146
10.6 Running things from your conda environment with sudo . 146
10.7 Additional Resources . 147

11 Supernode - Multiple Simulated SoCs Per FPGA 149
11.1 Introduction . 149
11.2 Building Supernode Designs . 149
11.3 Running Supernode Simulations . 150
11.4 Work in Progress! . 151

12 Miscellaneous Tips 153
12.1 Add the fsimcluster column to your AWS management console 153
12.2 FPGA Dev AMI Remote Desktop Setup . 153
12.3 Experimental Support for SSHing into simulated nodes and accessing the internet from within simu-

lations . 153
12.4 Navigating the FireSim Codebase . 155
12.5 Using FireSim CI . 155

13 FireSim Asked Questions 157

iv

13.1 I just bumped the FireSim repository to a newer commit and simulations aren’t running. What is going
on? . 157

13.2 Is there a good way to keep track of what AGFI corresponds to what FireSim commit? 157
13.3 Help, My Simulation Hangs! . 158
13.4 Should My Simulator Produce Different Results Across Runs? . 158
13.5 Is there a way to compress workload results when copying back to the manager instance? 158

14 (Experimental) Using On Premise FPGAs 159
14.1 Setup . 159
14.2 Bitstream Build . 159
14.3 Running A Simulation . 160

15 Overview & Philosophy 163
15.1 Golden Gate vs FPGA Prototyping . 163
15.2 Why Use Golden Gate & FireSim . 163
15.3 Why Not Golden Gate . 164
15.4 How is Host-Decoupling Implemented? . 164

16 Target Abstraction & Host Decoupling 165
16.1 The Target as a Dataflow Graph . 165
16.2 Model Implementations . 165
16.3 Expressing the Target Graph . 166
16.4 Latency-Insensitive Bounded Dataflow Networks . 166

17 Target-to-Host Bridges 167
17.1 Terminology . 167
17.2 Target Side . 168

17.2.1 Type Parameters: . 168
17.2.2 Abstract Members: . 168

17.3 What Happens Next? . 168
17.4 Host Side . 169
17.5 Compile-Time (Parameterization) vs Runtime Configuration . 169
17.6 Target-Side vs Host-Side Parameterization . 169

18 Bridge Walkthrough 171
18.1 UART Bridge (Host-MMIO) . 171

18.1.1 Target Side . 171
18.1.2 Host-Side BridgeModule . 173
18.1.3 Host-Side Driver . 174
18.1.4 Registering the Driver . 176
18.1.5 Build-System Modifications . 176

19 Simulation Triggers 179
19.1 Quick-Start Guide . 179

19.1.1 Level-Sensitive Trigger Source . 179
19.1.2 Distributed, Edge-Sensitive Trigger Source . 179

19.2 Chisel API . 180
19.2.1 Trigger Sources . 180
19.2.2 Trigger Sinks . 180

19.3 Trigger Timing . 181
19.4 Limitations & Pitfalls . 182

20 Optimizing FPGA Resource Utilization 183
20.1 Multi-Ported Memory Optimization . 183
20.2 Multi-Threading of Repeated Instances . 184

v

21 Output Files 185
21.1 Core Files . 185
21.2 FPGA Build Files . 185
21.3 Metasimulation Files . 186

22 Compiler & Driver Development 187
22.1 Integration Tests . 187

22.1.1 Key Files & Locations . 188
22.1.2 Defining a New Test . 188

22.2 Synthesizable Unit Tests . 188
22.2.1 Key Files & Locations . 189
22.2.2 Defining a New Test . 189

22.3 Scala Unit Testing . 189
22.3.1 Key Files & Locations . 189
22.3.2 Defining A New Test . 189

22.4 C/C++ guidelines . 190

23 Complete FPGA Metasimulation 191
23.1 Usage . 191

24 Visual Studio Code Integration 193
24.1 General Setup . 193
24.2 Workspace Locations . 193
24.3 Scala Development . 193

24.3.1 How To Use (Remote Manager) . 194
24.3.2 Limitations . 194
24.3.3 Other Notes . 194

25 Managing the Conda Lock File 195
25.1 Updating Conda Requirements . 195
25.2 Caveats of the Conda Lock File and CI . 195

26 External Tutorial Setup 197

27 Indices and tables 201

vi

FireSim Documentation, Release 1.15.0

New to FireSim? Jump to the FireSim Basics page for more info.

GETTING STARTED: 1

FireSim Documentation, Release 1.15.0

2 GETTING STARTED:

CHAPTER

ONE

FIRESIM BASICS

FireSim is a cycle-accurate, FPGA-accelerated scale-out computer system simulation platform developed in the Berke-
ley Architecture Research Group in the EECS Department at the University of California, Berkeley.

FireSim is capable of simulating from one to thousands of multi-core compute nodes, derived from silicon-proven
and open target-RTL, with an optional cycle-accurate network simulation tying them together. FireSim runs on FPGAs
in public cloud environments like AWS EC2 F1, removing the high capex traditionally involved in large-scale FPGA-
based simulation, as well as on on-premise FPGAs.

FireSim is useful both for datacenter architecture research as well as running many single-node architectural exper-
iments in parallel on FPGAs. By harnessing a standardized host platform and providing a large amount of automa-
tion/tooling, FireSim drastically simplifies the process of building and deploying large-scale FPGA-based hardware
simulations.

To learn more, see the FireSim website and the FireSim ISCA 2018 paper.

For a two-minute overview that describes how FireSim simulates a datacenter, see our ISCA 2018 lightning talk on
YouTube.

1.1 Three common use cases:

1.1.1 Single-Node Simulation In Parallel Using On-Premise FPGAs

In this mode, FireSim allows for simulation of individual Rocket Chip-based nodes without a network, which allows
individual simulations to run at ~150 MHz. The FireSim manager has the ability to automatically distribute jobs to
on-premise FPGAs allowing users to harness existing FPGAs for quick turnaround time and maximum flexibility. For
example, users can run all of SPECInt2017 on Rocket Chip in ~1 day by running the 10 separate workloads in parallel
on 10 on-premise FPGAs.

1.1.2 Single-Node Simulation In Parallel Using Cloud FPGAs

In this mode, FireSim allows for simulation of individual Rocket Chip-based nodes without a network, which allows
individual simulations to run at ~150 MHz. The FireSim manager has the ability to automatically distribute jobs to
many parallel simulations running on cloud FPGAs, expediting the process of running large workloads like SPEC. For
example, users can run all of SPECInt2017 on Rocket Chip in ~1 day by running the 10 separate workloads in parallel
on 10 FPGAs hosted in the cloud.

3

https://fires.im
https://sagark.org/assets/pubs/firesim-isca2018.pdf
https://www.youtube.com/watch?v=4XwoSe5c8lY
https://www.youtube.com/watch?v=4XwoSe5c8lY

FireSim Documentation, Release 1.15.0

1.1.3 Datacenter/Cluster Simulation

In this mode, FireSim also models a cycle-accurate network with parameterizeable bandwidth and link latency, as well
as configurable topology, to accurately model current and future datacenter-scale systems. For example, FireSim has
been used to simulate 1024 quad-core Rocket Chip-based nodes, interconnected by a 200 Gbps, 2us network. To learn
more about this use case, see our ISCA 2018 paper or two-minute lightning talk.

1.2 Other Use Cases

This release does not support a non-cycle-accurate network as our AWS Compute Blog Post/Demo used. This feature
will be restored in a future release.

If you have other use-cases that we haven’t covered, feel free to contact us!

1.3 Background/Terminology

Fig. 1: FireSim Infrastructure Diagram

FireSim Manager (firesim) This program (available on your path as firesim once we source necessary scripts)
automates the work required to launch FPGA builds and run simulations. Most users will only have to interact
with the manager most of the time. If you’re familiar with tools like Vagrant or Docker, the firesim command
is just like the vagrant and docker commands, but for FPGA simulators instead of VMs/containers.

4 Chapter 1. FireSim Basics

https://sagark.org/assets/pubs/firesim-isca2018.pdf
https://www.youtube.com/watch?v=4XwoSe5c8lY
https://aws.amazon.com/blogs/compute/bringing-datacenter-scale-hardware-software-co-design-to-the-cloud-with-firesim-and-amazon-ec2-f1-instances/

FireSim Documentation, Release 1.15.0

Manager Instance This is the main host (ex. AWS EC2 instance or local machine) that you will SSH-into and do work
on. This is where you’ll clone your copy of FireSim and use the FireSim Manager to deploy builds/simulations
from.

Build Farm These are instances that are managed by the FireSim manager when you run FPGA builds. The manager
will automatically ship source for builds to these instances and run the Verilog -> FPGA Image process on them.

Run Farm These are a collection of instances that the manager manages and deploys simulations onto. You can use
multiple Run Farms in parallel, to run multiple separate simulations in parallel.

To disambiguate between the computers being simulated and the computers doing the simulating, we also define:

Target The design and environment under simulation. Generally, a group of one or more multi-core RISC-V micro-
processors with or without a network between them.

Host The computers executing the FireSim simulation – the Run Farm from above.

We frequently prefix words with these terms. For example, software can run on the simulated RISC-V system (target-
software) or on a host x86 machine (host-software).

Golden Gate (MIDAS II) The FIRRTL compiler used by FireSim to convert target RTL into a decoupled simulator.
Formerly named MIDAS.

1.4 Using FireSim/The FireSim Workflow

The tutorials that follow this page will guide you through the complete flow for getting an example FireSim simulation
up and running using AWS EC2 F1. At the end of this tutorial, you’ll have a simulation that simulates a single quad-
core Rocket Chip-based node with a 4 MB last level cache, 16 GB DDR3, and no NIC. After this, you can continue to
a tutorial that shows you how to simulate a globally-cycle-accurate cluster-scale FireSim simulation. The final tutorial
will show you how to build your own FPGA images with customized hardware. After you complete these tutorials, you
can look at the Advanced documentation in the sidebar to the left.

Here’s a high-level outline of what we’ll be doing in our AWS EC2 tutorials:

1. Initial Setup/Installation
a. First-time AWS User Setup: You can skip this if you already have an AWS account/payment method set up.

b. Configuring required AWS resources in your account: This sets up the appropriate VPCs/subnets/security
groups required to run FireSim.

c. Setting up a “Manager Instance” from which you will coordinate building and deploying simulations.

2. Single-node simulation tutorial: This tutorial guides you through the process of running one simulation on a
Run Farm consisting of a single f1.2xlarge, using our pre-built public FireSim AGFIs.

3. Cluster simulation tutorial: This tutorial guides you through the process of running an 8-node cluster simulation
on a Run Farm consisting of one f1.16xlarge, using our pre-built public FireSim AGFIs and switch models.

4. Building your own hardware designs tutorial (Chisel to FPGA Image): This tutorial guides you through the
full process of taking Rocket Chip RTL and any custom RTL plugged into Rocket Chip and producing a FireSim
AGFI to plug into your simulations. This automatically runs Chisel elaboration, FAME-1 Transformation, and
the Vivado FPGA flow.

Generally speaking, you only need to follow step 4 if you’re modifying Chisel RTL or changing non-runtime config-
urable hardware parameters.

Now, hit Next to proceed with setup.

1.4. Using FireSim/The FireSim Workflow 5

FireSim Documentation, Release 1.15.0

6 Chapter 1. FireSim Basics

CHAPTER

TWO

INITIAL SETUP/INSTALLATION

This section will guide you through initial setup of your AWS account to support FireSim, as well as cloning/installing
FireSim on your manager instance.

2.1 First-time AWS User Setup

If you’ve never used AWS before and don’t have an account, follow the instructions below to get started.

2.1.1 Creating an AWS Account

First, you’ll need an AWS account. Create one by going to aws.amazon.com and clicking “Sign Up.” You’ll want to
create a personal account. You will have to give it a credit card number.

2.1.2 AWS Credit at Berkeley

If you’re an internal user at Berkeley and affiliated with UCB-BAR or the RISE Lab, see the RISE Lab Wiki for
instructions on getting access to the AWS credit pool. Otherwise, continue with the following section.

2.1.3 Requesting Limit Increases

In our experience, new AWS accounts do not have access to EC2 F1 instances by default. In order to get access, you
should file a limit increase request. You can learn more about EC2 instance limits here: https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/ec2-on-demand-instances.html#ec2-on-demand-instances-limits

To request a limit increase, follow these steps:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html

You’ll probably want to start out with the following request, depending on your existing limits:

Limit Type: EC2 Instances
Region: US East (Northern Virginia)
Primary Instance Type: All F instances
Limit: Instance Limit
New limit value: 64

This limit of 64 vCPUs for F instances allows you to run one node on the f1.2xlarge or eight nodes on the f1.
16xlarge.

7

https://aws.amazon.com
https://rise.cs.berkeley.edu/wiki/resources/aws
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html#ec2-on-demand-instances-limits
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html#ec2-on-demand-instances-limits
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html

FireSim Documentation, Release 1.15.0

For the “Use Case Description”, you should describe your project and write something about hardware simulation and
mention that information about the tool you’re using can be found at: https://fires.im

This process has a human in the loop, so you should submit it ASAP. At this point, you should wait for the response to
this request.

If you’re at Berkeley/UCB-BAR, you also need to wait until your account has been added to the RISE billing pool,
otherwise your personal CC will be charged for AWS usage.

Hit Next below to continue.

2.2 Configuring Required Infrastructure in Your AWS Account

Once we have an AWS Account setup, we need to perform some advance setup of resources on AWS. You will need to
follow these steps even if you already had an AWS account as these are FireSim-specific.

2.2.1 Select a region

Head to the EC2 Management Console. In the top right corner, ensure that the correct region is selected. You should
select one of: us-east-1 (N. Virginia), us-west-2 (Oregon), or eu-west-1 (Ireland), since F1 instances are only
available in those regions.

Once you select a region, it’s useful to bookmark the link to the EC2 console, so that you’re always sent to the console
for the correct region.

2.2.2 Key Setup

In order to enable automation, you will need to create a key named firesim, which we will use to launch all instances
(Manager Instance, Build Farm, Run Farm).

To do so, click “Key Pairs” under “Network & Security” in the left-sidebar. Follow the prompts, name the key firesim,
and save the private key locally as firesim.pem. You can use this key to access all instances from your local machine.
We will copy this file to our manager instance later, so that the manager can also use it.

2.2.3 Check your EC2 Instance Limits

AWS limits access to particular instance types for new/infrequently used accounts to protect their infrastructure. You
should make sure that your account has access to f1.2xlarge, f1.4xlarge, f1.16xlarge, m4.16xlarge, and c5.
4xlarge instances by looking at the “Limits” page in the EC2 panel, which you can access here. The values listed on
this page represent the maximum number of any of these instances that you can run at once, which will limit the size of
simulations (# of nodes) that you can run. If you need to increase your limits, follow the instructions on the Requesting
Limit Increases page. To follow this guide, you need to be able to run one f1.2xlarge instance and two c5.4xlarge
instances.

8 Chapter 2. Initial Setup/Installation

https://fires.im
https://console.aws.amazon.com/ec2/v2/home
https://console.aws.amazon.com/ec2/v2/home#Limits:

FireSim Documentation, Release 1.15.0

2.2.4 Start a t2.nano instance to run the remaining configuration commands

To avoid having to deal with the messy process of installing packages on your local machine, we will spin up a very
cheap t2.nano instance to run a series of one-time aws configuration commands to setup our AWS account for FireSim.
At the end of these instructions, we’ll terminate the t2.nano instance. If you happen to already have boto3 and the
AWS CLI installed on your local machine, you can do this locally.

Launch a t2.nano by following these instructions:

1. Go to the EC2 Management Console and click “Launch Instance”

2. On the AMI selection page, select “Amazon Linux AMI. . . ”, which should be the top option.

3. On the Choose an Instance Type page, select t2.nano.

4. Click “Review and Launch” (we don’t need to change any other settings)

5. On the review page, click “Launch”

6. Select the firesim key pair we created previously, then click Launch Instances.

7. Click on the instance name and note its public IP address.

2.2.5 Run scripts from the t2.nano

SSH into the t2.nano like so:

ssh -i firesim.pem ec2-user@INSTANCE_PUBLIC_IP

Which should present you with something like:

Last login: Mon Feb 12 21:11:27 2018 from 136.152.143.34

__| __|_)
_| (/ Amazon Linux AMI

___|___|___|

https://aws.amazon.com/amazon-linux-ami/2017.09-release-notes/
4 package(s) needed for security, out of 5 available
Run "sudo yum update" to apply all updates.
[ec2-user@ip-172-30-2-66 ~]$

On this machine, run the following:

aws configure
[follow prompts]

See https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#configure-cli-launch-ec2 for more
about aws configure. Within the prompt, you should specify the same region that you chose above (one of us-east-1,
us-west-2, eu-west-1) and set the default output format to json. You will need to generate an AWS access key in
the “Security Credentials” menu of your AWS settings (as instructed in https://docs.aws.amazon.com/general/latest/
gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys).

Again on the t2.nano instance, do the following:

sudo yum install -y python36-pip
sudo pip3 install --upgrade pip
sudo python3 -m pip install boto3
sudo python3 -m pip install --upgrade awscli

2.2. Configuring Required Infrastructure in Your AWS Account 9

https://console.aws.amazon.com/ec2/v2/home
https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#configure-cli-launch-ec2
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys

FireSim Documentation, Release 1.15.0

wget https://raw.githubusercontent.com/firesim/firesim/1.15.0/deploy/awstools/aws_setup.
→˓py
./aws_setup.py

This will create a VPC named firesim and a security group named firesim in your account.

2.2.6 Terminate the t2.nano

At this point, we are finished with the general account configuration. You should terminate the t2.nano instance you
created, since we do not need it anymore (and it shouldn’t contain any important data).

2.2.7 Subscribe to the AWS FPGA Developer AMI

Go to the AWS Marketplace page for the FPGA Developer AMI. Click the button to subscribe to the FPGA Dev AMI
(it should be free) and follow the prompts to accept the EULA (but do not launch any instances).

Now, hit next to continue on to setting up our Manager Instance.

2.3 Setting up your Manager Instance

2.3.1 Launching a “Manager Instance”

Warning: These instructions refer to fields in EC2’s new launch instance wizard. Refer to version 1.13.4 of the
documentation for references to the old wizard, being wary that specifics, such as the AMI ID selection, may be out
of date.

Now, we need to launch a “Manager Instance” that acts as a “head” node that we will ssh or mosh into to work from.
Since we will deploy the heavy lifting to separate c5.4xlarge and f1 instances later, the Manager Instance can be a
relatively cheap instance. In this guide, however, we will use a c5.4xlarge, running the AWS FPGA Developer AMI.
(Be sure to subscribe to the AMI if you have not done so. See Subscribe to the AWS FPGA Developer AMI . Note that
it might take a few minutes after subscribing to the AMI to be able to launch instances using it.)

Head to the EC2 Management Console. In the top right corner, ensure that the correct region is selected.

To launch a manager instance, follow these steps:

1. From the main page of the EC2 Management Console, click Launch Instance button and click Launch Instance
in the dropdown that appears. We use an on-demand instance here, so that your data is preserved when you
stop/start the instance, and your data is not lost when pricing spikes on the spot market.

2. In the Name field, give the instance a recognizable name, for example firesim-manager-1. This is purely for
your own convenience and can also be left blank.

3. In the Application and OS Images search box, search for FPGA Developer AMI - 1.12.
1-40257ab5-6688-4c95-97d1-e251a40fd1fc and select the AMI that appears under the *Community
AMIs* tab (there should be only one). DO NOT USE ANY OTHER VERSION. For example, do not use
FPGA Developer AMI from the AWS Marketplace AMIs tab, as you will likely get an incorrect version of the
AMI.

4. In the Instance Type drop-down, select the instance type of your choosing. A good choice is a c5.4xlarge (16
cores, 32 GiB) or a z1d.2xlarge (8 cores, 64 GiB).

5. In the Key pair (login) drop-down, select the firesim key pair we setup earlier.

10 Chapter 2. Initial Setup/Installation

https://raw.githubusercontent.com/firesim/firesim/
https://aws.amazon.com/marketplace/pp/B06VVYBLZZ
https://docs.fires.im/en/1.13.4/
https://console.aws.amazon.com/ec2/v2/home

FireSim Documentation, Release 1.15.0

6. In the Network settings drop-down click edit and modify the following settings:

1. Under VPC - required, select the firesim VPC. Any subnet within the firesim VPC is fine.

2. Under Firewall (security groups), click Select existing security group and in the Common security groups
dropdown that appears, select the firesim security group that was automatically created for you earlier.

7. In the Configure storage section, increase the size of the root volume to at least 300GB. The default of 85GB can
quickly become too small as you accumulate large Vivado reports/outputs, large waveforms, XSim outputs, and
large root filesystems for simulations. You should remove the small (5-8GB) secondary volume that is added by
default.

8. In the Advanced details drop-down, we’ll leave most settings unchanged. The exceptions being:

1. Under Termination protection, select Enable. This adds a layer of protection to prevent your manager
instance from being terminated by accident. You will need to disable this setting before being able to
terminate the instance using usual methods.

2. Under User data, paste the following into the provided textbox:

#!/bin/bash

CONDA_INSTALL_PREFIX=/opt/conda
CONDA_INSTALLER_VERSION=4.12.0-0
CONDA_INSTALLER="https://github.com/conda-forge/miniforge/releases/download/$
→˓{CONDA_INSTALLER_VERSION}/Miniforge3-${CONDA_INSTALLER_VERSION}-Linux-x86_64.
→˓sh"
CONDA_CMD="conda" # some installers install mamba or micromamba
CONDA_ENV_NAME="firesim"

DRY_RUN_OPTION=""
DRY_RUN_ECHO=()
REINSTALL_CONDA=0

usage()
{

echo "Usage: $0 [options]"
echo
echo "Options:"
echo "[--help] List this help"
echo "[--prefix <prefix>] Install prefix for conda. Defaults to /opt/

→˓conda."
echo " If <prefix>/bin/conda already exists, it␣

→˓will be used and install is skipped."
echo "[--env <name>] Name of environment to create for conda.␣

→˓Defaults to 'firesim'."
echo "[--dry-run] Pass-through to all conda commands and only␣

→˓print other commands."
echo " NOTE: --dry-run will still install conda to␣

→˓--prefix"
echo "[--reinstall-conda] Repairs a broken base environment by␣

→˓reinstalling."
echo " NOTE: will only reinstall conda and exit␣

→˓without modifying the --env"
echo
echo "Examples:"

(continues on next page)

2.3. Setting up your Manager Instance 11

FireSim Documentation, Release 1.15.0

(continued from previous page)

echo " % $0"
echo " Install into default system-wide prefix (using sudo if needed)␣

→˓and add install to system-wide /etc/profile.d"
echo " % $0 --prefix ~/conda --env my_custom_env"
echo " Install into $HOME/conda and add install to ~/.bashrc"
echo " % $0 --prefix \${CONDA_EXE%/bin/conda} --env my_custom_env"
echo " Create my_custom_env in existing conda install"
echo " NOTES:"
echo " * CONDA_EXE is set in your environment when you activate a␣

→˓conda env"
echo " * my_custom_env will not be activated by default at login see /

→˓etc/profile.d/conda.sh & ~/.bashrc"
}

while [$# -gt 0]; do
case "$1" in

--help)
usage
exit 1
;;

--prefix)
shift
CONDA_INSTALL_PREFIX="$1"
shift
;;

--env)
shift
CONDA_ENV_NAME="$1"
shift
if [["$CONDA_ENV_NAME" == "base"]]; then

echo "::ERROR:: best practice is to install into a named␣
→˓environment, not base. Aborting."

exit 1
fi
;;

--dry-run)
shift
DRY_RUN_OPTION="--dry-run"
DRY_RUN_ECHO=(echo "Would Run:")
;;

--reinstall-conda)
shift
REINSTALL_CONDA=1
;;

*)
echo "Invalid Argument: $1"
usage
exit 1
;;

esac
done

(continues on next page)

12 Chapter 2. Initial Setup/Installation

FireSim Documentation, Release 1.15.0

(continued from previous page)

if [[$REINSTALL_CONDA -eq 1 && -n "$DRY_RUN_OPTION"]]; then
echo "::ERROR:: --dry-run and --reinstall-conda are mutually exclusive. ␣

→˓Pick one or the other."
fi

set -ex
set -o pipefail

{

uname options are not portable so do what https://www.gnu.org/software/
→˓coreutils/faq/coreutils-faq.html#uname-is-system-specific

suggests and iteratively probe the system type
if ! type uname >&/dev/null; then

echo "::ERROR:: need 'uname' command available to determine if we␣
→˓support this sytem"

exit 1
fi

if [["$(uname)" != "Linux"]]; then
echo "::ERROR:: $0 only supports 'Linux' not '$(uname)'"
exit 1

fi

if [["$(uname -mo)" != "x86_64 GNU/Linux"]]; then
echo "::ERROR:: $0 only supports 'x86_64 GNU/Linux' not '$(uname -io)'"
exit 1

fi

if [[! -r /etc/os-release]]; then
echo "::ERROR:: $0 depends on /etc/os-release for distro-specific setup␣

→˓and it doesn't exist here"
exit 1

fi

OS_FLAVOR=$(grep '^ID=' /etc/os-release | awk -F= '{print $2}' | tr -d '"')
OS_VERSION=$(grep '^VERSION_ID=' /etc/os-release | awk -F= '{print $2}' |␣

→˓tr -d '"')

echo "machine launch script started" > machine-launchstatus
chmod ugo+r machine-launchstatus

platform-specific setup
case "$OS_FLAVOR" in

ubuntu)
;;

centos)
;;

*)
echo "::ERROR:: Unknown OS flavor '$OS_FLAVOR'. Unable to do␣

→˓platform-specific setup."

(continues on next page)

2.3. Setting up your Manager Instance 13

FireSim Documentation, Release 1.15.0

(continued from previous page)

exit 1
;;

esac

everything else is platform-agnostic and could easily be expanded to␣
→˓Windows and/or OSX

SUDO=""
prefix_parent=$(dirname "$CONDA_INSTALL_PREFIX")
if [[! -e "$prefix_parent"]]; then

mkdir -p "$prefix_parent" || SUDO=sudo
elif [[! -w "$prefix_parent"]]; then

SUDO=sudo
fi

if [[-n "$SUDO"]]; then
echo "::INFO:: using 'sudo' to install conda"
ensure files are read-execute for everyone
umask 022

fi

if [[-n "$SUDO" || "$(id -u)" == 0]]; then
INSTALL_TYPE=system

else
INSTALL_TYPE=user

fi

to enable use of sudo and avoid modifying 'secure_path' in /etc/sudoers,␣
→˓we specify the full path to conda

CONDA_EXE="${CONDA_INSTALL_PREFIX}/bin/$CONDA_CMD"

if [[-x "$CONDA_EXE" && $REINSTALL_CONDA -eq 0]]; then
echo "::INFO:: '$CONDA_EXE' already exists, skipping conda install"

else
wget -O install_conda.sh "$CONDA_INSTALLER" || curl -fsSLo install_

→˓conda.sh "$CONDA_INSTALLER"
if [[$REINSTALL_CONDA -eq 1]]; then

conda_install_extra="-u"
echo "::INFO:: RE-installing conda to '$CONDA_INSTALL_PREFIX'"

else
conda_install_extra=""
echo "::INFO:: installing conda to '$CONDA_INSTALL_PREFIX'"

fi
-b for non-interactive install
$SUDO bash ./install_conda.sh -b -p "$CONDA_INSTALL_PREFIX" $conda_

→˓install_extra
rm ./install_conda.sh

see https://conda-forge.org/docs/user/tipsandtricks.html#multiple-
→˓channels

for more information on strict channel_priority

(continues on next page)

14 Chapter 2. Initial Setup/Installation

FireSim Documentation, Release 1.15.0

(continued from previous page)

"${DRY_RUN_ECHO[@]}" $SUDO "$CONDA_EXE" config --system --set channel_
→˓priority flexible

By default, don't mess with people's PS1, I personally find it␣
→˓annoying

"${DRY_RUN_ECHO[@]}" $SUDO "$CONDA_EXE" config --system --set changeps1␣
→˓false

don't automatically activate the 'base' environment when intializing␣
→˓shells

"${DRY_RUN_ECHO[@]}" $SUDO "$CONDA_EXE" config --system --set auto_
→˓activate_base false

don't automatically update conda to avoid https://github.com/conda-
→˓forge/conda-libmamba-solver-feedstock/issues/2

"${DRY_RUN_ECHO[@]}" $SUDO "$CONDA_EXE" config --system --set auto_
→˓update_conda false

automatically use the ucb-bar channel for specific packages https://
→˓anaconda.org/ucb-bar/repo

"${DRY_RUN_ECHO[@]}" $SUDO "$CONDA_EXE" config --system --add channels␣
→˓ucb-bar

conda-build is a special case and must always be installed into the␣
→˓base environment

$SUDO "$CONDA_EXE" install $DRY_RUN_OPTION -y -n base conda-build

conda-libmamba-solver is a special case and must always be installed␣
→˓into the base environment

see https://www.anaconda.com/blog/a-faster-conda-for-a-growing-
→˓community

$SUDO "$CONDA_EXE" install $DRY_RUN_OPTION -y -n base conda-libmamba-
→˓solver

Use the fast solver by default
"${DRY_RUN_ECHO[@]}" $SUDO "$CONDA_EXE" config --system --set␣

→˓experimental_solver libmamba

conda_init_extra_args=()
if [["$INSTALL_TYPE" == system]]; then

if we're installing into a root-owned directory using sudo, or we
→˓'re already root

initialize conda in the system-wide rcfiles
conda_init_extra_args=(--no-user --system)

fi
run conda-init and look at it's output to insert 'conda activate

→˓$CONDA_ENV_NAME' into the
block that conda-init will update if ever conda is installed to a␣

→˓different prefix and
this is rerun.
$SUDO "${CONDA_EXE}" init $DRY_RUN_OPTION "${conda_init_extra_args[@]}"␣

→˓bash 2>&1 | \
tee >(grep '^modified' | grep -v "$CONDA_INSTALL_PREFIX" | awk '

→˓{print $NF}' | \
"${DRY_RUN_ECHO[@]}" $SUDO xargs -r sed -i -e "/<<< conda␣

→˓initialize <<</iconda activate $CONDA_ENV_NAME")

(continues on next page)

2.3. Setting up your Manager Instance 15

FireSim Documentation, Release 1.15.0

(continued from previous page)

if [[$REINSTALL_CONDA -eq 1]]; then
echo "::INFO:: Done reinstalling conda. Exiting"
exit 0

fi
fi

https://conda-forge.org/feedstock-outputs/
filterable list of all conda-forge packages
https://conda-forge.org/#contribute
instructions on adding a recipe
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/pkg-

→˓specs.html#package-match-specifications
documentation on package_spec syntax for constraining versions
CONDA_PACKAGE_SPECS=()

minimal specs to allow cloning of firesim repo and access to the manager
CONDA_PACKAGE_SPECS+=(

bash-completion \
ca-certificates \
mosh \
vim \
git \
screen \
argcomplete==1.12.3 \
"conda-lock>=1" \
expect \
python \
boto3==1.20.21 \
pytz \
mypy-boto3-s3==1.21.0 \

)

if [["$CONDA_ENV_NAME" == "base"]]; then
NOTE: arg parsing disallows installing to base but this logic is␣

→˓correct if we ever change
CONDA_SUBCOMMAND=install
CONDA_ENV_BIN="${CONDA_INSTALL_PREFIX}/bin"

else
CONDA_ENV_BIN="${CONDA_INSTALL_PREFIX}/envs/${CONDA_ENV_NAME}/bin"
if [[-d "${CONDA_INSTALL_PREFIX}/envs/${CONDA_ENV_NAME}"]]; then

'create' clobbers the existing environment and doesn't leave a␣
→˓revision entry in

`conda list --revisions`, so use install instead
CONDA_SUBCOMMAND=install

else
CONDA_SUBCOMMAND=create

fi
fi

to enable use of sudo and avoid modifying 'secure_path' in /etc/sudoers,␣
→˓we specify the full path to conda

$SUDO "${CONDA_EXE}" "$CONDA_SUBCOMMAND" $DRY_RUN_OPTION -n "$CONDA_ENV_NAME
→˓" -c conda-forge -y "${CONDA_PACKAGE_SPECS[@]}" (continues on next page)

16 Chapter 2. Initial Setup/Installation

FireSim Documentation, Release 1.15.0

(continued from previous page)

to enable use of sudo and avoid modifying 'secure_path' in /etc/sudoers,␣
→˓we specify the full path to pip

CONDA_PIP_EXE="${CONDA_ENV_BIN}/pip"

Install python packages using pip that are not available from conda
#
Installing things with pip is possible. However, to get
the most complete solution to all dependencies, you should
prefer creating the environment with a single invocation of
conda
PIP_PKGS=(\

fab-classic \
mypy-boto3-ec2==1.12.9 \

)
if [[-n "$PIP_PKGS[*]"]]; then

"${DRY_RUN_ECHO[@]}" $SUDO "${CONDA_PIP_EXE}" install "${PIP_PKGS[@]}"
fi

argcomplete_extra_args=()
if [["$INSTALL_TYPE" == system]]; then

BASH_COMPLETION_COMPAT_DIR="${CONDA_ENV_BIN}/../etc/bash_completion.d"
"${DRY_RUN_ECHO[@]}" $SUDO mkdir -p "${BASH_COMPLETION_COMPAT_DIR}"
argcomplete_extra_args=(--dest "${BASH_COMPLETION_COMPAT_DIR}")

else
if we're aren't installing into a system directory, then initialize␣

→˓argcomplete
with --user so that it goes into the home directory
argcomplete_extra_args=(--user)

fi
"${DRY_RUN_ECHO[@]}" $SUDO "${CONDA_ENV_BIN}/activate-global-python-

→˓argcomplete" "${argcomplete_extra_args[@]}"

} 2>&1 | tee machine-launchstatus.log
chmod ugo+r machine-launchstatus.log

echo "machine launch script completed" >>machine-launchstatus

When your instance boots, this will install a compatible set of all the dependencies needed to run FireSim on
your instance using conda.

9. Double check your configuration. The most common misconfigurations that may require repeating this process
include:

1. Not selecting the firesim vpc.

2. Not selecting the firesim security group.

3. Not selecting the firesim key pair.

4. Selecting the wrong AMI.

10. Click the orange Launch Instance button.

2.3. Setting up your Manager Instance 17

FireSim Documentation, Release 1.15.0

Access your instance

We HIGHLY recommend using mosh instead of ssh or using sshwith a screen/tmux session running on your manager
instance to ensure that long-running jobs are not killed by a bad network connection to your manager instance. On this
instance, the mosh server is installed as part of the setup script we pasted before, so we need to first ssh into the instance
and make sure the setup is complete.

In either case, ssh into your instance (e.g. ssh -i firesim.pem centos@YOUR_INSTANCE_IP) and wait until the
/machine-launchstatus file contains all the following text:

$ cat /machine-launchstatus
machine launch script started
machine launch script completed

Once this line appears, exit and re-ssh into the system. If you want to use mosh, mosh back into the system.

Key Setup, Part 2

Now that our manager instance is started, copy the private key that you downloaded from AWS earlier (firesim.pem)
to ~/firesim.pem on your manager instance. This step is required to give the manager access to the instances it
launches for you.

2.3.2 Setting up the FireSim Repo

We’re finally ready to fetch FireSim’s sources. Run:

git clone https://github.com/firesim/firesim
cd firesim
checkout latest official firesim release
note: this may not be the latest release if the documentation version != "stable"
git checkout 1.15.0
./build-setup.sh

The build-setup.sh script will validate that you are on a tagged branch, otherwise it will prompt for confirmation.
This will have initialized submodules and installed the RISC-V tools and other dependencies.

Next, run:

source sourceme-f1-manager.sh

This will have initialized the AWS shell, added the RISC-V tools to your path, and started an ssh-agent that supplies
~/firesim.pem automatically when you use ssh to access other nodes. Sourcing this the first time will take some
time – however each time after that should be instantaneous. Also, if your firesim.pem key requires a passphrase,
you will be asked for it here and ssh-agent should cache it.

Every time you login to your manager instance to use FireSim, you should ``cd`` into your firesim directory and
source this file again.

18 Chapter 2. Initial Setup/Installation

https://mosh.org/
https://github.com/firesim/firesim

FireSim Documentation, Release 1.15.0

2.3.3 Completing Setup Using the Manager

The FireSim manager contains a command that will interactively guide you through the rest of the FireSim setup
process. To run it, do the following:

firesim managerinit --platform f1

This will first prompt you to setup AWS credentials on the instance, which allows the manager to automati-
cally manage build/simulation nodes. See https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#
configure-cli-launch-ec2 for more about these credentials. When prompted, you should specify the same region that
you chose above and set the default output format to json.

Next, it will prompt you for an email address, which is used to send email notifications upon FPGA build completion
and optionally for workload completion. You can leave this blank if you do not wish to receive any notifications, but
this is not recommended. Next, it will create initial configuration files, which we will edit in later sections.

Now you’re ready to launch FireSim simulations! Hit Next to learn how to run single-node simulations.

2.3. Setting up your Manager Instance 19

https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#configure-cli-launch-ec2
https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#configure-cli-launch-ec2

FireSim Documentation, Release 1.15.0

20 Chapter 2. Initial Setup/Installation

CHAPTER

THREE

RUNNING FIRESIM SIMULATIONS

These guides will walk you through running two kinds of simulations:

• First, we will simulate a single-node, non-networked target, using a pre-generated hardware image.

• Then, we will simulate an eight-node, networked cluster target, also using a pre-generated hardware image.

Hit next to get started!

3.1 Running a Single Node Simulation

Now that we’ve completed the setup of our manager instance, it’s time to run a simulation! In this section, we will
simulate 1 target node, for which we will need a single f1.2xlarge (1 FPGA) instance.

Make sure you are ssh or mosh’d into your manager instance and have sourced sourceme-f1-manager.sh before
running any of these commands.

3.1.1 Building target software

In these instructions, we’ll assume that you want to boot Linux on your simulated node. To do so, we’ll need to build
our FireSim-compatible RISC-V Linux distro. For this tutorial, we will use a simple buildroot-based distribution. You
can do this like so:

cd firesim/sw/firesim-software
./init-submodules.sh
./marshal -v build br-base.json

This process will take about 10 to 15 minutes on a c5.4xlarge instance. Once this is completed, you’ll have the
following files:

• firesim/sw/firesim-software/images/br-base-bin - a bootloader + Linux kernel image for the nodes
we will simulate.

• firesim/sw/firesim-software/images/br-base.img - a disk image for each the nodes we will simulate

These files will be used to form base images to either build more complicated workloads (see the Defining Custom
Workloads section) or to copy around for deploying.

21

FireSim Documentation, Release 1.15.0

3.1.2 Setting up the manager configuration

All runtime configuration options for the manager are set in a file called firesim/deploy/config_runtime.yaml.
In this guide, we will explain only the parts of this file necessary for our purposes. You can find full descriptions of all
of the parameters in the Manager Configuration Files section.

If you open up this file, you will see the following default config (assuming you have not modified it):

RUNTIME configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
→˓html for documentation of all of these params.

run_farm:
base_recipe: run-farm-recipes/aws_ec2.yaml
recipe_arg_overrides:
tag to apply to run farm hosts
run_farm_tag: mainrunfarm
enable expanding run farm by run_farm_hosts given
always_expand_run_farm: true
minutes to retry attempting to request instances
launch_instances_timeout_minutes: 60
run farm host market to use (ondemand, spot)
run_instance_market: ondemand
if using spot instances, determine the interrupt behavior (terminate, stop,␣

→˓hibernate)
spot_interruption_behavior: terminate
if using spot instances, determine the max price
spot_max_price: ondemand
default location of the simulation directory on the run farm host
default_simulation_dir: /home/centos

run farm hosts to spawn: a mapping from a spec below (which is an EC2
instance type) to the number of instances of the given type that you
want in your runfarm.
run_farm_hosts_to_use:
- f1.16xlarge: 0
- f1.4xlarge: 0
- f1.2xlarge: 0
- m4.16xlarge: 0
- z1d.3xlarge: 0
- z1d.6xlarge: 0
- z1d.12xlarge: 0

metasimulation:
metasimulation_enabled: false
vcs or verilator. use vcs-debug or verilator-debug for waveform generation
metasimulation_host_simulator: verilator
plusargs passed to the simulator for all metasimulations
metasimulation_only_plusargs: "+fesvr-step-size=128 +max-cycles=100000000"
plusargs passed to the simulator ONLY FOR vcs metasimulations
metasimulation_only_vcs_plusargs: "+vcs+initreg+0 +vcs+initmem+0"

target_config:
Set topology: no_net_config to run without a network simulation

(continues on next page)

22 Chapter 3. Running FireSim Simulations

FireSim Documentation, Release 1.15.0

(continued from previous page)

topology: example_8config
no_net_num_nodes: 2
link_latency: 6405
switching_latency: 10
net_bandwidth: 200
profile_interval: -1

This references a section from config_hwdb.yaml for fpga-accelerated simulation
or from config_build_recipes.yaml for metasimulation
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
default_hw_config: firesim_rocket_quadcore_nic_l2_llc4mb_ddr3

Advanced: Specify any extra plusargs you would like to provide when
booting the simulator (in both FPGA-sim and metasim modes). This is
a string, with the contents formatted as if you were passing the plusargs
at command line, e.g. "+a=1 +b=2"
plusarg_passthrough: ""

tracing:
enable: no

Trace output formats. Only enabled if "enable" is set to "yes" above
0 = human readable; 1 = binary (compressed raw data); 2 = flamegraph (stack
unwinding -> Flame Graph)
output_format: 0

Trigger selector.
0 = no trigger; 1 = cycle count trigger; 2 = program counter trigger; 3 =
instruction trigger
selector: 1
start: 0
end: -1

autocounter:
read_rate: 0

workload:
workload_name: linux-uniform.json
terminate_on_completion: no
suffix_tag: null

host_debug:
When enabled (=yes), Zeros-out FPGA-attached DRAM before simulations
begin (takes 2-5 minutes).
In general, this is not required to produce deterministic simulations on
target machines running linux. Enable if you observe simulation non-determinism.
zero_out_dram: no
If disable_synth_asserts: no, simulation will print assertion message and
terminate simulation if synthesized assertion fires.
If disable_synth_asserts: yes, simulation ignores assertion firing and
continues simulation.

(continues on next page)

3.1. Running a Single Node Simulation 23

FireSim Documentation, Release 1.15.0

(continued from previous page)

disable_synth_asserts: no

DOCREF START: Synthesized Prints
synth_print:

Start and end cycles for outputting synthesized prints.
They are given in terms of the base clock and will be converted
for each clock domain.
start: 0
end: -1
When enabled (=yes), prefix print output with the target cycle at which the print␣

→˓was triggered
cycle_prefix: yes

DOCREF END: Synthesized Prints

We’ll need to modify a couple of these lines.

First, let’s tell the manager to use the correct numbers and types of instances. You’ll notice that in the run_farm
mapping, the manager is configured to launch a Run Farm named mainrunfarm (given by the run_farm_tag. Notice
that under run_farm_hosts_to_use no f1.16xlarges, m4.16xlarges, f1.4xlarges, or f1.2xlarges are used.
The tag specified here allows the manager to differentiate amongst many parallel run farms (each running a workload)
that you may be operating – but more on that later.

Since we only want to simulate a single node, let’s switch to using one f1.2xlarge. To do so, change the
run_farm_hosts_to_use sequence to the following:

run_farm_hosts_to_use:
- f1.16xlarge: 0
- f1.4xlarge: 0
- f1.2xlarge: 1
- m4.16xlarge: 0
- z1d.3xlarge: 0
- z1d.6xlarge: 0
- z1d.12xlarge: 0

You’ll see other parameters in the run_farm mapping, like run_instance_market,
spot_interruption_behavior, and spot_max_price. If you’re an experienced AWS user, you can see
what these do by looking at the Manager Configuration Files section. Otherwise, don’t change them.

Now, let’s change the target_config mapping to model the correct target design. By default, it is set to model an
8-node cluster with a cycle-accurate network. Instead, we want to model a single-node with no network. To do so, we
will need to change a few items in this section:

target_config:
topology: no_net_config
no_net_num_nodes: 1
link_latency: 6405
switching_latency: 10
net_bandwidth: 200
profile_interval: -1

This references a section from config_hwdb.yaml
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
default_hw_config: firesim_rocket_quadcore_no_nic_l2_llc4mb_ddr3

24 Chapter 3. Running FireSim Simulations

FireSim Documentation, Release 1.15.0

Note that we changed three of the parameters here: topology is now set to no_net_config, indicating that
we do not want a network. Then, no_net_num_nodes is set to 1, indicating that we only want to simulate
one node. Lastly, we changed default_hw_config from firesim_rocket_quadcore_nic_l2_llc4mb_ddr3 to
firesim_rocket_quadcore_no_nic_l2_llc4mb_ddr3. Notice the subtle difference in this last option? All we
did is switch to a hardware configuration that does not have a NIC. This hardware configuration models a Quad-core
Rocket Chip with 4 MB of L2 cache and 16 GB of DDR3, and no network interface card.

We will leave the workload mapping unchanged here, since we do want to run the buildroot-based Linux on our
simulated system. The terminate_on_completion feature is an advanced feature that you can learn more about in
the Manager Configuration Files section.

As a final sanity check, in the mappings we changed, the config_runtime.yaml file should now look like this:

run_farm:
base_recipe: run-farm-recipes/aws_ec2.yaml
recipe_arg_overrides:

run_farm_tag: mainrunfarm
always_expand_run_farm: true
launch_instances_timeout_minutes: 60
run_instance_market: ondemand
spot_interruption_behavior: terminate
spot_max_price: ondemand
default_simulation_dir: /home/centos
run_farm_hosts_to_use:

- f1.16xlarge: 0
- f1.4xlarge: 0
- f1.2xlarge: 1
- m4.16xlarge: 0
- z1d.3xlarge: 0
- z1d.6xlarge: 0

target_config:
topology: no_net_config
no_net_num_nodes: 1
link_latency: 6405
switching_latency: 10
net_bandwidth: 200
profile_interval: -1
default_hw_config: firesim_rocket_quadcore_no_nic_l2_llc4mb_ddr3
plusarg_passthrough: ""

workload:
workload_name: linux-uniform.json
terminate_on_completion: no
suffix_tag: null

Attention: [Advanced users] Simulating BOOM instead of Rocket Chip: If you would like to simulate a single-
core BOOM as a target, set default_hw_config to firesim_boom_singlecore_no_nic_l2_llc4mb_ddr3.

3.1. Running a Single Node Simulation 25

https://github.com/ucb-bar/riscv-boom

FireSim Documentation, Release 1.15.0

3.1.3 Launching a Simulation!

Now that we’ve told the manager everything it needs to know in order to run our single-node simulation, let’s actually
launch an instance and run it!

Starting the Run Farm

First, we will tell the manager to launch our Run Farm, as we specified above. When you do this, you will start getting
charged for the running EC2 instances (in addition to your manager).

To do launch your run farm, run:

firesim launchrunfarm

You should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim␣
→˓launchrunfarm
FireSim Manager. Docs: http://docs.fires.im
Running: launchrunfarm

Waiting for instance boots: f1.16xlarges
Waiting for instance boots: f1.4xlarges
Waiting for instance boots: m4.16xlarges
Waiting for instance boots: f1.2xlarges
i-0d6c29ac507139163 booted!
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-19-43-launchrunfarm-B4Q2ROAK0JN9EDE4.
→˓log

The output will rapidly progress to Waiting for instance boots: f1.2xlarges and then take a minute or two
while your f1.2xlarge instance launches. Once the launches complete, you should see the instance id printed and the
instance will also be visible in your AWS EC2 Management console. The manager will tag the instances launched with
this operation with the value you specified above as the run_farm_tag parameter from the config_runtime.yaml
file, which we left set as mainrunfarm. This value allows the manager to tell multiple Run Farms apart – i.e., you can
have multiple independent Run Farms running different workloads/hardware configurations in parallel. This is detailed
in the Manager Configuration Files and the firesim launchrunfarm sections – you do not need to be familiar with it
here.

Setting up the simulation infrastructure

The manager will also take care of building and deploying all software components necessary to run your simulation.
The manager will also handle flashing FPGAs. To tell the manager to setup our simulation infrastructure, let’s run:

firesim infrasetup

For a complete run, you should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim␣
→˓infrasetup
FireSim Manager. Docs: http://docs.fires.im
Running: infrasetup

(continues on next page)

26 Chapter 3. Running FireSim Simulations

FireSim Documentation, Release 1.15.0

(continued from previous page)

Building FPGA software driver for FireSim-FireSimQuadRocketConfig-F90MHz_BaseF1Config
[172.30.2.174] Executing task 'instance_liveness'
[172.30.2.174] Checking if host instance is up...
[172.30.2.174] Executing task 'infrasetup_node_wrapper'
[172.30.2.174] Copying FPGA simulation infrastructure for slot: 0.
[172.30.2.174] Installing AWS FPGA SDK on remote nodes.
[172.30.2.174] Unloading XDMA/EDMA/XOCL Driver Kernel Module.
[172.30.2.174] Copying AWS FPGA XDMA driver to remote node.
[172.30.2.174] Loading XDMA Driver Kernel Module.
[172.30.2.174] Clearing FPGA Slot 0.
[172.30.2.174] Flashing FPGA Slot: 0 with agfi: agfi-0eaa90f6bb893c0f7.
[172.30.2.174] Unloading XDMA/EDMA/XOCL Driver Kernel Module.
[172.30.2.174] Loading XDMA Driver Kernel Module.
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-32-02-infrasetup-9DJJCX29PF4GAIVL.log

Many of these tasks will take several minutes, especially on a clean copy of the repo. The console output here contains
the “user-friendly” version of the output. If you want to see detailed progress as it happens, tail -f the latest logfile
in firesim/deploy/logs/.

At this point, the f1.2xlarge instance in our Run Farm has all the infrastructure necessary to run a simulation.

So, let’s launch our simulation!

Running a simulation!

Finally, let’s run our simulation! To do so, run:

firesim runworkload

This command boots up a simulation and prints out the live status of the simulated nodes every 10s. When you do this,
you will initially see output like:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim␣
→˓runworkload
FireSim Manager. Docs: http://docs.fires.im
Running: runworkload

Creating the directory: /home/centos/firesim-new/deploy/results-workload/2018-05-19--00-
→˓38-52-linux-uniform/
[172.30.2.174] Executing task 'instance_liveness'
[172.30.2.174] Checking if host instance is up...
[172.30.2.174] Executing task 'boot_simulation_wrapper'
[172.30.2.174] Starting FPGA simulation for slot: 0.
[172.30.2.174] Executing task 'monitor_jobs_wrapper'

If you don’t look quickly, you might miss it, since it will get replaced with a live status page:

FireSim Simulation Status @ 2018-05-19 00:38:56.062737
--
This workload's output is located in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/
This run's log is located in:

(continues on next page)

3.1. Running a Single Node Simulation 27

FireSim Documentation, Release 1.15.0

(continued from previous page)

/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.
→˓log
This status will update every 10s.
--
Instances
--
Hostname/IP: 172.30.2.174 | Terminated: False
--
Simulated Switches
--
--
Simulated Nodes/Jobs
--
Hostname/IP: 172.30.2.174 | Job: linux-uniform0 | Sim running: True
--
Summary
--
1/1 instances are still running.
1/1 simulations are still running.
--

This will only exit once all of the simulated nodes have shut down. So, let’s let it run and open another ssh connection
to the manager instance. From there, cd into your firesim directory again and source sourceme-f1-manager.sh
again to get our ssh key setup. To access our simulated system, ssh into the IP address being printed by the status page,
from your manager instance. In our case, from the above output, we see that our simulated system is running on the
instance with IP 172.30.2.174. So, run:

[RUN THIS ON YOUR MANAGER INSTANCE!]
ssh 172.30.2.174

This will log you into the instance running the simulation. Then, to attach to the console of the simulated system, run:

screen -r fsim0

Voila! You should now see Linux booting on the simulated system and then be prompted with a Linux login prompt,
like so:

[truncated Linux boot output]
[0.020000] VFS: Mounted root (ext2 filesystem) on device 254:0.
[0.020000] devtmpfs: mounted
[0.020000] Freeing unused kernel memory: 140K
[0.020000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device
Starting logging: OK
Starting mdev...
mdev: /sys/dev: No such file or directory
modprobe: can't change directory to '/lib/modules': No such file or directory
Initializing random number generator... done.
Starting network: ip: SIOCGIFFLAGS: No such device
ip: can't find device 'eth0'
FAIL
Starting dropbear sshd: OK

(continues on next page)

28 Chapter 3. Running FireSim Simulations

FireSim Documentation, Release 1.15.0

(continued from previous page)

Welcome to Buildroot
buildroot login:

You can ignore the messages about the network – that is expected because we are simulating a design without a NIC.

Now, you can login to the system! The username is root and the password is firesim. At this point, you should be
presented with a regular console, where you can type commands into the simulation and run programs. For example:

Welcome to Buildroot
buildroot login: root
Password:
uname -a
Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018␣
→˓riscv64 GNU/Linux
#

At this point, you can run workloads as you’d like. To finish off this tutorial, let’s poweroff the simulated system and
see what the manager does. To do so, in the console of the simulated system, run poweroff -f:

Welcome to Buildroot
buildroot login: root
Password:
uname -a
Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018␣
→˓riscv64 GNU/Linux
poweroff -f

You should see output like the following from the simulation console:

poweroff -f
[12.456000] reboot: Power down
Power off
time elapsed: 468.8 s, simulation speed = 88.50 MHz
*** PASSED *** after 41492621244 cycles
Runs 41492621244 cycles
[PASS] FireSim Test
SEED: 1526690334
Script done, file is uartlog

[screen is terminating]

You’ll also notice that the manager polling loop exited! You’ll see output like this from the manager:

FireSim Simulation Status @ 2018-05-19 00:46:50.075885
--
This workload's output is located in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/
This run's log is located in:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.
→˓log
This status will update every 10s.
--
Instances

(continues on next page)

3.1. Running a Single Node Simulation 29

FireSim Documentation, Release 1.15.0

(continued from previous page)

--
Hostname/IP: 172.30.2.174 | Terminated: False
--
Simulated Switches
--
--
Simulated Nodes/Jobs
--
Hostname/IP: 172.30.2.174 | Job: linux-uniform0 | Sim running: False
--
Summary
--
1/1 instances are still running.
0/1 simulations are still running.
--
FireSim Simulation Exited Successfully. See results in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.
→˓log

If you take a look at the workload output directory given in the manager output (in this case, /home/centos/
firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/), you’ll see the follow-
ing:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/results-workload/
→˓2018-05-19--00-38-52-linux-uniform$ ls -la */*
-rw-rw-r-- 1 centos centos 797 May 19 00:46 linux-uniform0/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 00:46 linux-uniform0/os-release
-rw-rw-r-- 1 centos centos 7316 May 19 00:46 linux-uniform0/uartlog

What are these files? They are specified to the manager in a configuration file (deploy/workloads/linux-uniform.json)
as files that we want automatically copied back to our manager after we run a simulation, which is useful for running
benchmarks automatically. The Defining Custom Workloads section describes this process in detail.

For now, let’s wrap-up our tutorial by terminating the f1.2xlarge instance that we launched. To do so, run:

firesim terminaterunfarm

Which should present you with the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim␣
→˓terminaterunfarm
FireSim Manager. Docs: http://docs.fires.im
Running: terminaterunfarm

IMPORTANT!: This will terminate the following instances:
f1.16xlarges
[]
f1.4xlarges
[]
m4.16xlarges
[]

(continues on next page)

30 Chapter 3. Running FireSim Simulations

https://www.github.com/firesim/firesim/blob/1.15.0/deploy/workloads/linux-uniform.json

FireSim Documentation, Release 1.15.0

(continued from previous page)

f1.2xlarges
['i-0d6c29ac507139163']
Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.

You must type yes then hit enter here to have your instances terminated. Once you do so, you will see:

[truncated output from above]
Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.
yes
Instances terminated. Please confirm in your AWS Management Console.
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-51-54-terminaterunfarm-
→˓T9ZAED3LJUQQ3K0N.log

At this point, you should always confirm in your AWS management console that the instance is in the shutting-
down or terminated states. You are ultimately responsible for ensuring that your instances are terminated
appropriately.
Congratulations on running your first FireSim simulation! At this point, you can check-out some of the advanced
features of FireSim in the sidebar to the left (for example, we expect that many people will be interested in the ability to
automatically run the SPEC17 benchmarks: SPEC 2017), or you can continue on with the cluster simulation tutorial.

3.2 Running a Cluster Simulation

Now, let’s move on to simulating a cluster of eight nodes, interconnected by a network with one 8-port Top-of-Rack
(ToR) switch and 200 Gbps, 2s links. This will require one f1.16xlarge (8 FPGA) instance.

Make sure you are ssh or mosh’d into your manager instance and have sourced sourceme-f1-manager.sh before
running any of these commands.

3.2.1 Returning to a clean configuration

If you already ran the single-node tutorial, let’s return to a clean FireSim manager configuration by doing the following:

cd firesim/deploy
cp sample-backup-configs/sample_config_runtime.yaml config_runtime.yaml

3.2.2 Building target software

If you already built target software during the single-node tutorial, you can skip to the next part (Setting up the manager
configuration). If you haven’t followed the single-node tutorial, continue with this section.

In these instructions, we’ll assume that you want to boot the buildroot-based Linux distribution on each of the nodes
in your simulated cluster. To do so, we’ll need to build our FireSim-compatible RISC-V Linux distro. You can do this
like so:

cd firesim/sw/firesim-software
./marshal -v build br-base.json

This process will take about 10 to 15 minutes on a c5.4xlarge instance. Once this is completed, you’ll have the
following files:

3.2. Running a Cluster Simulation 31

FireSim Documentation, Release 1.15.0

• firesim/sw/firesim-software/images/br-disk-bin - a bootloader + Linux kernel image for the nodes
we will simulate.

• firesim/sw/firesim-software/images/br-disk.img - a disk image for each the nodes we will simulate

These files will be used to form base images to either build more complicated workloads (see the Defining Custom
Workloads section) or to copy around for deploying.

3.2.3 Setting up the manager configuration

All runtime configuration options for the manager are set in a file called firesim/deploy/config_runtime.yaml.
In this guide, we will explain only the parts of this file necessary for our purposes. You can find full descriptions of all
of the parameters in the Manager Configuration Files section.

If you open up this file, you will see the following default config (assuming you have not modified it):

RUNTIME configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
→˓html for documentation of all of these params.

run_farm:
base_recipe: run-farm-recipes/aws_ec2.yaml
recipe_arg_overrides:
tag to apply to run farm hosts
run_farm_tag: mainrunfarm
enable expanding run farm by run_farm_hosts given
always_expand_run_farm: true
minutes to retry attempting to request instances
launch_instances_timeout_minutes: 60
run farm host market to use (ondemand, spot)
run_instance_market: ondemand
if using spot instances, determine the interrupt behavior (terminate, stop,␣

→˓hibernate)
spot_interruption_behavior: terminate
if using spot instances, determine the max price
spot_max_price: ondemand
default location of the simulation directory on the run farm host
default_simulation_dir: /home/centos

run farm hosts to spawn: a mapping from a spec below (which is an EC2
instance type) to the number of instances of the given type that you
want in your runfarm.
run_farm_hosts_to_use:
- f1.16xlarge: 0
- f1.4xlarge: 0
- f1.2xlarge: 0
- m4.16xlarge: 0
- z1d.3xlarge: 0
- z1d.6xlarge: 0
- z1d.12xlarge: 0

metasimulation:
metasimulation_enabled: false
vcs or verilator. use vcs-debug or verilator-debug for waveform generation

(continues on next page)

32 Chapter 3. Running FireSim Simulations

FireSim Documentation, Release 1.15.0

(continued from previous page)

metasimulation_host_simulator: verilator
plusargs passed to the simulator for all metasimulations
metasimulation_only_plusargs: "+fesvr-step-size=128 +max-cycles=100000000"
plusargs passed to the simulator ONLY FOR vcs metasimulations
metasimulation_only_vcs_plusargs: "+vcs+initreg+0 +vcs+initmem+0"

target_config:
Set topology: no_net_config to run without a network simulation
topology: example_8config
no_net_num_nodes: 2
link_latency: 6405
switching_latency: 10
net_bandwidth: 200
profile_interval: -1

This references a section from config_hwdb.yaml for fpga-accelerated simulation
or from config_build_recipes.yaml for metasimulation
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
default_hw_config: firesim_rocket_quadcore_nic_l2_llc4mb_ddr3

Advanced: Specify any extra plusargs you would like to provide when
booting the simulator (in both FPGA-sim and metasim modes). This is
a string, with the contents formatted as if you were passing the plusargs
at command line, e.g. "+a=1 +b=2"
plusarg_passthrough: ""

tracing:
enable: no

Trace output formats. Only enabled if "enable" is set to "yes" above
0 = human readable; 1 = binary (compressed raw data); 2 = flamegraph (stack
unwinding -> Flame Graph)
output_format: 0

Trigger selector.
0 = no trigger; 1 = cycle count trigger; 2 = program counter trigger; 3 =
instruction trigger
selector: 1
start: 0
end: -1

autocounter:
read_rate: 0

workload:
workload_name: linux-uniform.json
terminate_on_completion: no
suffix_tag: null

host_debug:
When enabled (=yes), Zeros-out FPGA-attached DRAM before simulations

(continues on next page)

3.2. Running a Cluster Simulation 33

FireSim Documentation, Release 1.15.0

(continued from previous page)

begin (takes 2-5 minutes).
In general, this is not required to produce deterministic simulations on
target machines running linux. Enable if you observe simulation non-determinism.
zero_out_dram: no
If disable_synth_asserts: no, simulation will print assertion message and
terminate simulation if synthesized assertion fires.
If disable_synth_asserts: yes, simulation ignores assertion firing and
continues simulation.
disable_synth_asserts: no

DOCREF START: Synthesized Prints
synth_print:

Start and end cycles for outputting synthesized prints.
They are given in terms of the base clock and will be converted
for each clock domain.
start: 0
end: -1
When enabled (=yes), prefix print output with the target cycle at which the print␣

→˓was triggered
cycle_prefix: yes

DOCREF END: Synthesized Prints

For the 8-node cluster simulation, the defaults in this file are close to what we want. Let’s outline the important
parameters:

• f1.16xlarges: 1: Change this parameter. This tells the manager that we want to launch one f1.16xlarge
when we call the launchrunfarm command.

• topology: example_8config: This tells the manager to use the topology named example_8config which
is defined in deploy/runtools/user_topology.py. This topology simulates an 8-node cluster with one ToR
switch.

• link_latency: 6405: This models a network with 6405 cycles of link latency. Since we are modeling pro-
cessors running at 3.2 Ghz, 1 cycle = 1/3.2 ns, so 6405 cycles is roughly 2 microseconds.

• switching_latency: 10: This models switches with a minimum port-to-port latency of 10 cycles.

• net_bandwidth: 200: This sets the bandwidth of the NICs to 200 Gbit/s. Currently you can set any integer
value less than this without making hardware modifications.

• default_hw_config: firesim_rocket_quadcore_nic_l2_llc4mb_ddr3: This tells the manager to use
a quad-core Rocket Chip configuration with 512 KB of L2, 4 MB of L3 (LLC) and 16 GB of DDR3, with a NIC,
for each of the simulated nodes in the topology.

You’ll see other parameters here, like run_instance_market, spot_interruption_behavior, and
spot_max_price. If you’re an experienced AWS user, you can see what these do by looking at the Manager
Configuration Files section. Otherwise, don’t change them.

As in the single-node tutorial, we will leave the workload: mapping unchanged here, since we do want to run the
buildroot-based Linux on our simulated system. The terminate_on_completion feature is an advanced feature that
you can learn more about in the Manager Configuration Files section.

As a final sanity check, your config_runtime.yaml file should now look like this:

run_farm:
base_recipe: run-farm-recipes/aws_ec2.yaml
recipe_arg_overrides:

(continues on next page)

34 Chapter 3. Running FireSim Simulations

FireSim Documentation, Release 1.15.0

(continued from previous page)

run_farm_tag: mainrunfarm
always_expand_run_farm: true
launch_instances_timeout_minutes: 60
run_instance_market: ondemand
spot_interruption_behavior: terminate
spot_max_price: ondemand
default_simulation_dir: /home/centos
run_farm_hosts_to_use:

- f1.16xlarge: 1
- f1.4xlarge: 0
- f1.2xlarge: 0
- m4.16xlarge: 0
- z1d.3xlarge: 0
- z1d.6xlarge: 0

target_config:
topology: example_8config
no_net_num_nodes: 1
link_latency: 6405
switching_latency: 10
net_bandwidth: 200
profile_interval: -1
default_hw_config: firesim_rocket_quadcore_nic_l2_llc4mb_ddr3
plusarg_passthrough: ""

workload:
workload_name: linux-uniform.json
terminate_on_completion: no
suffix_tag: null

Attention: [Advanced users] Simulating BOOM instead of Rocket Chip: If you would like to simulate a single-
core BOOM as a target, set default_hw_config to firesim_boom_singlecore_nic_l2_llc4mb_ddr3.

3.2.4 Launching a Simulation!

Now that we’ve told the manager everything it needs to know in order to run our single-node simulation, let’s actually
launch an instance and run it!

Starting the Run Farm

First, we will tell the manager to launch our Run Farm, as we specified above. When you do this, you will start getting
charged for the running EC2 instances (in addition to your manager).

To do launch your run farm, run:

firesim launchrunfarm

You should expect output like the following:

3.2. Running a Cluster Simulation 35

https://github.com/ucb-bar/riscv-boom

FireSim Documentation, Release 1.15.0

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim␣
→˓launchrunfarm
FireSim Manager. Docs: http://docs.fires.im
Running: launchrunfarm

Waiting for instance boots: f1.16xlarges
i-09e5491cce4d5f92d booted!
Waiting for instance boots: f1.4xlarges
Waiting for instance boots: m4.16xlarges
Waiting for instance boots: f1.2xlarges
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-05-53-launchrunfarm-ZGVP753DSU1Y9Q6R.
→˓log

The output will rapidly progress to Waiting for instance boots: f1.16xlarges and then take a minute or two
while your f1.16xlarge instance launches. Once the launches complete, you should see the instance id printed and
the instance will also be visible in your AWS EC2 Management console. The manager will tag the instances launched
with this operation with the value you specified above as the run_farm_tag parameter from the config_runtime.
yaml file, which we left set as mainrunfarm. This value allows the manager to tell multiple Run Farms apart – i.e.,
you can have multiple independent Run Farms running different workloads/hardware configurations in parallel. This
is detailed in the Manager Configuration Files and the firesim launchrunfarm sections – you do not need to be familiar
with it here.

Setting up the simulation infrastructure

The manager will also take care of building and deploying all software components necessary to run your simulation
(including switches for the networked case). The manager will also handle flashing FPGAs. To tell the manager to
setup our simulation infrastructure, let’s run:

firesim infrasetup

For a complete run, you should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim␣
→˓infrasetup
FireSim Manager. Docs: http://docs.fires.im
Running: infrasetup

Building FPGA software driver for FireSim-FireSimQuadRocketConfig-F90MHz_BaseF1Config
Building switch model binary for switch switch0
[172.30.2.178] Executing task 'instance_liveness'
[172.30.2.178] Checking if host instance is up...
[172.30.2.178] Executing task 'infrasetup_node_wrapper'
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 0.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 1.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 2.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 3.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 4.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 5.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 6.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 7.
[172.30.2.178] Installing AWS FPGA SDK on remote nodes.

(continues on next page)

36 Chapter 3. Running FireSim Simulations

FireSim Documentation, Release 1.15.0

(continued from previous page)

[172.30.2.178] Unloading XDMA/EDMA/XOCL Driver Kernel Module.
[172.30.2.178] Copying AWS FPGA XDMA driver to remote node.
[172.30.2.178] Loading XDMA Driver Kernel Module.
[172.30.2.178] Clearing FPGA Slot 0.
[172.30.2.178] Clearing FPGA Slot 1.
[172.30.2.178] Clearing FPGA Slot 2.
[172.30.2.178] Clearing FPGA Slot 3.
[172.30.2.178] Clearing FPGA Slot 4.
[172.30.2.178] Clearing FPGA Slot 5.
[172.30.2.178] Clearing FPGA Slot 6.
[172.30.2.178] Clearing FPGA Slot 7.
[172.30.2.178] Flashing FPGA Slot: 0 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 1 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 2 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 3 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 4 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 5 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 6 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 7 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Unloading XDMA/EDMA/XOCL Driver Kernel Module.
[172.30.2.178] Loading XDMA Driver Kernel Module.
[172.30.2.178] Copying switch simulation infrastructure for switch slot: 0.
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-07-33-infrasetup-2Z7EBCBIF2TSI66Q.log

Many of these tasks will take several minutes, especially on a clean copy of the repo (in particular, f1.16xlarges
usually take a couple of minutes to start, so don’t be alarmed if you’re stuck at Checking if host instance is
up...) . The console output here contains the “user-friendly” version of the output. If you want to see detailed progress
as it happens, tail -f the latest logfile in firesim/deploy/logs/.

At this point, the f1.16xlarge instance in our Run Farm has all the infrastructure necessary to run everything in our
simulation.

So, let’s launch our simulation!

Running a simulation!

Finally, let’s run our simulation! To do so, run:

firesim runworkload

This command boots up the 8-port switch simulation and then starts 8 Rocket Chip FPGA Simulations, then prints out
the live status of the simulated nodes and switch every 10s. When you do this, you will initially see output like:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim␣
→˓runworkload
FireSim Manager. Docs: http://docs.fires.im
Running: runworkload

Creating the directory: /home/centos/firesim-new/deploy/results-workload/2018-05-19--06-
→˓28-43-linux-uniform/
[172.30.2.178] Executing task 'instance_liveness'
[172.30.2.178] Checking if host instance is up...

(continues on next page)

3.2. Running a Cluster Simulation 37

FireSim Documentation, Release 1.15.0

(continued from previous page)

[172.30.2.178] Executing task 'boot_switch_wrapper'
[172.30.2.178] Starting switch simulation for switch slot: 0.
[172.30.2.178] Executing task 'boot_simulation_wrapper'
[172.30.2.178] Starting FPGA simulation for slot: 0.
[172.30.2.178] Starting FPGA simulation for slot: 1.
[172.30.2.178] Starting FPGA simulation for slot: 2.
[172.30.2.178] Starting FPGA simulation for slot: 3.
[172.30.2.178] Starting FPGA simulation for slot: 4.
[172.30.2.178] Starting FPGA simulation for slot: 5.
[172.30.2.178] Starting FPGA simulation for slot: 6.
[172.30.2.178] Starting FPGA simulation for slot: 7.
[172.30.2.178] Executing task 'monitor_jobs_wrapper'

If you don’t look quickly, you might miss it, because it will be replaced with a live status page once simulations are
kicked-off:

FireSim Simulation Status @ 2018-05-19 06:28:56.087472
--
This workload's output is located in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--06-28-43-linux-uniform/
This run's log is located in:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-28-43-runworkload-ZHZEJED9MDWNSCV7.
→˓log
This status will update every 10s.
--
Instances
--
Hostname/IP: 172.30.2.178 | Terminated: False
--
Simulated Switches
--
Hostname/IP: 172.30.2.178 | Switch name: switch0 | Switch running: True
--
Simulated Nodes/Jobs
--
Hostname/IP: 172.30.2.178 | Job: linux-uniform1 | Sim running: True
Hostname/IP: 172.30.2.178 | Job: linux-uniform0 | Sim running: True
Hostname/IP: 172.30.2.178 | Job: linux-uniform3 | Sim running: True
Hostname/IP: 172.30.2.178 | Job: linux-uniform2 | Sim running: True
Hostname/IP: 172.30.2.178 | Job: linux-uniform5 | Sim running: True
Hostname/IP: 172.30.2.178 | Job: linux-uniform4 | Sim running: True
Hostname/IP: 172.30.2.178 | Job: linux-uniform7 | Sim running: True
Hostname/IP: 172.30.2.178 | Job: linux-uniform6 | Sim running: True
--
Summary
--
1/1 instances are still running.
8/8 simulations are still running.
--

In cycle-accurate networked mode, this will only exit when any ONE of the simulated nodes shuts down. So, let’s let
it run and open another ssh connection to the manager instance. From there, cd into your firesim directory again and
source sourceme-f1-manager.sh again to get our ssh key setup. To access our simulated system, ssh into the IP

38 Chapter 3. Running FireSim Simulations

FireSim Documentation, Release 1.15.0

address being printed by the status page, from your manager instance. In our case, from the above output, we see
that our simulated system is running on the instance with IP 172.30.2.178. So, run:

[RUN THIS ON YOUR MANAGER INSTANCE!]
ssh 172.30.2.178

This will log you into the instance running the simulation. On this machine, run screen -ls to get the list of all
running simulation components. Attaching to the screens fsim0 to fsim7 will let you attach to the consoles of any of
the 8 simulated nodes. You’ll also notice an additional screen for the switch, however by default there is no interesting
output printed here for performance reasons.

For example, if we want to enter commands into node zero, we can attach to its console like so:

screen -r fsim0

Voila! You should now see Linux booting on the simulated node and then be prompted with a Linux login prompt, like
so:

[truncated Linux boot output]
[0.020000] Registered IceNet NIC 00:12:6d:00:00:02
[0.020000] VFS: Mounted root (ext2 filesystem) on device 254:0.
[0.020000] devtmpfs: mounted
[0.020000] Freeing unused kernel memory: 140K
[0.020000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device
Starting logging: OK
Starting mdev...
mdev: /sys/dev: No such file or directory
modprobe: can't change directory to '/lib/modules': No such file or directory
Initializing random number generator... done.
Starting network: OK
Starting dropbear sshd: OK

Welcome to Buildroot
buildroot login:

If you also ran the single-node no-nic simulation you’ll notice a difference in this boot output – here, Linux sees the
NIC and its assigned MAC address and automatically brings up the eth0 interface at boot.

Now, you can login to the system! The username is root and the password is firesim. At this point, you should be
presented with a regular console, where you can type commands into the simulation and run programs. For example:

Welcome to Buildroot
buildroot login: root
Password:
uname -a
Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018␣
→˓riscv64 GNU/Linux
#

At this point, you can run workloads as you’d like. To finish off this tutorial, let’s poweroff the simulated system and
see what the manager does. To do so, in the console of the simulated system, run poweroff -f:

Welcome to Buildroot
buildroot login: root

(continues on next page)

3.2. Running a Cluster Simulation 39

FireSim Documentation, Release 1.15.0

(continued from previous page)

Password:
uname -a
Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018␣
→˓riscv64 GNU/Linux
poweroff -f

You should see output like the following from the simulation console:

poweroff -f
[3.748000] reboot: Power down
Power off
time elapsed: 360.5 s, simulation speed = 37.82 MHz
*** PASSED *** after 13634406804 cycles
Runs 13634406804 cycles
[PASS] FireSim Test
SEED: 1526711978
Script done, file is uartlog

[screen is terminating]

You’ll also notice that the manager polling loop exited! You’ll see output like this from the manager:

--
Instances
--
Instance IP: 172.30.2.178 | Terminated: False
--
Simulated Switches
--
Instance IP: 172.30.2.178 | Switch name: switch0 | Switch running: True
--
Simulated Nodes/Jobs
--
Instance IP: 172.30.2.178 | Job: linux-uniform1 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform0 | Sim running: False
Instance IP: 172.30.2.178 | Job: linux-uniform3 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform2 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform5 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform4 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform7 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform6 | Sim running: True
--
Summary
--
1/1 instances are still running.
7/8 simulations are still running.
--
Teardown required, manually tearing down...
[172.30.2.178] Executing task 'kill_switch_wrapper'
[172.30.2.178] Killing switch simulation for switchslot: 0.
[172.30.2.178] Executing task 'kill_simulation_wrapper'
[172.30.2.178] Killing FPGA simulation for slot: 0.

(continues on next page)

40 Chapter 3. Running FireSim Simulations

FireSim Documentation, Release 1.15.0

(continued from previous page)

[172.30.2.178] Killing FPGA simulation for slot: 1.
[172.30.2.178] Killing FPGA simulation for slot: 2.
[172.30.2.178] Killing FPGA simulation for slot: 3.
[172.30.2.178] Killing FPGA simulation for slot: 4.
[172.30.2.178] Killing FPGA simulation for slot: 5.
[172.30.2.178] Killing FPGA simulation for slot: 6.
[172.30.2.178] Killing FPGA simulation for slot: 7.
[172.30.2.178] Executing task 'screens'
Confirming exit...
[172.30.2.178] Executing task 'monitor_jobs_wrapper'
[172.30.2.178] Slot 0 completed! copying results.
[172.30.2.178] Slot 1 completed! copying results.
[172.30.2.178] Slot 2 completed! copying results.
[172.30.2.178] Slot 3 completed! copying results.
[172.30.2.178] Slot 4 completed! copying results.
[172.30.2.178] Slot 5 completed! copying results.
[172.30.2.178] Slot 6 completed! copying results.
[172.30.2.178] Slot 7 completed! copying results.
[172.30.2.178] Killing switch simulation for switchslot: 0.
FireSim Simulation Exited Successfully. See results in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--06-39-35-linux-uniform/
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-39-35-runworkload-4CDB78E3A4IA9IYQ.
→˓log

In the cluster case, you’ll notice that shutting down ONE simulator causes the whole simulation to be torn down – this
is because we currently do not implement any kind of “disconnect” mechanism to remove one node from a globally-
cycle-accurate simulation.

If you take a look at the workload output directory given in the manager output (in this case, /home/centos/
firesim-new/deploy/results-workload/2018-05-19--06-39-35-linux-uniform/), you’ll see the follow-
ing:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/results-workload/
→˓2018-05-19--06-39-35-linux-uniform$ ls -la */*
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform0/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform0/os-release
-rw-rw-r-- 1 centos centos 7476 May 19 06:45 linux-uniform0/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform1/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform1/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform1/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform2/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform2/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform2/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform3/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform3/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform3/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform4/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform4/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform4/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform5/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform5/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform5/uartlog

(continues on next page)

3.2. Running a Cluster Simulation 41

FireSim Documentation, Release 1.15.0

(continued from previous page)

-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform6/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform6/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform6/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform7/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform7/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform7/uartlog
-rw-rw-r-- 1 centos centos 153 May 19 06:45 switch0/switchlog

What are these files? They are specified to the manager in a configuration file (deploy/workloads/linux-uniform.json)
as files that we want automatically copied back to our manager after we run a simulation, which is useful for running
benchmarks automatically. Note that there is a directory for each simulated node and each simulated switch in the
cluster. The Defining Custom Workloads section describes this process in detail.

For now, let’s wrap-up our tutorial by terminating the f1.16xlarge instance that we launched. To do so, run:

firesim terminaterunfarm

Which should present you with the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim␣
→˓terminaterunfarm
FireSim Manager. Docs: http://docs.fires.im
Running: terminaterunfarm

IMPORTANT!: This will terminate the following instances:
f1.16xlarges
['i-09e5491cce4d5f92d']
f1.4xlarges
[]
m4.16xlarges
[]
f1.2xlarges
[]
Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.

You must type yes then hit enter here to have your instances terminated. Once you do so, you will see:

[truncated output from above]
Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.
yes
Instances terminated. Please confirm in your AWS Management Console.
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-50-37-terminaterunfarm-
→˓3VF0Z2KCAKKDY0ZU.log

At this point, you should always confirm in your AWS management console that the instance is in the shutting-
down or terminated states. You are ultimately responsible for ensuring that your instances are terminated
appropriately.
Congratulations on running a cluster FireSim simulation! At this point, you can check-out some of the advanced features
of FireSim in the sidebar to the left. Or, hit next to continue to a tutorial that shows you how to build your own custom
FPGA images.

42 Chapter 3. Running FireSim Simulations

https://www.github.com/firesim/firesim/blob/1.15.0/deploy/workloads/linux-uniform.json

CHAPTER

FOUR

BUILDING YOUR OWN HARDWARE DESIGNS (FIRESIM FPGA
IMAGES)

This section will guide you through building an AFI image for a FireSim simulation.

4.1 Amazon S3 Setup

During the build process, the build system will need to upload a tar file to Amazon S3 in order to complete the build
process using Amazon’s backend scripts (which convert the Vivado-generated tar into an AFI). The manager will create
this bucket for you automatically, you just need to specify a name.

So, choose a bucket name, e.g. firesim. Bucket names must be globally unique. If you choose one that’s already
taken, the manager will notice and complain when you tell it to build an AFI. To set your bucket name, open deploy/
bit-builder-recipes/f1.yaml in your editor and under the particular recipe you plan to build, replace

s3_bucket_name: firesim

with your own bucket name, e.g.:

s3_bucket_name: firesim

Note: This isn’t necessary if you set the append_userid_region key/value pair to true.

4.2 Build Recipes

In the deploy/config_build.ini file, you will notice that the builds_to_run section currently contains several
lines, which indicates to the build system that you want to run all of these builds in parallel, with the parameters listed in
the relevant section of the deploy/config_build_recipes.ini file. Here you can set parameters of the simulated
system, and also select the type of instance on which the Vivado build will be deployed. From our experimentation,
there are diminishing returns using anything above a z1d.2xlarge, so we default to that. If you do wish to use a
different build instance type keep in mind that Vivado will consume in excess of 32 GiB for large designs.

To start out, let’s build a simple design, firesim_rocket_quadcore_no_nic_l2_llc4mb_ddr3. This is a design
that has four cores, no nic, and uses the 4MB LLC + DDR3 memory model. To do so, comment out all of the other
build entries in deploy/config_build.ini, besides the one we want. So, you should end up with something like
this (a line beginning with a # is a comment):

43

FireSim Documentation, Release 1.15.0

builds_to_run:
this section references builds defined in config_build_recipes.ini
if you add a build here, it will be built when you run buildafi
- firesim_rocket_quadcore_no_nic_l2_llc4mb_ddr3

4.3 Running a Build

Now, we can run a build like so:

firesim buildbitstream

This will run through the entire build process, taking the Chisel RTL and producing an AFI/AGFI that runs on the
FPGA. This whole process will usually take a few hours. When the build completes, you will see a directory in deploy/
results-build/, named after your build parameter settings, that contains AGFI information (the AGFI_INFO file)
and all of the outputs of the Vivado build process (in the cl_firesim subdirectory). Additionally, the manager will
print out a path to a log file that describes everything that happened, in-detail, during this run (this is a good file to send
us if you encounter problems). If you provided the manager with your email address, you will also receive an email
upon build completion, that should look something like this:

Fig. 1: Build Completion Email

Now that you know how to generate your own FPGA image, you can modify the target-design to add your own features,
then build a FireSim-compatible FPGA image automatically! To learn more advanced FireSim features, you can choose
a link under the “Advanced Docs” section to the left.

44 Chapter 4. Building Your Own Hardware Designs (FireSim FPGA Images)

CHAPTER

FIVE

MANAGER USAGE (THE FIRESIM COMMAND)

5.1 Overview

When you source sourceme-f1-manager.sh in your copy of the FireSim repo, you get access to a new command,
firesim, which is the FireSim simulation manager. If you’ve used tools like Vagrant or Docker, the firesim program
is to FireSim what vagrant and docker are to Vagrant and Docker respectively. In essence, firesim lets us manage
the entire lifecycle of FPGA simulations, just like vagrant and docker do for VMs and containers respectively.

5.1.1 “Inputs” to the Manager

The manager gets configuration information from several places:

• Command Line Arguments, consisting of:

– Paths to configuration files to use

– A task to run

– Arguments to the task

• Configuration Files

• Environment Variables

• Topology definitions for networked simulations (user_topology.py)

The following sections detail these inputs. Hit Next to continue.

5.1.2 Logging

The manager produces detailed logs when you run any command, which is useful to share with the FireSim developers
for debugging purposes in case you encounter issues. The logs contain more detailed output than the manager sends to
stdout/stderr during normal operation, so it’s also useful if you want to take a peek at the detailed commands manager
is running to facilitate builds and simulations. Logs are stored in firesim/deploy/logs/.

45

FireSim Documentation, Release 1.15.0

5.2 Manager Command Line Arguments

The manager provides built-in help output for the command line arguments it supports if you run firesim --help

usage: firesim [-h] [-c RUNTIMECONFIGFILE] [-b BUILDCONFIGFILE]
[-r BUILDRECIPESCONFIGFILE] [-a HWDBCONFIGFILE]
[-x OVERRIDECONFIGDATA] [-f TERMINATESOMEF116]
[-g TERMINATESOMEF12] [-i TERMINATESOMEF14]
[-m TERMINATESOMEM416] [--terminatesome TERMINATESOME] [-q]
[-t LAUNCHTIME] [--platform {f1,vitis}]
{managerinit,infrasetup,boot,kill,runworkload,buildafi,buildbitstream,

→˓builddriver,tar2afi,runcheck,launchrunfarm,terminaterunfarm,shareagfi}

FireSim Simulation Manager.

positional arguments:
{managerinit,infrasetup,boot,kill,runworkload,buildafi,buildbitstream,builddriver,

→˓tar2afi,runcheck,launchrunfarm,terminaterunfarm,shareagfi}
Management task to run.

optional arguments:
-h, --help show this help message and exit
-c RUNTIMECONFIGFILE, --runtimeconfigfile RUNTIMECONFIGFILE

Optional custom runtime/workload config file. Defaults
to config_runtime.yaml.

-b BUILDCONFIGFILE, --buildconfigfile BUILDCONFIGFILE
Optional custom build config file. Defaults to
config_build.yaml.

-r BUILDRECIPESCONFIGFILE, --buildrecipesconfigfile BUILDRECIPESCONFIGFILE
Optional custom build recipe config file. Defaults to
config_build_recipes.yaml.

-a HWDBCONFIGFILE, --hwdbconfigfile HWDBCONFIGFILE
Optional custom HW database config file. Defaults to
config_hwdb.yaml.

-x OVERRIDECONFIGDATA, --overrideconfigdata OVERRIDECONFIGDATA
Override a single value from one of the the RUNTIME
e.g.: --overrideconfigdata "target-config link-latency
6405".

-f TERMINATESOMEF116, --terminatesomef116 TERMINATESOMEF116
DEPRECATED. Use --terminatesome=f1.16xlarge:count
instead. Will be removed in the next major version of
FireSim (1.15.X). Old help message: Only used by
terminaterunfarm. Terminates this many of the
previously launched f1.16xlarges.

-g TERMINATESOMEF12, --terminatesomef12 TERMINATESOMEF12
DEPRECATED. Use --terminatesome=f1.2xlarge:count
instead. Will be removed in the next major version of
FireSim (1.15.X). Old help message: Only used by
terminaterunfarm. Terminates this many of the
previously launched f1.2xlarges.

-i TERMINATESOMEF14, --terminatesomef14 TERMINATESOMEF14
DEPRECATED. Use --terminatesome=f1.4xlarge:count
instead. Will be removed in the next major version of

(continues on next page)

46 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

(continued from previous page)

FireSim (1.15.X). Old help message: Only used by
terminaterunfarm. Terminates this many of the
previously launched f1.4xlarges.

-m TERMINATESOMEM416, --terminatesomem416 TERMINATESOMEM416
DEPRECATED. Use --terminatesome=m4.16xlarge:count
instead. Will be removed in the next major version of
FireSim (1.15.X). Old help message: Only used by
terminaterunfarm. Terminates this many of the
previously launched m4.16xlarges.

--terminatesome TERMINATESOME
Only used by terminaterunfarm. Used to specify a
restriction on how many instances to terminate. E.g.,
--terminatesome=f1.2xlarge:2 will terminate only 2 of
the f1.2xlarge instances in the runfarm, regardless of
what other instances are in the runfarm. This argument
can be specified multiple times to terminate
additional instance types/counts. Behavior when
specifying the same instance type multiple times is
undefined. This replaces the old
--terminatesome{f116,f12,f14,m416} arguments. Behavior
when specifying these old-style terminatesome flags
and this new style flag at the same time is also
undefined.

-q, --forceterminate For terminaterunfarm and buildbitstream, force
termination without prompting user for confirmation.
Defaults to False

-t LAUNCHTIME, --launchtime LAUNCHTIME
Give the "Y-m-d--H-M-S" prefix of results-build
directory. Useful for tar2afi when finishing a partial
buildafi

--platform {f1,vitis}
Required argument for "managerinit" to specify which
platform you will be using

On this page, we will go through some of these options – others are more complicated, so we will give them their own
section on the following pages.

5.2.1 --runtimeconfigfile FILENAME

This lets you specify a custom runtime config file. By default, config_runtime.yaml is used. See con-
fig_runtime.yaml for what this config file does.

5.2. Manager Command Line Arguments 47

FireSim Documentation, Release 1.15.0

5.2.2 --buildconfigfile FILENAME

This lets you specify a custom build config file. By default, config_build.yaml is used. See config_build.yaml for
what this config file does.

5.2.3 --buildrecipesconfigfile FILENAME

This lets you specify a custom build recipes config file. By default, config_build_recipes.yaml is used. See
config_build_recipes.yaml for what this config file does.

5.2.4 --hwdbconfigfile FILENAME

This lets you specify a custom hardware database config file. By default, config_hwdb.yaml is used. See con-
fig_hwdb.yaml for what this config file does.

5.2.5 --overrideconfigdata SECTION PARAMETER VALUE

This lets you override a single value from the runtime config file. For example, if you want to use a link la-
tency of 3003 cycles for a particular run (and your config_runtime.yaml file specifies differently), you can pass
--overrideconfigdata target_config link_latency 6405 to the manager. This can be used with any task
that uses the runtime config.

5.2.6 --launchtime TIMESTAMP

Specifies the “Y-m-d–H-M-S” timestamp to be used as the prefix in results-build directories. Useful when wanting
to run tar2afi after an aborted buildbitstream was manually fixed.

5.2.7 TASK

This is the only required/positional command line argument to the manager. It tells the manager what it should be
doing. See the next section for a list of tasks and what they do. Some tasks also take other command line arguments,
which are specified with those tasks.

5.3 Manager Tasks

This page outlines all of the tasks that the FireSim manager supports.

5.3.1 firesim managerinit --platform {f1,vitis}

This is a setup command that does the following:

• Backup existing config files if they exist (config_runtime.yaml, config_build.yaml,
config_build_recipes.yaml, and config_hwdb.yaml).

• Replace the default config files (config_runtime.yaml, config_build.yaml, config_build_recipes.
yaml, and config_hwdb.yaml) with clean example versions.

48 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

Then, do platform-specific init steps for the given --platform.

f1

vitis

• Run aws configure, prompt for credentials

• Prompt the user for email address and subscribe them to notifications for their own builds.

• Setup the config_runtime.yaml and config_build.yaml files with AWS run/build farm arguments.

• Setup the config_runtime.yaml and config_build.yaml files with externally provisioned run/build farm
arguments.

You can re-run this whenever you want to get clean configuration files.

Note: In the case of f1, you can just hit Enter when prompted for aws configure credentials and your email address,
and both will keep your previously specified values.

If you run this command by accident and didn’t mean to overwrite your configuration files, you’ll find backed-up
versions in firesim/deploy/sample-backup-configs/backup*.

5.3.2 firesim buildafi

Warning: DEPRECATION: buildafi has been renamed to buildbitstream and will be removed in a future
version

5.3.3 firesim buildbitstream

This command builds a FireSim bitstream using a Build Farm from the Chisel RTL for the configurations that you
specify. The process of defining configurations to build is explained in the documentation for config_build.yaml and
config_build_recipes.yaml.

For each config, the build process entails:

F1

Vitis

1. [Locally] Run the elaboration process for your hardware configuration

2. [Locally] FAME-1 transform the design with MIDAS

3. [Locally] Attach simulation models (I/O widgets, memory model, etc.)

4. [Locally] Emit Verilog to run through the FPGA Flow

5. Use a build farm configuration to launch/use build hosts for each configuration you want to build

6. [Local/Remote] Prep build hosts, copy generated Verilog for hardware configuration to build instance

7. [Local or Remote] Run Vivado Synthesis and P&R for the configuration

8. [Local/Remote] Copy back all output generated by Vivado including the final tar file

9. [Local/AWS Infra] Submit the tar file to the AWS backend for conversion to an AFI

10. [Local] Wait for the AFI to become available, then notify the user of completion by email

1. [Locally] Run the elaboration process for your hardware configuration

5.3. Manager Tasks 49

FireSim Documentation, Release 1.15.0

2. [Locally] FAME-1 transform the design with MIDAS

3. [Locally] Attach simulation models (I/O widgets, memory model, etc.)

4. [Locally] Emit Verilog to run through the FPGA Flow

5. Use a build farm configuration to launch/use build hosts for each configuration you want to build

6. [Local/Remote] Prep build hosts, copy generated Verilog for hardware configuration to build instance

7. [Local or Remote] Run Vitis Synthesis and P&R for the configuration

8. [Local/Remote] Copy back all output generated by Vitis (including xclbin bitstream)

This process happens in parallel for all of the builds you specify. The command will exit when all builds are completed
(but you will get notified as INDIVIDUAL builds complete if on F1) and indicate whether all builds passed or a build
failed by the exit code.

Note: It is highly recommended that you either run this command in a ``screen`` or use ``mosh`` to access the
build instance. Builds will not finish if the manager is killed due to disconnection to the instance.

When you run a build for a particular configuration, a directory named LAUNCHTIME-CONFIG_TRIPLET-BUILD_NAME
is created in firesim/deploy/results-build/. This directory will contain:

F1

Vitis

• AGFI_INFO: Describes the state of the AFI being built, while the manager is running. Upon build completion,
this contains the AGFI/AFI that was produced, along with its metadata.

• cl_firesim:: This directory is essentially the Vivado project that built the FPGA image, in the state it was
in when the Vivado build process completed. This contains reports, stdout from the build, and the final tar file
produced by Vivado. This also contains a copy of the generated verilog (FireSim-generated.sv) used to
produce this build.

The Vitis project collateral that built the FPGA image, in the state it was in when the Vitis build process completed.
This contains reports, stdout from the build, and the final bitstream xclbin file produced by Vitis. This also contains
a copy of the generated verilog (FireSim-generated.sv) used to produce this build.

If this command is cancelled by a SIGINT, it will prompt for confirmation that you want to terminate the build instances.
If you respond in the affirmative, it will move forward with the termination. If you do not want to have to confirm the
termination (e.g. you are using this command in a script), you can give the command the --forceterminate command
line argument. For example, the following will terminate all build instances in the build farm without prompting for
confirmation if a SIGINT is received:

firesim buildbitstream --forceterminate

5.3.4 firesim builddriver

For metasimulations (when metasimulation_enabled is true in config_runtime.yaml), this command will build
the entire software simulator without requiring any simulation hosts to be launched or reachable. This is useful for
example if you are using FireSim metasimulations as your primary simulation tool while developing target RTL, since
it allows you to run the Chisel build flow and iterate on your design without launching/setting up extra machines to run
simulations.

For FPGA-based simulations (when metasimulation_enabled is false in config_runtime.yaml), this command
will build the host-side simulation driver, also without requiring any simulation hosts to be launched or reachable. For

50 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

complicated designs, running this before running firesim launchrunfarm can reduce the time spent leaving FPGA
hosts idling while waiting for driver build.

5.3.5 firesim tar2afi

Warning: Can only be used in the F1 case.

This command can be used to run only steps 9 & 10 from an aborted firesim buildbitstream for F1 that
has been manually corrected. firesim tar2afi assumes that you have a firesim/deploy/results-build/
LAUNCHTIME-CONFIG_TRIPLET-BUILD_NAME/cl_firesim directory tree that can be submitted to the AWS backend
for conversion to an AFI.

When using this command, you need to also provide the --launchtime LAUNCHTIME cmdline argument, specifying
an already existing LAUNCHTIME.

This command will run for the configurations specified in config_build.yaml and config_build_recipes.yaml as with
firesim buildbitstream. It is likely that you may want to comment out BUILD_NAME that successfully completed firesim
buildbitstream before running this command.

5.3.6 firesim shareagfi

Warning: Can only be used in the F1 case.

This command allows you to share AGFIs that you have already built (that are listed in config_hwdb.yaml) with other
users. It will take the named hardware configurations that you list in the agfis_to_share section of config_build.
yaml, grab the respective AGFIs for each from config_hwdb.yaml, and share them across all F1 regions with the
users listed in the share_with_accounts section of config_build.yaml. You can also specify public: public
in share_with_accounts to make the AGFIs public.

You must own the AGFIs in order to do this – this will NOT let you share AGFIs that someone else owns and gave you
access to.

5.3.7 firesim launchrunfarm

This command launches a Run Farm on which you run simulations. Run farms consist of a set of run farm hosts that
can be spawned by AWS EC2 or managed by the user. The run_farm mapping in config_runtime.yaml determines
the run farm used and its configuration (see config_runtime.yaml). The base_recipe key/value pair specifies the
default set of arguments to use for a particular run farm type. To change the run farm type, a new base_recipe file
must be provided from deploy/run-farm-recipes. You are able to override the arguments given by a base_recipe
by adding keys/values to the recipe_arg_overrides mapping. These keys/values must match the same mapping
structure as the args mapping. Overridden arguments override recursively such that all key/values present in the
override args replace the default arguments given by the base_recipe. In the case of sequences, a overridden sequence
completely replaces the corresponding sequence in the default args.

AWS EC2 Run Farm Recipe (aws_ec2.yaml)

Externally Provisioned Run Farm Recipe (externally_provisioned.yaml)

An AWS EC2 run farm consists of AWS instances like f1.16xlarge, f1.4xlarge, f1.2xlarge, and m4.16xlarge
instances. Before you run the command, you define the number of each that you want in the recipe_arg_overrides
section of config_runtime.yaml or in the base_recipe itself.

5.3. Manager Tasks 51

FireSim Documentation, Release 1.15.0

A launched run farm is tagged with a run_farm_tag, which is used to disambiguate multiple parallel run farms; that is,
you can have many run farms running, each running a different experiment at the same time, each with its own unique
run_farm_tag. One convenient feature to add to your AWS management panel is the column for fsimcluster,
which contains the run_farm_tag value. You can see how to do that in the Add the fsimcluster column to your AWS
management console section.

The other options in the run_farm section, run_instance_market, spot_interruption_behavior, and
spot_max_price define how instances in the run farm are launched. See the documentation for config_runtime.
yaml for more details on other arguments (see config_runtime.yaml).

An Externally Provisioned run farm consists of a set of unmanaged run farm hosts given by the user. A run farm host
is configured by a default_platform that determines how to run simulations on the host. Additionally a sequence of
hosts is given in run_farm_hosts_to_use. This sequence consists of a mapping from an unique hostname/IP address
to a specification that indicates the amount of FPGAs it hosts, the number of potential metasimulations it can run, and
more. Before you run the command, you define sequence of run farm hosts in the recipe_arg_overrides section of
config_runtime.yaml or in the base_recipe itself. See the documentation for config_runtime.yaml for more
details on other arguments (see config_runtime.yaml).

ERRATA: One current requirement is that you must define a target config in the target_config section of
config_runtime.yaml that does not require more resources than the run farm you are trying to launch. Thus, you
should also setup your target_config parameters before trying to launch the corresponding run farm. This require-
ment will be removed in the future.

Once you setup your configuration and call firesim launchrunfarm, the command will launch the run farm. If all
succeeds, you will see the command print out instance IDs for the correct number/types of instances (you do not need
to pay attention to these or record them). If an error occurs, it will be printed to console.

Warning: For the AWS EC2 case, once you run this command, your run farm will continue to run until you call
firesim terminaterunfarm. This means you will be charged for the running instances in your run farm until
you call terminaterunfarm. You are responsible for ensuring that instances are only running when you want
them to be by checking the AWS EC2 Management Panel.

5.3.8 firesim terminaterunfarm

This command potentially terminates some or all of the instances in the Run Farm defined in your config_runtime.
yaml file by the run_farm base_recipe, depending on the command line arguments you supply.

AWS EC2 Run Farm Recipe (aws_ec2.yaml)

Externally Provisioned Run Farm Recipe (externally_provisioned.yaml)

By default, running firesim terminaterunfarm will terminate ALL instances with the specified run_farm_tag.
When you run this command, it will prompt for confirmation that you want to terminate the listed instances. If you
respond in the affirmative, it will move forward with the termination.

By default, this run of firesim terminaterunfarm does nothing since externally managed run farm hosts should
be managed by the user (and not by FireSim).

If you do not want to have to confirm the termination (e.g. you are using this command in a script), you can give
the command the --forceterminate command line argument. For example, the following will TERMINATE ALL
INSTANCES IN THE RUN FARM WITHOUT PROMPTING FOR CONFIRMATION:

firesim terminaterunfarm --forceterminate

52 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

Warning: DEPRECATION: The --terminatesome<INSTANCE> flags have been changed to a single
--terminatesome flag and will be removed in a future version

Warning: The following --terminatesome<INSTANCE> flags are only available for AWS EC2.

There a few additional commandline arguments that let you terminate only some of the instances in a par-
ticular Run Farm: --terminatesomef116 INT, --terminatesomef14 INT, --terminatesomef12 INT, and
--terminatesomem416 INT, which will terminate ONLY as many of each type of instance as you specify.

Here are some examples:

[start with 2 f1.16xlarges, 2 f1.2xlarges, 2 m4.16xlarges]

firesim terminaterunfarm --terminatesomef116 1 --forceterminate

[now, we have: 1 f1.16xlarges, 2 f1.2xlarges, 2 m4.16xlarges]

[start with 2 f1.16xlarges, 2 f1.2xlarges, 2 m4.16xlarges]

firesim terminaterunfarm --terminatesomef116 1 --terminatesomef12 2 --forceterminate

[now, we have: 1 f1.16xlarges, 0 f1.2xlarges, 2 m4.16xlarges]

Warning: In the AWS EC2 case, Once you call launchrunfarm, you will be charged for running instances in
your Run Farm until you call terminaterunfarm. You are responsible for ensuring that instances are only running
when you want them to be by checking the AWS EC2 Management Panel.

5.3.9 firesim infrasetup

Once you have launched a Run Farm and setup all of your configuration options, the infrasetup command will build
all components necessary to run the simulation and deploy those components to the machines in the Run Farm. Here
is a rough outline of what the command does:

• Constructs the internal representation of your simulation. This is a tree of components in the simulation (simu-
lated server blades, switches)

• For each type of server blade, rebuild the software simulation driver by querying the bitstream metadata to get
the build-triplet or using its override

• For each type of switch in the simulation, generate the switch model binary

• For each host instance in the Run Farm, collect information about all the resources necessary to run a simulation
on that host instance, then copy files and flash FPGAs with the required bitstream.

Details about setting up your simulation configuration can be found in config_runtime.yaml.

Once you run a simulation, you should re-run ``firesim infrasetup`` before starting another one, even if it is the
same exact simulation on the same Run Farm.
You can see detailed output from an example run of infrasetup in the Running a Single Node Simulation and Running
a Cluster Simulation Tutorials.

5.3. Manager Tasks 53

FireSim Documentation, Release 1.15.0

5.3.10 firesim boot

Once you have run firesim infrasetup, this command will actually start simulations. It begins by launching all
switches (if they exist in your simulation config), then launches all server blade simulations. This simply launches
simulations and then exits – it does not perform any monitoring.

This command is useful if you want to launch a simulation, then plan to interact with the simulation by-hand (i.e. by
directly interacting with the console).

5.3.11 firesim kill

Given a simulation configuration and simulations running on a Run Farm, this command force-terminates all compo-
nents of the simulation. Importantly, this does not allow any outstanding changes to the filesystem in the simulated
systems to be committed to the disk image.

5.3.12 firesim runworkload

This command is the standard tool that lets you launch simulations, monitor the progress of workloads running on
them, and collect results automatically when the workloads complete. To call this command, you must have first called
firesim infrasetup to setup all required simulation infrastructure on the remote nodes.

This command will first create a directory in firesim/deploy/results-workload/ named as
LAUNCH_TIME-WORKLOADNAME, where results will be completed as simulations complete. This command will
then automatically call firesim boot to start simulations. Then, it polls all the instances in the Run Farm every 10
seconds to determine the state of the simulated system. If it notices that a simulation has shutdown (i.e. the simulation
disappears from the output of screen -ls), it will automatically copy back all results from the simulation, as defined
in the workload configuration (see the Defining Custom Workloads section).

For non-networked simulations, it will wait for ALL simulations to complete (copying back results as each workload
completes), then exit.

For globally-cycle-accurate networked simulations, the global simulation will stop when any single node powers off.
Thus, for these simulations, runworkload will copy back results from all nodes and force them to terminate by calling
kill when ANY SINGLE ONE of them shuts down cleanly.

A simulation shuts down cleanly when the workload running on the simulator calls poweroff.

5.3.13 firesim runcheck

This command is provided to let you debug configuration options without launching instances. In addition to the output
produced at command line/in the log, you will find a pdf diagram of the topology you specify, annotated with infor-
mation about the workloads, hardware configurations, and abstract host mappings for each simulation (and optionally,
switch) in your design. These diagrams are located in firesim/deploy/generated-topology-diagrams/, named
after your topology.

Here is an example of such a diagram (click to expand/zoom):

Fig. 1: Example diagram for an 8-node cluster with one ToR switch

54 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

5.4 Manager Configuration Files

This page contains a centralized reference for all of the configuration options in config_runtime.yaml,
config_build.yaml, config_build_farm.yaml, config_build_recipes.yaml, and config_hwdb.yaml. It
also contains references for all build and run farm recipes (in deploy/build-farm-recipes/ and deploy/
run-farm-recipes/).

5.4.1 config_runtime.yaml

Here is a sample of this configuration file:

RUNTIME configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
→˓html for documentation of all of these params.

run_farm:
managerinit replace start
base_recipe: run-farm-recipes/aws_ec2.yaml
Uncomment and add args to override defaults.
Arg structure should be identical to the args given
in the base_recipe.
#recipe_arg_overrides:
<ARG>: <OVERRIDE>
managerinit replace end

metasimulation:
metasimulation_enabled: false
vcs or verilator. use vcs-debug or verilator-debug for waveform generation
metasimulation_host_simulator: verilator
plusargs passed to the simulator for all metasimulations
metasimulation_only_plusargs: "+fesvr-step-size=128 +max-cycles=100000000"
plusargs passed to the simulator ONLY FOR vcs metasimulations
metasimulation_only_vcs_plusargs: "+vcs+initreg+0 +vcs+initmem+0"

target_config:
Set topology: no_net_config to run without a network simulation
topology: example_8config
no_net_num_nodes: 2
link_latency: 6405
switching_latency: 10
net_bandwidth: 200
profile_interval: -1

This references a section from config_hwdb.yaml for fpga-accelerated simulation
or from config_build_recipes.yaml for metasimulation
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
default_hw_config: firesim_rocket_quadcore_nic_l2_llc4mb_ddr3

Advanced: Specify any extra plusargs you would like to provide when
booting the simulator (in both FPGA-sim and metasim modes). This is
a string, with the contents formatted as if you were passing the plusargs

(continues on next page)

5.4. Manager Configuration Files 55

FireSim Documentation, Release 1.15.0

(continued from previous page)

at command line, e.g. "+a=1 +b=2"
plusarg_passthrough: ""

tracing:
enable: no

Trace output formats. Only enabled if "enable" is set to "yes" above
0 = human readable; 1 = binary (compressed raw data); 2 = flamegraph (stack
unwinding -> Flame Graph)
output_format: 0

Trigger selector.
0 = no trigger; 1 = cycle count trigger; 2 = program counter trigger; 3 =
instruction trigger
selector: 1
start: 0
end: -1

autocounter:
read_rate: 0

workload:
workload_name: linux-uniform.json
terminate_on_completion: no
suffix_tag: null

host_debug:
When enabled (=yes), Zeros-out FPGA-attached DRAM before simulations
begin (takes 2-5 minutes).
In general, this is not required to produce deterministic simulations on
target machines running linux. Enable if you observe simulation non-determinism.
zero_out_dram: no
If disable_synth_asserts: no, simulation will print assertion message and
terminate simulation if synthesized assertion fires.
If disable_synth_asserts: yes, simulation ignores assertion firing and
continues simulation.
disable_synth_asserts: no

DOCREF START: Synthesized Prints
synth_print:

Start and end cycles for outputting synthesized prints.
They are given in terms of the base clock and will be converted
for each clock domain.
start: 0
end: -1
When enabled (=yes), prefix print output with the target cycle at which the print␣

→˓was triggered
cycle_prefix: yes

DOCREF END: Synthesized Prints

Below, we outline each mapping in detail.

56 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

run_farm

The run_farm mapping specifies the characteristics of your FireSim run farm so that the manager can automatically
launch them, run workloads on them, and terminate them.

base_recipe

The base_recipe key/value pair specifies the default set of arguments to use for a particular run farm type. To change
the run farm type, a new base_recipe file must be provided from deploy/run-farm-recipes. You are able to
override the arguments given by a base_recipe by adding keys/values to the recipe_arg_overrides mapping.

recipe_arg_overrides

This optional mapping of keys/values allows you to override the default arguments provided by the base_recipe. This
mapping must match the same mapping structure as the argsmapping within the base_recipe file given. Overridden
arguments override recursively such that all key/values present in the override args replace the default arguments given
by the base_recipe. In the case of sequences, a overridden sequence completely replaces the corresponding sequence
in the default args. Additionally, it is not possible to change the default run farm type through these overrides. This
must be done by changing the default base_recipe.

See Run Farm Recipes (run-farm-recipes/*) for more details on the potential run farm recipes that can be used.

metasimulation

The metasimulation options below allow you to run metasimulations instead of FPGA simulations when doing
launchrunfarm, infrasetup, and runworkload. See Debugging & Testing with Metasimulation for more details.

metasimulation_enabled

This is a boolean to enable running metasimulations in-place of FPGA-accelerated simulations. The number of
metasimulations that are run on a specific Run Farm host is determined by the num_metasims argument in each run
farm recipe (see Run Farm Recipes (run-farm-recipes/*)).

metasimulation_host_simulator

This key/value pair chooses which RTL simulator should be used for metasimulation. Options include verilator and
vcs if waveforms are unneeded and *-debug versions if a waveform is needed.

metasimulation_only_plusargs

This key/value pair is a string that passes plusargs (arguments with a + in front) to the metasimulations.

5.4. Manager Configuration Files 57

FireSim Documentation, Release 1.15.0

metasimulation_only_vcs_plusargs

This key/value pair is a string that passes plusargs (arguments with a + in front) to metasimulations using vcs or
vcs-debug.

target_config

The target_config options below allow you to specify the high-level configuration of the target you are simulating.
You can change these parameters after launching a Run Farm (assuming you have the correct number of instances), but
in many cases you will need to re-run the infrasetup command to make sure the correct simulation infrastructure is
available on your instances.

topology

This field dictates the network topology of the simulated system. Some examples:

no_net_config: This runs N (see no_net_num_nodes below) independent simulations, without a network simula-
tion. You can currently only use this option if you build one of the NoNIC hardware configs of FireSim.

example_8config: This requires a single f1.16xlarge, which will simulate 1 ToR switch attached to 8 simulated
servers.

example_16config: This requires two f1.16xlarge instances and one m4.16xlarge instance, which will simulate
2 ToR switches, each attached to 8 simulated servers, with the two ToR switches connected by a root switch.

example_64config: This requires eight f1.16xlarge instances and one m4.16xlarge instance, which will simulate
8 ToR switches, each attached to 8 simulated servers (for a total of 64 nodes), with the eight ToR switches connected
by a root switch.

Additional configurations are available in deploy/runtools/user_topology.py and more can be added there. See
the Manager Network Topology Definitions (user_topology.py) section for more info.

no_net_num_nodes

This determines the number of simulated nodes when you are using topology: no_net_config.

link_latency

In a networked simulation, this allows you to specify the link latency of the simulated network in CYCLES. For example,
6405 cycles is roughly 2 microseconds at 3.2 GHz. A current limitation is that this value (in cycles) must be a multiple
of 7. Furthermore, you must not exceed the buffer size specified in the NIC’s simulation widget.

switching_latency

In a networked simulation, this specifies the minimum port-to-port switching latency of the switch models, in CYCLES.

58 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

net_bandwidth

In a networked simulation, this specifies the maximum output bandwidth that a NIC is allowed to produce as an integer
in Gbit/s. Currently, this must be a number between 1 and 200, allowing you to model NICs between 1 and 200 Gbit/s.

profile_interval

The simulation driver periodically samples performance counters in FASED timing model instances and dumps the
result to a file on the host. profile_interval defines the number of target cycles between samples; setting this field
to -1 disables polling.

default_hw_config

This sets the server configuration launched by default in the above topologies. Heterogeneous configurations can be
achieved by manually specifying different names within the topology itself, but all the example_Nconfig configura-
tions are homogeneous and use this value for all nodes.

You should set this to one of the hardware configurations you have defined already in config_hwdb.yaml. You should
set this to the NAME (mapping title) of the hardware configuration from config_hwdb.yaml, NOT the actual AGFI
or xclbin itself (NOT something like agfi-XYZ...).

tracing

This section manages TracerV-based tracing at simulation runtime. For more details, see the Capturing RISC-V In-
struction Traces with TracerV page for more details.

enable

This turns tracing on, when set to yes and off when set to no. See the Enabling Tracing at Runtime.

output_format

This sets the output format for TracerV tracing. See the Selecting a Trace Output Format section.

selector, start, and end

These configure triggering for TracerV. See the Setting a TracerV Trigger section.

autocounter

This section configures AutoCounter. See the AutoCounter: Profiling with Out-of-Band Performance Counter Collec-
tion page for more details.

5.4. Manager Configuration Files 59

FireSim Documentation, Release 1.15.0

read_rate

This sets the rate at which AutoCounters are read. See the AutoCounter Runtime Parameters section for more details.

workload

This section defines the software that will run on the simulated system.

workload_name

This selects a workload to run across the set of simulated nodes. A workload consists of a series of jobs that need to
be run on simulated nodes (one job per node).

Workload definitions are located in firesim/deploy/workloads/*.json.

Some sample workloads:

linux-uniform.json: This runs the default FireSim Linux distro on as many nodes as you specify when setting the
target_config parameters.

spec17-intrate.json: This runs SPECint 2017’s rate benchmarks. In this type of workload, you should launch
EXACTLY the correct number of nodes necessary to run the benchmark. If you specify fewer nodes, the manager will
warn that not all jobs were assigned to a simulation. If you specify too many simulations and not enough jobs, the
manager will not launch the jobs.

Others can be found in the aforementioned directory. For a description of the JSON format, see Defining Custom
Workloads.

terminate_on_completion

Set this to no if you want your Run Farm to keep running once the workload has completed. Set this to yes if you want
your Run Farm to be TERMINATED after the workload has completed and results have been copied off.

suffix_tag

This allows you to append a string to a workload’s output directory name, useful for differentiating between successive
runs of the same workload, without renaming the entire workload. For example, specifying suffix_tag: test-v1
with a workload named super-application will result in a workload results directory named results-workload/
DATE--TIME-super-application-test-v1/.

host_debug

zero_out_dram

Set this to yes to zero-out FPGA-attached DRAM before simulation begins. This process takes 2-5 minutes. In general,
this is not required to produce deterministic simulations on target machines running linux, but should be enabled if you
observe simulation non-determinism.

60 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

disable_synth_asserts

Set this to yes to make the simulation ignore synthesized assertions when they fire. Otherwise, simulation will print
the assertion message and terminate when an assertion fires.

5.4.2 config_build.yaml

Here is a sample of this configuration file:

Build-time build design / AGFI configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
→˓html for documentation of all of these params.

this refers to build farms defined in config_build_farm.yaml
build_farm:
managerinit replace start
base_recipe: build-farm-recipes/aws_ec2.yaml
Uncomment and add args to override defaults.
Arg structure should be identical to the args given
in the base_recipe.
#recipe_arg_overrides:
<ARG>: <OVERRIDE>
managerinit replace end

builds_to_run:
this section references builds defined in config_build_recipes.yaml
if you add a build here, it will be built when you run buildafi

Unnetworked designs use a three-domain configuration
Tiles: 1600 MHz
<Rational Crossing>
Uncore: 800 MHz
<Async Crossing>
DRAM : 1000 MHz
- firesim_rocket_quadcore_no_nic_l2_llc4mb_ddr3
- firesim_boom_singlecore_no_nic_l2_llc4mb_ddr3

All NIC-based designs use the legacy FireSim frequency selection, with the
tiles and uncore running at 3.2 GHz to sustain 200Gb theoretical NIC BW
- firesim_supernode_rocket_singlecore_nic_l2_lbp
- firesim_rocket_quadcore_nic_l2_llc4mb_ddr3
- firesim_boom_singlecore_nic_l2_llc4mb_ddr3

Configs for tutorials
- firesim_rocket_singlecore_no_nic_l2_lbp
- firesim_rocket_singlecore_sha3_nic_l2_llc4mb_ddr3
- firesim_rocket_singlecore_sha3_no_nic_l2_llc4mb_ddr3
- firesim_rocket_singlecore_sha3_no_nic_l2_llc4mb_ddr3_printf

agfis_to_share:
- firesim_rocket_quadcore_nic_l2_llc4mb_ddr3
- firesim_rocket_quadcore_no_nic_l2_llc4mb_ddr3

(continues on next page)

5.4. Manager Configuration Files 61

FireSim Documentation, Release 1.15.0

(continued from previous page)

- firesim_boom_singlecore_no_nic_l2_llc4mb_ddr3
- firesim_boom_singlecore_nic_l2_llc4mb_ddr3

- firesim_supernode_rocket_singlecore_nic_l2_lbp

Configs for tutorials
- firesim_rocket_singlecore_no_nic_l2_lbp
- firesim_rocket_singlecore_sha3_nic_l2_llc4mb_ddr3
- firesim_rocket_singlecore_sha3_no_nic_l2_llc4mb_ddr3
- firesim_rocket_singlecore_sha3_no_nic_l2_llc4mb_ddr3_printf

share_with_accounts:
To share with a specific user:
somebodysname: 123456789012
To share publicly:
#public: public

Below, we outline each mapping in detail.

build_farm

In this section, you specify the specific build farm configuration that you wish to use to build FPGA bitstreams.

base_recipe

The base_recipe key/value pair specifies the default set of arguments to use for a particular build farm type. To
change the build farm type, a new base_recipe file must be provided from deploy/build-farm-recipes. You
are able to override the arguments given by a base_recipe by adding keys/values to the recipe_arg_overrides
mapping.

See Build Farm Recipes (build-farm-recipes/*) for more details on the potential build farm recipes that can be used.

62 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

recipe_arg_overrides

This optional mapping of keys/values allows you to override the default arguments provided by the base_recipe. This
mapping must match the same mapping structure as the argsmapping within the base_recipe file given. Overridden
arguments override recursively such that all key/values present in the override args replace the default arguments given
by the base_recipe. In the case of sequences, a overridden sequence completely replaces the corresponding sequence
in the default args. Additionally, it is not possible to change the default build farm type through these overrides. This
must be done by changing the default base_recipe.

builds_to_run

In this section, you can list as many build entries as you want to run for a particular call to the buildbitstream
command (see config_build_recipes.yaml below for how to define a build entry). For example, if we want to run the
builds named awesome_firesim_config and quad_core_awesome_firesim_config, we would write:

builds_to_run:
- awesome_firesim_config
- quad_core_awesome_firesim_config

agfis_to_share

Warning: This is only used in the AWS EC2 case.

This is used by the shareagfi command to share the specified agfis with the users specified in the next
(share_with_accounts) section. In this section, you should specify the section title (i.e. the name you made up) for
a hardware configuration in config_hwdb.yaml. For example, to share the hardware config:

firesim_rocket_quadcore_nic_l2_llc4mb_ddr3:
this is a comment that describes my favorite configuration!
agfi: agfi-0a6449b5894e96e53
deploy_triplet_override: null
custom_runtime_config: null

you would use:

agfis_to_share:
- firesim_rocket_quadcore_nic_l2_llc4mb_ddr3

share_with_accounts

Warning: This is only used in the AWS EC2 case.

A list of AWS account IDs that you want to share the AGFIs listed in agfis_to_sharewith when calling the manager’s
shareagfi command. You should specify names in the form usersname: AWSACCTID. The left-hand-side is just
for human readability, only the actual account IDs listed here matter. If you specify public: public here, the AGFIs
are shared publicly, regardless of any other entires that are present.

5.4. Manager Configuration Files 63

FireSim Documentation, Release 1.15.0

5.4.3 config_build_recipes.yaml

Here is a sample of this configuration file:

Build-time build recipe configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
→˓html for documentation of all of these params.

this file contains sections that describe hardware designs that /can/ be built.
edit config_build.yaml to actually "turn on" a config to be built when you run
buildafi

###########
Schema:
###########
<NAME>:
DESIGN: <>
TARGET_CONFIG: <>
PLATFORM_CONFIG: Config
deploy_triplet: null
post_build_hook: null
metasim_customruntimeconfig: "path to custom runtime config for metasims"
bit_builder_recipe:
OPTIONAL: overrides for bit builder recipe
Arg structure should be identical to the args given
in the base_recipe.
#bit_builder_arg_overrides:
<ARG>: <OVERRIDE>

Quad-core, Rocket-based recipes
REQUIRED FOR TUTORIALS
firesim_rocket_quadcore_nic_l2_llc4mb_ddr3:

DESIGN: FireSim
TARGET_CONFIG: WithNIC_DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_

→˓WithFireSimHighPerfConfigTweaks_chipyard.QuadRocketConfig
PLATFORM_CONFIG: WithAutoILA_F90MHz_BaseF1Config
deploy_triplet: null
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/f1.yaml

NB: This has a faster host-clock frequency than the NIC-based design, because
its uncore runs at half rate relative to the tile.
firesim_rocket_quadcore_no_nic_l2_llc4mb_ddr3:

DESIGN: FireSim
TARGET_CONFIG: DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_

→˓WithFireSimTestChipConfigTweaks_chipyard.QuadRocketConfig
PLATFORM_CONFIG: WithAutoILA_F140MHz_BaseF1Config
deploy_triplet: null
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/f1.yaml

(continues on next page)

64 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

(continued from previous page)

Single-core, BOOM-based recipes
REQUIRED FOR TUTORIALS
firesim_boom_singlecore_nic_l2_llc4mb_ddr3:

DESIGN: FireSim
TARGET_CONFIG: WithNIC_DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_

→˓WithFireSimHighPerfConfigTweaks_chipyard.LargeBoomConfig
PLATFORM_CONFIG: WithAutoILA_F65MHz_BaseF1Config
deploy_triplet: null
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/f1.yaml

NB: This has a faster host-clock frequency than the NIC-based design, because
its uncore runs at half rate relative to the tile.
firesim_boom_singlecore_no_nic_l2_llc4mb_ddr3:

DESIGN: FireSim
TARGET_CONFIG: DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_

→˓WithFireSimTestChipConfigTweaks_chipyard.LargeBoomConfig
PLATFORM_CONFIG: WithAutoILA_F65MHz_BaseF1Config
deploy_triplet: null
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/f1.yaml

Single-core, CVA6-based recipes
firesim_cva6_singlecore_no_nic_l2_llc4mb_ddr3:

DESIGN: FireSim
TARGET_CONFIG: DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_WithFireSimConfigTweaks_

→˓chipyard.CVA6Config
PLATFORM_CONFIG: WithAutoILA_F90MHz_BaseF1Config
deploy_triplet: null
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/f1.yaml

Single-core, Rocket-based recipes with Gemmini
firesim_rocket_singlecore_gemmini_no_nic_l2_llc4mb_ddr3:

DESIGN: FireSim
TARGET_CONFIG: DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_WithFireSimConfigTweaks_

→˓chipyard.GemminiRocketConfig
PLATFORM_CONFIG: WithAutoILA_F110MHz_BaseF1Config
deploy_triplet: null
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/f1.yaml

RAM Optimizations enabled by adding _MCRams PLATFORM_CONFIG string
firesim_boom_singlecore_no_nic_l2_llc4mb_ddr3_ramopts:

DESIGN: FireSim
TARGET_CONFIG: DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_

→˓WithFireSimTestChipConfigTweaks_chipyard.LargeBoomConfig
PLATFORM_CONFIG: WithAutoILA_MCRams_F90MHz_BaseF1Config

(continues on next page)

5.4. Manager Configuration Files 65

FireSim Documentation, Release 1.15.0

(continued from previous page)

deploy_triplet: null
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/f1.yaml

Supernode configurations -- multiple instances of an SoC in a single simulator
firesim_supernode_rocket_singlecore_nic_l2_lbp:

DESIGN: FireSim
TARGET_CONFIG: WithNIC_SupernodeFireSimRocketConfig
PLATFORM_CONFIG: WithAutoILA_F85MHz_BaseF1Config
deploy_triplet: null
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/f1.yaml

MIDAS Examples -- BUILD SUPPORT ONLY; Can't launch driver correctly on run farm
midasexamples_gcd:

TARGET_PROJECT: midasexamples
DESIGN: GCD
TARGET_CONFIG: NoConfig
PLATFORM_CONFIG: DefaultF1Config
deploy_triplet: null
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/f1.yaml

Additional Tutorial Config
firesim_rocket_singlecore_no_nic_l2_lbp:

DESIGN: FireSim
TARGET_CONFIG: WithDefaultFireSimBridges_WithFireSimHighPerfConfigTweaks_chipyard.

→˓RocketConfig
PLATFORM_CONFIG: F90MHz_BaseF1Config
deploy_triplet: null
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/f1.yaml

Additional Tutorial Config
firesim_rocket_singlecore_sha3_nic_l2_llc4mb_ddr3:

DESIGN: FireSim
TARGET_CONFIG: WithNIC_DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_

→˓WithFireSimHighPerfConfigTweaks_chipyard.Sha3RocketConfig
PLATFORM_CONFIG: F65MHz_BaseF1Config
deploy_triplet: null
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/f1.yaml

Additional Tutorial Config
firesim_rocket_singlecore_sha3_no_nic_l2_llc4mb_ddr3:

DESIGN: FireSim
TARGET_CONFIG: DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_

→˓WithFireSimHighPerfConfigTweaks_chipyard.Sha3RocketConfig (continues on next page)

66 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

(continued from previous page)

PLATFORM_CONFIG: F65MHz_BaseF1Config
deploy_triplet: null
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/f1.yaml

Additional Tutorial Config
firesim_rocket_singlecore_sha3_no_nic_l2_llc4mb_ddr3_printf:

DESIGN: FireSim
TARGET_CONFIG: DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_

→˓WithFireSimHighPerfConfigTweaks_chipyard.Sha3RocketPrintfConfig
PLATFORM_CONFIG: F30MHz_WithPrintfSynthesis_BaseF1Config
deploy_triplet: null
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/f1.yaml

Below, we outline each section and parameter in detail.

Build definition sections, e.g. awesome_firesim_config

In this file, you can specify as many build definition sections as you want, each with a header like
awesome_firesim_config (i.e. a nice, short name you made up). Such a section must contain the following fields:

DESIGN

This specifies the basic target design that will be built. Unless you are defining a custom system, this should be set to
FireSim. We describe this in greater detail in Generating Different Targets).

TARGET_CONFIG

This specifies the hardware configuration of the target being simulated. Some examples include
FireSimRocketConfig and FireSimQuadRocketConfig. We describe this in greater detail in Generating
Different Targets).

PLATFORM_CONFIG

This specifies hardware parameters of the simulation environment - for example, selecting be-
tween a Latency-Bandwidth Pipe or DDR3 memory models. These are defined in sim/firesim-
lib/src/main/scala/configs/CompilerConfigs.scala. We specify the host FPGA frequency in the PLATFORM_CONFIG by
appending a frequency Config with an underscore (ex. BaseF1Config_F160MHz). We describe this in greater detail
in Generating Different Targets).

5.4. Manager Configuration Files 67

https://www.github.com/firesim/firesim/blob/1.15.0/sim/firesim-lib/src/main/scala/configs/CompilerConfigs.scala
https://www.github.com/firesim/firesim/blob/1.15.0/sim/firesim-lib/src/main/scala/configs/CompilerConfigs.scala

FireSim Documentation, Release 1.15.0

deploy_triplet

This allows you to override the deploytriplet stored with the AGFI. Otherwise, the
DESIGN/TARGET_CONFIG/PLATFORM_CONFIG you specify above will be used. See the AGFI Tagging section
for more details. Most likely, you should leave this set to null. This is usually only used if you have proprietary RTL
that you bake into an FPGA image, but don’t want to share with users of the simulator.

TARGET_PROJECT (Optional)

This specifies the target project in which the target is defined (this is described in greater detail here). If
TARGET_PROJECT is undefined the manager will default to firesim. Setting TARGET_PROJECT is required for building
the MIDAS examples (TARGET_PROJECT: midasexamples) with the manager, or for building a user-provided target
project.

post_build_hook

(Optional) Provide an a script to run on the results copied back from a _single_ build instance. Upon completion of each
design’s build, the manager invokes this script and passing the absolute path to that instance’s build-results directory
as it’s first argument.

metasim_customruntimeconfig

This is an advanced feature - under normal conditions, you can use the default parameters generated automati-
cally by the simulator by setting this field to null for metasimulations. If you want to customize runtime pa-
rameters for certain parts of the metasimulation (e.g. the DRAM model’s runtime parameters), you can place a
custom config file in sim/custom-runtime-configs/. Then, set this field to the relative name of the config.
For example, sim/custom-runtime-configs/GREATCONFIG.conf becomes metasim_customruntimeconfig:
GREATCONFIG.conf.

bit_builder_recipe

This specifies the bitstream type to generate for a particular recipe (ex. build a Vitis xclbin). This must point to a file
in deploy/bit-builder-recipes/. See Bit Builder Recipes (bit-builder-recipes/*) for more details on bit builders
and their arguments.

bit_builder_arg_overrides

This optional mapping of keys/values allows you to override the default arguments provided by the
bit_builder_recipe. This mapping must match the same mapping structure as the args mapping within the
bit_builder_recipe file given. Overridden arguments override recursively such that all key/values present in the
override args replace the default arguments given by the bit_builder_recipe. In the case of sequences, a overridden
sequence completely replaces the corresponding sequence in the default args. Additionally, it is not possible to change
the default bit builder type through these overrides. This must be done by changing the default bit_builder_recipe.

68 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

5.4.4 config_hwdb.yaml

Here is a sample of this configuration file:

Hardware config database for FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
→˓html for documentation of all of these params.

Hardware configs represent a combination of an agfi, a deploytriplet override
(if needed), and a custom runtime config (if needed)

The AGFIs provided below are public and available to all users.
Only AGFIs for the latest release of FireSim are guaranteed to be available.
If you are using an older version of FireSim, you will need to generate your
own images.

DOCREF START: Example HWDB Entry
firesim_boom_singlecore_nic_l2_llc4mb_ddr3:

agfi: agfi-06ba7c84d860d03fa
deploy_triplet_override: null
custom_runtime_config: null

DOCREF END: Example HWDB Entry
firesim_boom_singlecore_no_nic_l2_llc4mb_ddr3:

agfi: agfi-0ac8c494fd62b8e2c
deploy_triplet_override: null
custom_runtime_config: null

firesim_rocket_quadcore_nic_l2_llc4mb_ddr3:
agfi: agfi-0ad7926bface872f3
deploy_triplet_override: null
custom_runtime_config: null

firesim_rocket_quadcore_no_nic_l2_llc4mb_ddr3:
agfi: agfi-0fc5aa0feadf563cf
deploy_triplet_override: null
custom_runtime_config: null

firesim_supernode_rocket_singlecore_nic_l2_lbp:
agfi: agfi-0c0b97c446af82c74
deploy_triplet_override: null
custom_runtime_config: null

firesim_rocket_singlecore_no_nic_l2_lbp:
agfi: agfi-02eb57a6b5f19b45b
deploy_triplet_override: null
custom_runtime_config: null

firesim_rocket_singlecore_sha3_nic_l2_llc4mb_ddr3:
agfi: agfi-0c16fdec246d5744b
deploy_triplet_override: null
custom_runtime_config: null

firesim_rocket_singlecore_sha3_no_nic_l2_llc4mb_ddr3:
agfi: agfi-0cbaac427a3ffed80
deploy_triplet_override: null
custom_runtime_config: null

firesim_rocket_singlecore_sha3_no_nic_l2_llc4mb_ddr3_printf:
agfi: agfi-0b2364562f988653c
deploy_triplet_override: null
custom_runtime_config: null

5.4. Manager Configuration Files 69

FireSim Documentation, Release 1.15.0

This file tracks hardware configurations that you can deploy as simulated nodes in FireSim. Each such configuration
contains a name for easy reference in higher-level configurations, defined in the section header, an handle to a bitstream
(an AGFI or xclbin path), which represents the FPGA image, a custom runtime config, if one is needed, and a deploy
triplet override if one is necessary.

When you build a new bitstream, you should put the default version of it in this file so that it can be referenced from
your other configuration files (the AGFI ID or xclbin path).

The following is an example section from this file - you can add as many of these as necessary:

firesim_boom_singlecore_nic_l2_llc4mb_ddr3:
agfi: agfi-06ba7c84d860d03fa
deploy_triplet_override: null
custom_runtime_config: null

NAME_GOES_HERE

In this example, firesim_rocket_quadcore_nic_l2_llc4mb_ddr3 is the name that will be used to reference this
hardware design in other configuration locations. The following items describe this hardware configuration:

agfi

This represents the AGFI (FPGA Image) used by this hardware configuration. Only used in AWS EC2 F1 FireSim
configurations (a xclbin key/value cannot exist with this key/value in the same recipe).

xclbin

This represents a path to a bitstream (FPGA Image) used by this hardware configuration. This path must be local to the
run farm host that the simulation runs on. Only used in Vitis FireSim configurations (an agfi key/value cannot exist
with this key/value in the same recipe)

deploy_triplet_override

This is an advanced feature - under normal conditions, you should leave this set to null, so that the manager uses the
configuration triplet that is automatically stored with the bitstream metadata at build time. Advanced users can set this
to a different value to build and use a different driver when deploying simulations. Since the driver depends on logic
now hardwired into the FPGA bitstream, drivers cannot generally be changed without requiring FPGA recompilation.

custom_runtime_config

This is an advanced feature - under normal conditions, you can use the default parameters generated automatically by the
simulator by setting this field to null. If you want to customize runtime parameters for certain parts of the simulation
(e.g. the DRAM model’s runtime parameters), you can place a custom config file in sim/custom-runtime-configs/
. Then, set this field to the relative name of the config. For example, sim/custom-runtime-configs/GREATCONFIG.
conf becomes custom_runtime_config: GREATCONFIG.conf.

70 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

Add more hardware config sections, like NAME_GOES_HERE_2

You can add as many of these entries to config_hwdb.yaml as you want, following the format discussed above (i.e.
you provide agfi or xclbin, deploy_triplet_override, and custom_runtime_config).

5.4.5 Run Farm Recipes (run-farm-recipes/*)

Here is an example of this configuration file:

AWS EC2 run farm hosts recipe.
all fields are required but can be overridden in the `*_runtime.yaml`

run_farm_type: AWSEC2F1
args:

managerinit arg start
tag to apply to run farm hosts
run_farm_tag: mainrunfarm
enable expanding run farm by run_farm_hosts given
always_expand_run_farm: true
minutes to retry attempting to request instances
launch_instances_timeout_minutes: 60
run farm host market to use (ondemand, spot)
run_instance_market: ondemand
if using spot instances, determine the interrupt behavior (terminate, stop,␣

→˓hibernate)
spot_interruption_behavior: terminate
if using spot instances, determine the max price
spot_max_price: ondemand
default location of the simulation directory on the run farm host
default_simulation_dir: /home/centos

run farm hosts to spawn: a mapping from a spec below (which is an EC2
instance type) to the number of instances of the given type that you
want in your runfarm.
run_farm_hosts_to_use:
- f1.16xlarge: 0
- f1.4xlarge: 0
- f1.2xlarge: 0
- m4.16xlarge: 0
- z1d.3xlarge: 0
- z1d.6xlarge: 0
- z1d.12xlarge: 0

managerinit arg end

REQUIRED: List of host "specifications", i.e. re-usable collections of
host parameters.
#
On EC2, most users will never need to edit this section,
unless you want to add new host instance types.
#
The "name" of a spec below (e.g. "f1.2xlarge" below) MUST be a valid EC2
instance type and is used to refer to the spec above.

(continues on next page)

5.4. Manager Configuration Files 71

FireSim Documentation, Release 1.15.0

(continued from previous page)

#
Besides required parameters shown below, each can have multiple OPTIONAL
arguments, called "override_*", corresponding to the "default_*" arguments
specified above. Each "override_*" argument overrides the corresponding
"default_*" argument in that run host spec.
#
Optional params include:
override_simulation_dir: /scratch/specific-build-host-build-dir
override_platform: EC2InstanceDeployManager
run_farm_host_specs:
- f1.2xlarge: # REQUIRED: On EC2, the spec name MUST be an EC2 instance type.

REQUIRED: number of FPGAs on the machine
num_fpgas: 1
REQUIRED: number of metasims this machine can host
num_metasims: 0
REQUIRED: whether it is acceptable to use machines of this spec
to host ONLY switches (e.g. any attached FPGAs are "wasted")
use_for_switch_only: false

- f1.4xlarge:
num_fpgas: 2
num_metasims: 0
use_for_switch_only: false

- f1.16xlarge:
num_fpgas: 8
num_metasims: 0
use_for_switch_only: false

- m4.16xlarge:
num_fpgas: 0
num_metasims: 0
use_for_switch_only: true

- z1d.3xlarge:
num_fpgas: 0
num_metasims: 1
use_for_switch_only: false

- z1d.6xlarge:
num_fpgas: 0
num_metasims: 2
use_for_switch_only: false

- z1d.12xlarge:
num_fpgas: 0
num_metasims: 8
use_for_switch_only: false

72 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

run_farm_type

This key/value specifies a run farm class to use for launching, managing, and terminating run farm hosts used for
simulations. By default, run farm classes can be found in deploy/runtools/run_farm.py. However, you can specify your
own custom run farm classes by adding your python file to the PYTHONPATH. For example, to use the AWSEC2F1 build
farm class, you would write run_farm_type: AWSEC2F1.

args

This section specifies all arguments needed for the specific run_farm_type used. For a list of arguments needed for
a run farm class, users should refer to the _parse_args function in the run farm class given by run_farm_type.

aws_ec2.yaml run farm recipe

This run farm recipe configures a FireSim run farm to use AWS EC2 instances.

Here is an example of this configuration file:

AWS EC2 run farm hosts recipe.
all fields are required but can be overridden in the `*_runtime.yaml`

run_farm_type: AWSEC2F1
args:

managerinit arg start
tag to apply to run farm hosts
run_farm_tag: mainrunfarm
enable expanding run farm by run_farm_hosts given
always_expand_run_farm: true
minutes to retry attempting to request instances
launch_instances_timeout_minutes: 60
run farm host market to use (ondemand, spot)
run_instance_market: ondemand
if using spot instances, determine the interrupt behavior (terminate, stop,␣

→˓hibernate)
spot_interruption_behavior: terminate
if using spot instances, determine the max price
spot_max_price: ondemand
default location of the simulation directory on the run farm host
default_simulation_dir: /home/centos

run farm hosts to spawn: a mapping from a spec below (which is an EC2
instance type) to the number of instances of the given type that you
want in your runfarm.
run_farm_hosts_to_use:
- f1.16xlarge: 0
- f1.4xlarge: 0
- f1.2xlarge: 0
- m4.16xlarge: 0
- z1d.3xlarge: 0
- z1d.6xlarge: 0
- z1d.12xlarge: 0

managerinit arg end
(continues on next page)

5.4. Manager Configuration Files 73

https://www.github.com/firesim/firesim/blob/1.15.0/deploy/runtools/run_farm.py

FireSim Documentation, Release 1.15.0

(continued from previous page)

REQUIRED: List of host "specifications", i.e. re-usable collections of
host parameters.
#
On EC2, most users will never need to edit this section,
unless you want to add new host instance types.
#
The "name" of a spec below (e.g. "f1.2xlarge" below) MUST be a valid EC2
instance type and is used to refer to the spec above.
#
Besides required parameters shown below, each can have multiple OPTIONAL
arguments, called "override_*", corresponding to the "default_*" arguments
specified above. Each "override_*" argument overrides the corresponding
"default_*" argument in that run host spec.
#
Optional params include:
override_simulation_dir: /scratch/specific-build-host-build-dir
override_platform: EC2InstanceDeployManager
run_farm_host_specs:
- f1.2xlarge: # REQUIRED: On EC2, the spec name MUST be an EC2 instance type.

REQUIRED: number of FPGAs on the machine
num_fpgas: 1
REQUIRED: number of metasims this machine can host
num_metasims: 0
REQUIRED: whether it is acceptable to use machines of this spec
to host ONLY switches (e.g. any attached FPGAs are "wasted")
use_for_switch_only: false

- f1.4xlarge:
num_fpgas: 2
num_metasims: 0
use_for_switch_only: false

- f1.16xlarge:
num_fpgas: 8
num_metasims: 0
use_for_switch_only: false

- m4.16xlarge:
num_fpgas: 0
num_metasims: 0
use_for_switch_only: true

- z1d.3xlarge:
num_fpgas: 0
num_metasims: 1
use_for_switch_only: false

- z1d.6xlarge:
num_fpgas: 0
num_metasims: 2
use_for_switch_only: false

- z1d.12xlarge:
num_fpgas: 0
num_metasims: 8
use_for_switch_only: false

74 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

run_farm_tag

Use run_farm_tag to differentiate between different Run Farms in FireSim. Having multiple config_runtime.
yaml files with different run_farm_tag values allows you to run many experiments at once from the same manager
instance.

The instances launched by the launchrunfarm command will be tagged with this value. All later operations done by
the manager rely on this tag, so you should not change it unless you are done with your current Run Farm.

Per AWS restrictions, this tag can be no longer than 255 characters.

always_expand_runfarm

When yes (the default behavior when not given) the number of instances of each type (see f1.16xlarges etc. below)
are launched every time you run launchrunfarm.

When no, launchrunfarm looks for already existing instances that match run_farm_tag and treat f1.16xlarges
(and other ‘instance-type’ values below) as a total count.

For example, if you have f1.2xlarges set to 100 and the first time you run launchrunfarm you have
launch_instances_timeout_minutes set to 0 (i.e. giveup after receiving a ClientError for each Availabili-
tyZone) and AWS is only able to provide you 75 f1.2xlarges because of capacity issues, always_expand_runfarm
changes the behavior of launchrunfarm in subsequent attempts. yes means launchrunfarm will try to launch 100
f1.2xlarges again. no means that launchrunfarm will only try to launch an additional 25 f1.2xlarges because
it will see that there are already 75 that have been launched with the same run_farm_tag.

launch_instances_timeout_minutes

Integer number of minutes that the launchrunfarm command will attempt to request new instances before giving
up. This limit is used for each of the types of instances being requested. For example, if you set to 60, and you are
requesting all four types of instances, launchrunfarm will try to launch each instance type for 60 minutes, possibly
trying up to a total of four hours.

This limit starts to be applied from the first time launchrunfarm receives a ClientError response in all Availabil-
ityZones (AZs) for your region. In other words, if you request more instances than can possibly be requested in the
given limit but AWS is able to satisfy all of the requests, the limit will not be enforced.

To experience the old (<= 1.12) behavior, set this limit to 0 and launchrunfarm will exit the first time it receives
ClientError across all AZ’s. The old behavior is also the default if launch_instances_timeout_minutes is not
included.

run_instance_market

You can specify either spot or ondemand here, to use one of those markets on AWS.

5.4. Manager Configuration Files 75

FireSim Documentation, Release 1.15.0

spot_interruption_behavior

When run_instance_market: spot, this value determines what happens to an instance if it receives the interrup-
tion signal from AWS. You can specify either hibernate, stop, or terminate.

spot_max_price

When run_instance_market: spot, this value determines the max price you are willing to pay per instance, in
dollars. You can also set it to ondemand to set your max to the on-demand price for the instance.

default_simulation_dir

This is the path on the run farm host that simulations will run out of.

run_farm_hosts_to_use

This is a sequence of unique specifications (given by run_farm_host_specs) to number of instances needed. Set
these key/value pairs respectively based on the number and types of instances you need. While we could automate this
setting, we choose not to, so that users are never surprised by how many instances they are running.

Note that these values are ONLY used to launch instances. After launch, the manager will query the AWS API to find
the instances of each type that have the run_farm_tag set above assigned to them.

Also refer to always_expand_runfarm which determines whether launchrunfarm treats these counts as an incre-
mental amount to be launched every time it is envoked or a total number of instances of that type and run_farm_tag
that should be made to exist. Note, launchrunfarm will never terminate instances.

run_farm_host_specs

This is a sequence of specifications that describe a AWS EC2 instance and its properties. A sequence con-
sists of the AWS EC2 instance name (i.e. f1.2xlarge) and number of FPGAs it supports (num_fpgas), num-
ber of metasims it could support (num_metasims), and if the instance should only host switch simulations
(use_for_switch_only). Additionally, a specification can optionally add override_simulation_dir to over-
ride the default_simulation_dir for that specific run farm host. Similarly, a specification can optionally add
override_platform to choose a different default deploy manager platform for that specific run farm host (for more
details on this see the following section). By default, the deploy manager is setup for AWS EC2 simulations.

externally_provisioned.yaml run farm recipe

This run farm is an allows users to provide an list of pre-setup unmanaged run farm hosts (by hostname or IP address)
that they can run simulations on. Note that this run farm type does not launch or terminate the run farm hosts. This
functionality should be handled by the user. For example, users can use this run farm type to run simulations locally.

Here is an example of this configuration file:

Unmanaged list of run farm hosts. Assumed that they are pre-setup to run simulations.
all fields are required but can be overridden in the `*_runtime.yaml`

run_farm_type: ExternallyProvisioned
args:

(continues on next page)

76 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

(continued from previous page)

managerinit arg start
REQUIRED: default platform used for run farm hosts. this is a class specifying
how to run simulations on a run farm host.
default_platform: EC2InstanceDeployManager

REQUIRED: default directory where simulations are run out of on the run farm hosts
default_simulation_dir: /home/centos

REQUIRED: List of unique hostnames/IP addresses, each with their
corresponding specification that describes the properties of the host.
#
Ex:
run_farm_hosts_to_use:
use localhost which is described by "four_fpgas_spec" below.
- localhost: four_fpgas_spec
supply IP address, which points to a machine that is described
by "four_fpgas_spec" below.
- "111.111.1.111": four_fpgas_spec
run_farm_hosts_to_use:

- localhost: four_fpgas_spec
managerinit arg end

REQUIRED: List of host "specifications", i.e. re-usable collections of
host parameters.
#
The "name" of a spec (e.g. "four_fpgas_spec" below) is user-determined
and is used to refer to the spec above.
#
Besides required parameters shown below, each can have multiple OPTIONAL
arguments, called "override_*", corresponding to the "default_*" arguments
specified above. Each "override_*" argument overrides the corresponding
"default_*" argument in that run host spec.
#
Optional params include:
override_simulation_dir: /scratch/specific-build-host-build-dir
override_platform: EC2InstanceDeployManager
run_farm_host_specs:

- four_fpgas_spec:
REQUIRED: number of FPGAs on the machine
num_fpgas: 4
REQUIRED: number of metasims this machine can host
num_metasims: 0
REQUIRED: whether it is acceptable to use machines of this spec
to host ONLY switches (e.g. any attached FPGAs are "wasted")
use_for_switch_only: false

- four_metasims_spec:
num_fpgas: 0
num_metasims: 4
use_for_switch_only: false

- switch_only_spec:
(continues on next page)

5.4. Manager Configuration Files 77

FireSim Documentation, Release 1.15.0

(continued from previous page)

num_fpgas: 0
num_metasims: 0
use_for_switch_only: true

- one_fpga_spec:
num_fpgas: 1
num_metasims: 0
use_for_switch_only: false

default_platform

This key/value specifies a default deploy platform (also known as a deploy manager) class to use for managing sim-
ulations across all run farm hosts. For example, this class manages how to flash FPGAs with bitstreams, how to
copy back results, and how to check if a simulation is running. By default, deploy platform classes can be found
in deploy/runtools/run_farm_deploy_managers.py. However, you can specify your own custom run farm classes by
adding your python file to the PYTHONPATH. There are two default deploy managers / platforms that correspond to AWS
EC2 F1 FPGAs and Vitis FPGAs, EC2InstanceDeployManager and VitisInstanceDeployManager, respectively.
For example, to use the EC2InstanceDeployManager deploy platform class, you would write default_platform:
EC2InstanceDeployManager.

default_simulation_dir

This is the default path on all run farm hosts that simulations will run out of.

run_farm_hosts_to_use

This is a sequence of unique hostnames/IP address to specifications (given by run_farm_host_specs). Set these
key/value pairs respectively to map unmanaged run farm hosts to their description (given by a specification). For
example, to run simulations locally, a user can write a sequence element with - localhost: four_fpgas_spec to
indicate that localhost should be used and that it has a type of four_fpgas_spec.

run_farm_host_specs

This is a sequence of specifications that describe an unmanaged run farm host and its properties. A sequence
consists of the specification name (i.e. four_fpgas_spec) and number of FPGAs it supports (num_fpgas),
number of metasims it could support (num_metasims), and if the instance should only host switch simulations
(use_for_switch_only). Additionally, a specification can optionally add override_simulation_dir to over-
ride the default_simulation_dir for that specific run farm host. Similarly, a specification can optionally add
override_platform to choose a different default_platform for that specific run farm host.

78 Chapter 5. Manager Usage (the firesim command)

https://www.github.com/firesim/firesim/blob/1.15.0/deploy/runtools/run_farm_deploy_managers.py

FireSim Documentation, Release 1.15.0

5.4.6 Build Farm Recipes (build-farm-recipes/*)

Here is an example of this configuration file:

Build-time build farm design configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
→˓html for documentation of all of these params.
all fields are required but can be overridden in the `*_runtime.yaml`

###########
Schema:
###########
Class name of the build farm type.
This can be determined from `deploy/buildtools/buildfarm.py`).
build_farm_type: <TYPE NAME>
args:
Build farm arguments that are passed to the `BuildFarmHostDispatcher`
object. Determined by looking at `parse_args` function of class.
<K/V pairs of args>

Note: For large designs (ones that would fill a EC2 F1.2xlarge/Xilinx VU9P)
Vivado uses in excess of 32 GiB. Keep this in mind when selecting a
non-default instance type.
build_farm_type: AWSEC2
args:

managerinit arg start
instance type to use per build
instance_type: z1d.2xlarge
instance market to use per build (ondemand, spot)
build_instance_market: ondemand
if using spot instances, determine the interrupt behavior (terminate, stop,␣

→˓hibernate)
spot_interruption_behavior: terminate
if using spot instances, determine the max price
spot_max_price: ondemand
default location of build directory on build host
default_build_dir: /home/centos/firesim-build
managerinit arg end

build_farm_type

This key/value specifies a build farm class to use for launching, managing, and terminating build farm hosts used for
building bitstreams. By default, build farm classes can be found in deploy/buildtools/buildfarm.py. However, you can
specify your own custom build farm classes by adding your python file to the PYTHONPATH. For example, to use the
AWSEC2 build farm class, you would write build_farm_type: AWSEC2.

5.4. Manager Configuration Files 79

https://www.github.com/firesim/firesim/blob/1.15.0/deploy/buildtools/buildfarm.py

FireSim Documentation, Release 1.15.0

args

This section specifies all arguments needed for the specific build_farm_type used. For a list of arguments needed for
a build farm class, users should refer to the _parse_args function in the build farm class given by build_farm_type.

aws_ec2.yaml build farm recipe

This build farm recipe configures a FireSim build farm to use AWS EC2 instances enabled with Vivado.

Here is an example of this configuration file:

Build-time build farm design configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
→˓html for documentation of all of these params.
all fields are required but can be overridden in the `*_runtime.yaml`

###########
Schema:
###########
Class name of the build farm type.
This can be determined from `deploy/buildtools/buildfarm.py`).
build_farm_type: <TYPE NAME>
args:
Build farm arguments that are passed to the `BuildFarmHostDispatcher`
object. Determined by looking at `parse_args` function of class.
<K/V pairs of args>

Note: For large designs (ones that would fill a EC2 F1.2xlarge/Xilinx VU9P)
Vivado uses in excess of 32 GiB. Keep this in mind when selecting a
non-default instance type.
build_farm_type: AWSEC2
args:

managerinit arg start
instance type to use per build
instance_type: z1d.2xlarge
instance market to use per build (ondemand, spot)
build_instance_market: ondemand
if using spot instances, determine the interrupt behavior (terminate, stop,␣

→˓hibernate)
spot_interruption_behavior: terminate
if using spot instances, determine the max price
spot_max_price: ondemand
default location of build directory on build host
default_build_dir: /home/centos/firesim-build
managerinit arg end

80 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

instance_type

The AWS EC2 instance name to run a bitstream build on. Note that for large designs, Vivado uses an excess of 32 GiB
so choose a non-default instance type wisely.

build_instance_market

You can specify either spot or ondemand here, to use one of those markets on AWS.

spot_interruption_behavior

When run_instance_market: spot, this value determines what happens to an instance if it receives the interrup-
tion signal from AWS. You can specify either hibernate, stop, or terminate.

spot_max_price

When build_instance_market: spot, this value determines the max price you are willing to pay per instance, in
dollars. You can also set it to ondemand to set your max to the on-demand price for the instance.

default_build_dir

This is the path on the build farm host that bitstream builds will run out of.

externally_provisioned.yaml build farm recipe

This build farm recipe allows users to provide an list of pre-setup unmanaged build farm hosts (by hostname or IP
address) that they can run bitstream builds on. Note that this build farm type does not launch or terminate the build
farm hosts. This functionality should be handled by the user. For example, users can use this build farm type to run
bitstream builds locally.

Here is an example of this configuration file:

Build-time build farm design configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
→˓html for documentation of all of these params.

###########
Schema:
###########
Class name of the build farm type.
This can be determined from `deploy/buildtools/buildfarm.py`).
build_farm_type: <TYPE NAME>
args:
Build farm arguments that are passed to the `BuildFarmHostDispatcher`
object. Determined by looking at `parse_args` function of class.
<K/V pairs of args>

Unmanaged list of build hosts. Assumed that they are pre-setup to run builds.
build_farm_type: ExternallyProvisioned

(continues on next page)

5.4. Manager Configuration Files 81

FireSim Documentation, Release 1.15.0

(continued from previous page)

args:
managerinit arg start
REQUIRED: (replace this) default location of build directory on build host.
default_build_dir: null
REQUIRED: List of IP addresses (or "localhost"). Each can have an OPTIONAL
argument, called "override_build_dir", specifying to override the default
build directory.
#
Ex:
build_farm_hosts:
use localhost and don't override the default build dir
- localhost
use other IP address (don't override default build dir)
- "111.111.1.111"
use other IP address (override default build dir for this build host)
- "222.222.2.222":
override_build_dir: /scratch/specific-build-host-build-dir
build_farm_hosts:

- localhost
managerinit arg end

default_build_dir

This is the default path on all the build farm hosts that bitstream builds will run out of.

build_farm_hosts

This is a sequence of unique hostnames/IP addresses that should be used as build farm hosts. Each build farm host
(given by the unique hostname/IP address) can have an optional mapping that provides an override_build_dir that
overrides the default_build_dir given just for that build farm host.

5.4.7 Bit Builder Recipes (bit-builder-recipes/*)

Here is an example of this configuration file:

Build-time bitbuilder design configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
→˓html for documentation of all of these params.

###########
Schema:
###########
Class name of the bitbuilder type.
This can be determined from `deploy/buildtools/bitbuilder.py`).
bitbuilder_type: <TYPE NAME>
args:
Bitbuilder arguments that are passed to the `BitBuilder`
object. Determined by looking at `_parse_args` function of class.
<K/V pairs of args>

(continues on next page)

82 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

(continued from previous page)

bit_builder_type: F1BitBuilder
args:

REQUIRED: name of s3 bucket
s3_bucket_name: firesim
REQUIRED: append aws username and current region to s3_bucket_name?
append_userid_region: true

bit_builder_type

This key/value specifies a bit builder class to use for building bitstreams. By default, bit builder classes can be
found in deploy/buildtools/bitbuilder.py. However, you can specify your own custom bit builder classes by adding
your python file to the PYTHONPATH. For example, to use the F1BitBuilder build farm class, you would write
bit_builder_type: F1BitBuilder.

args

This section specifies all arguments needed for the specific bit_builder_type used. For a list of arguments needed for
a bit builder class, users should refer to the _parse_args function in the bit builder class given by bit_builder_type.

f1.yaml bit builder recipe

This bit builder recipe configures a build farm host to build an AWS EC2 F1 AGFI (FPGA bitstream).

Here is an example of this configuration file:

Build-time bitbuilder design configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
→˓html for documentation of all of these params.

###########
Schema:
###########
Class name of the bitbuilder type.
This can be determined from `deploy/buildtools/bitbuilder.py`).
bitbuilder_type: <TYPE NAME>
args:
Bitbuilder arguments that are passed to the `BitBuilder`
object. Determined by looking at `_parse_args` function of class.
<K/V pairs of args>

bit_builder_type: F1BitBuilder
args:

REQUIRED: name of s3 bucket
s3_bucket_name: firesim
REQUIRED: append aws username and current region to s3_bucket_name?
append_userid_region: true

5.4. Manager Configuration Files 83

https://www.github.com/firesim/firesim/blob/1.15.0/deploy/buildtools/bitbuilder.py

FireSim Documentation, Release 1.15.0

s3_bucket_name

This is used behind the scenes in the AGFI creation process. You will only ever need to access this bucket manually if
there is a failure in AGFI creation in Amazon’s backend.

Naming rules: this must be all lowercase and you should stick to letters and numbers ([a-z0-9]).

The first time you try to run a build, the FireSim manager will try to create the bucket you name here. If the name is
unavailable, it will complain and you will need to change this name. Once you choose a working name, you should
never need to change it.

In general, firesim-yournamehere is a good choice.

append_userid_region

When enabled, this appends the current users AWS user ID and region to the s3_bucket_name.

vitis.yaml bit builder recipe

This bit builder recipe configures a build farm host to build an Vitis U250 (FPGA bitstream called an xclbin). This
bit builder doesn’t have any arguments associated with it.

Here is an example of this configuration file:

Build-time bitbuilder design configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
→˓html for documentation of all of these params.

###########
Schema:
###########
Class name of the bitbuilder type.
This can be determined from `deploy/buildtools/bitbuilder.py`).
bitbuilder_type: <TYPE NAME>
args:
Bitbuilder arguments that are passed to the `BitBuilder`
object. Determined by looking at `_parse_args` function of class.
<K/V pairs of args>

bit_builder_type: VitisBitBuilder
args: null

5.5 Manager Environment Variables

This page contains a centralized reference for the environment variables used by the manager.

84 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

5.5.1 FIRESIM_RUNFARM_PREFIX

This environment variable is used to prefix all Run Farm tags with some prefix in the AWS EC2 case. This is useful
for separating run farms between multiple copies of FireSim.

This is set in sourceme-f1-manager.sh, so you can change it and commit it (e.g. if you’re maintaining a branch for
special runs). It can be unset or set to the empty string.

5.6 Manager Network Topology Definitions (user_topology.py)

Custom network topologies are specified as Python snippets that construct a tree. You can see examples of these in
deploy/runtools/user_topology.py, shown below. Better documentation of this API will be available once it stabilizes.

Fundamentally, you create a list of roots, which consists of switch or server nodes, then construct a tree by adding
downlinks to these roots. Since links are bi-directional, adding a downlink from node A to node B implicitly adds an
uplink from B to A.

You can add additional topology generation methods here, then use them in config_runtime.yaml.

5.6.1 user_topology.py contents:

""" Define your additional topologies here. The FireSimTopology class inherits
from UserToplogies and thus can instantiate your topology. """

from __future__ import annotations

from runtools.firesim_topology_elements import FireSimSwitchNode, FireSimServerNode,␣
→˓FireSimSuperNodeServerNode, FireSimDummyServerNode, FireSimNode

from typing import Optional, Union, Callable, Sequence, TYPE_CHECKING, cast, List, Any
if TYPE_CHECKING:

from runtools.firesim_topology_with_passes import FireSimTopologyWithPasses

class UserTopologies:
""" A class that just separates out user-defined/configurable topologies
from the rest of the boilerplate in FireSimTopology() """
no_net_num_nodes: int
custom_mapper: Optional[Union[Callable, str]]
roots: Sequence[FireSimNode]

def __init__(self, no_net_num_nodes: int) -> None:
self.no_net_num_nodes = no_net_num_nodes
self.custom_mapper = None
self.roots = []

def clos_m_n_r(self, m: int, n: int, r: int) -> None:
""" DO NOT USE THIS DIRECTLY, USE ONE OF THE INSTANTIATIONS BELOW. """
""" Clos topol where:
m = number of root switches
n = number of links to nodes on leaf switches
r = number of leaf switches

(continues on next page)

5.6. Manager Network Topology Definitions (user_topology.py) 85

https://www.github.com/firesim/firesim/blob/1.15.0/deploy/runtools/user_topology.py

FireSim Documentation, Release 1.15.0

(continued from previous page)

and each leaf switch has a link to each root switch.

With the default mapping specified below, you will need:
m switch nodes (on F1: m4.16xlarges).
n fpga nodes (on F1: f1.16xlarges).

TODO: improve this later to pack leaf switches with <= 4 downlinks onto
one 16x.large.
"""

rootswitches = [FireSimSwitchNode() for x in range(m)]
self.roots = rootswitches
leafswitches = [FireSimSwitchNode() for x in range(r)]
servers = [[FireSimServerNode() for x in range(n)] for y in range(r)]
for rswitch in rootswitches:

rswitch.add_downlinks(leafswitches)

for leafswitch, servergroup in zip(leafswitches, servers):
leafswitch.add_downlinks(servergroup)

def custom_mapper(fsim_topol_with_passes: FireSimTopologyWithPasses) -> None:
for i, rswitch in enumerate(rootswitches):

switch_inst_handle = fsim_topol_with_passes.run_farm.get_switch_only_
→˓host_handle()

switch_inst = fsim_topol_with_passes.run_farm.allocate_sim_host(switch_
→˓inst_handle)

switch_inst.add_switch(rswitch)

for j, lswitch in enumerate(leafswitches):
numsims = len(servers[j])
inst_handle = fsim_topol_with_passes.run_farm.get_smallest_sim_host_

→˓handle(num_sims=numsims)
sim_inst = fsim_topol_with_passes.run_farm.allocate_sim_host(inst_handle)
sim_inst.add_switch(lswitch)
for sim in servers[j]:

sim_inst.add_simulation(sim)

self.custom_mapper = custom_mapper

def clos_2_8_2(self) -> None:
""" clos topol with:
2 roots
8 nodes/leaf
2 leaves. """
self.clos_m_n_r(2, 8, 2)

def clos_8_8_16(self) -> None:
""" clos topol with:
8 roots
8 nodes/leaf
16 leaves. = 128 nodes."""
self.clos_m_n_r(8, 8, 16)

(continues on next page)

86 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

(continued from previous page)

def fat_tree_4ary(self) -> None:
4-ary fat tree as described in
http://ccr.sigcomm.org/online/files/p63-alfares.pdf
coreswitches = [FireSimSwitchNode() for x in range(4)]
self.roots = coreswitches
aggrswitches = [FireSimSwitchNode() for x in range(8)]
edgeswitches = [FireSimSwitchNode() for x in range(8)]
servers = [FireSimServerNode() for x in range(16)]
for switchno in range(len(coreswitches)):

core = coreswitches[switchno]
base = 0 if switchno < 2 else 1
dls = list(map(lambda x: aggrswitches[x], range(base, 8, 2)))
core.add_downlinks(dls)

for switchbaseno in range(0, len(aggrswitches), 2):
switchno = switchbaseno + 0
aggr = aggrswitches[switchno]
aggr.add_downlinks([edgeswitches[switchno], edgeswitches[switchno+1]])
switchno = switchbaseno + 1
aggr = aggrswitches[switchno]
aggr.add_downlinks([edgeswitches[switchno-1], edgeswitches[switchno]])

for edgeno in range(len(edgeswitches)):
edgeswitches[edgeno].add_downlinks([servers[edgeno*2], servers[edgeno*2+1]])

def custom_mapper(fsim_topol_with_passes: FireSimTopologyWithPasses) -> None:
""" In a custom mapper, you have access to the firesim topology with passes,
where you can access the run_farm nodes:

Requires 2 fpga nodes w/ 8+ fpgas and 1 switch node

To map, call add_switch or add_simulation on run farm instance
objs in the aforementioned arrays.

Because of the scope of this fn, you also have access to whatever
stuff you created in the topology itself, which we expect will be
useful for performing the mapping."""

map the fat tree onto one switch host instance (for core switches)
and two 8-sim-slot (e.g. 8-fpga) instances
(e.g., two pods of aggr/edge/4sims per f1.16xlarge)

switch_inst_handle = fsim_topol_with_passes.run_farm.get_switch_only_host_
→˓handle()

switch_inst = fsim_topol_with_passes.run_farm.allocate_sim_host(switch_inst_
→˓handle)

for core in coreswitches:
switch_inst.add_switch(core)

eight_sim_host_handle = fsim_topol_with_passes.run_farm.get_smallest_sim_
→˓host_handle(num_sims=8)

sim_hosts = [fsim_topol_with_passes.run_farm.allocate_sim_host(eight_sim_
→˓host_handle) for _ in range(2)] (continues on next page)

5.6. Manager Network Topology Definitions (user_topology.py) 87

FireSim Documentation, Release 1.15.0

(continued from previous page)

for aggrsw in aggrswitches[:4]:
sim_hosts[0].add_switch(aggrsw)

for aggrsw in aggrswitches[4:]:
sim_hosts[1].add_switch(aggrsw)

for edgesw in edgeswitches[:4]:
sim_hosts[0].add_switch(edgesw)

for edgesw in edgeswitches[4:]:
sim_hosts[1].add_switch(edgesw)

for sim in servers[:8]:
sim_hosts[0].add_simulation(sim)

for sim in servers[8:]:
sim_hosts[1].add_simulation(sim)

self.custom_mapper = custom_mapper

def example_multilink(self) -> None:
self.roots = [FireSimSwitchNode()]
midswitch = FireSimSwitchNode()
lowerlayer = [midswitch for x in range(16)]
self.roots[0].add_downlinks(lowerlayer)
servers = [FireSimServerNode()]
midswitch.add_downlinks(servers)

def example_multilink_32(self) -> None:
self.roots = [FireSimSwitchNode()]
midswitch = FireSimSwitchNode()
lowerlayer = [midswitch for x in range(32)]
self.roots[0].add_downlinks(lowerlayer)
servers = [FireSimServerNode()]
midswitch.add_downlinks(servers)

def example_multilink_64(self) -> None:
self.roots = [FireSimSwitchNode()]
midswitch = FireSimSwitchNode()
lowerlayer = [midswitch for x in range(64)]
self.roots[0].add_downlinks(lowerlayer)
servers = [FireSimServerNode()]
midswitch.add_downlinks(servers)

def example_cross_links(self) -> None:
self.roots = [FireSimSwitchNode() for x in range(2)]
midswitches = [FireSimSwitchNode() for x in range(2)]
self.roots[0].add_downlinks(midswitches)
self.roots[1].add_downlinks(midswitches)
servers = [FireSimServerNode() for x in range(2)]
midswitches[0].add_downlinks([servers[0]])
midswitches[1].add_downlinks([servers[1]])

def small_hierarchy_8sims(self) -> None:
(continues on next page)

88 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

(continued from previous page)

self.custom_mapper = 'mapping_use_one_8_slot_node'
self.roots = [FireSimSwitchNode()]
midlevel = [FireSimSwitchNode() for x in range(4)]
servers = [[FireSimServerNode() for x in range(2)] for x in range(4)]
self.roots[0].add_downlinks(midlevel)
for swno in range(len(midlevel)):

midlevel[swno].add_downlinks(servers[swno])

def small_hierarchy_2sims(self) -> None:
self.custom_mapper = 'mapping_use_one_8_slot_node'
self.roots = [FireSimSwitchNode()]
midlevel = [FireSimSwitchNode() for x in range(1)]
servers = [[FireSimServerNode() for x in range(2)] for x in range(1)]
self.roots[0].add_downlinks(midlevel)
for swno in range(len(midlevel)):

midlevel[swno].add_downlinks(servers[swno])

def example_1config(self) -> None:
self.roots = [FireSimSwitchNode()]
servers = [FireSimServerNode() for y in range(1)]
self.roots[0].add_downlinks(servers)

def example_2config(self) -> None:
self.roots = [FireSimSwitchNode()]
servers = [FireSimServerNode() for y in range(2)]
self.roots[0].add_downlinks(servers)

def example_4config(self) -> None:
self.roots = [FireSimSwitchNode()]
servers = [FireSimServerNode() for y in range(4)]
self.roots[0].add_downlinks(servers)

def example_8config(self) -> None:
self.roots = [FireSimSwitchNode()]
servers = [FireSimServerNode() for y in range(8)]
self.roots[0].add_downlinks(servers)

def example_16config(self) -> None:
self.roots = [FireSimSwitchNode()]
level2switches = [FireSimSwitchNode() for x in range(2)]
servers = [[FireSimServerNode() for y in range(8)] for x in range(2)]

for root in self.roots:
root.add_downlinks(level2switches)

for l2switchNo in range(len(level2switches)):
level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

def example_32config(self) -> None:
self.roots = [FireSimSwitchNode()]
level2switches = [FireSimSwitchNode() for x in range(4)]
servers = [[FireSimServerNode() for y in range(8)] for x in range(4)]

(continues on next page)

5.6. Manager Network Topology Definitions (user_topology.py) 89

FireSim Documentation, Release 1.15.0

(continued from previous page)

for root in self.roots:
root.add_downlinks(level2switches)

for l2switchNo in range(len(level2switches)):
level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

def example_64config(self) -> None:
self.roots = [FireSimSwitchNode()]
level2switches = [FireSimSwitchNode() for x in range(8)]
servers = [[FireSimServerNode() for y in range(8)] for x in range(8)]

for root in self.roots:
root.add_downlinks(level2switches)

for l2switchNo in range(len(level2switches)):
level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

def example_128config(self) -> None:
self.roots = [FireSimSwitchNode()]
level1switches = [FireSimSwitchNode() for x in range(2)]
level2switches = [[FireSimSwitchNode() for x in range(8)] for x in range(2)]
servers = [[[FireSimServerNode() for y in range(8)] for x in range(8)] for x in␣

→˓range(2)]

self.roots[0].add_downlinks(level1switches)

for switchno in range(len(level1switches)):
level1switches[switchno].add_downlinks(level2switches[switchno])

for switchgroupno in range(len(level2switches)):
for switchno in range(len(level2switches[switchgroupno])):

level2switches[switchgroupno][switchno].add_
→˓downlinks(servers[switchgroupno][switchno])

def example_256config(self) -> None:
self.roots = [FireSimSwitchNode()]
level1switches = [FireSimSwitchNode() for x in range(4)]
level2switches = [[FireSimSwitchNode() for x in range(8)] for x in range(4)]
servers = [[[FireSimServerNode() for y in range(8)] for x in range(8)] for x in␣

→˓range(4)]

self.roots[0].add_downlinks(level1switches)

for switchno in range(len(level1switches)):
level1switches[switchno].add_downlinks(level2switches[switchno])

for switchgroupno in range(len(level2switches)):
for switchno in range(len(level2switches[switchgroupno])):

level2switches[switchgroupno][switchno].add_
→˓downlinks(servers[switchgroupno][switchno])

(continues on next page)

90 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

(continued from previous page)

@staticmethod
def supernode_flatten(arr: List[Any]) -> List[Any]:

res: List[Any] = []
for x in arr:

res = res + x
return res

def supernode_example_6config(self) -> None:
self.roots = [FireSimSwitchNode()]
self.roots[0].add_downlinks([FireSimSuperNodeServerNode()])
self.roots[0].add_downlinks([FireSimDummyServerNode() for x in range(5)])

def supernode_example_4config(self) -> None:
self.roots = [FireSimSwitchNode()]
self.roots[0].add_downlinks([FireSimSuperNodeServerNode()])
self.roots[0].add_downlinks([FireSimDummyServerNode() for x in range(3)])

def supernode_example_8config(self) -> None:
self.roots = [FireSimSwitchNode()]
servers = UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),␣

→˓FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in␣
→˓range(2)])

self.roots[0].add_downlinks(servers)

def supernode_example_16config(self) -> None:
self.roots = [FireSimSwitchNode()]
servers = UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),␣

→˓FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in␣
→˓range(4)])

self.roots[0].add_downlinks(servers)

def supernode_example_32config(self) -> None:
self.roots = [FireSimSwitchNode()]
servers = UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),␣

→˓FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in␣
→˓range(8)])

self.roots[0].add_downlinks(servers)

def supernode_example_64config(self) -> None:
self.roots = [FireSimSwitchNode()]
level2switches = [FireSimSwitchNode() for x in range(2)]
servers = [UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),␣

→˓FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in␣
→˓range(8)]) for x in range(2)]

for root in self.roots:
root.add_downlinks(level2switches)

for l2switchNo in range(len(level2switches)):
level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

def supernode_example_128config(self) -> None:
self.roots = [FireSimSwitchNode()]
level2switches = [FireSimSwitchNode() for x in range(4)]

(continues on next page)

5.6. Manager Network Topology Definitions (user_topology.py) 91

FireSim Documentation, Release 1.15.0

(continued from previous page)

servers = [UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),␣
→˓FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in␣
→˓range(8)]) for x in range(4)]

for root in self.roots:
root.add_downlinks(level2switches)

for l2switchNo in range(len(level2switches)):
level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

def supernode_example_256config(self) -> None:
self.roots = [FireSimSwitchNode()]
level2switches = [FireSimSwitchNode() for x in range(8)]
servers = [UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),␣

→˓FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in␣
→˓range(8)]) for x in range(8)]

for root in self.roots:
root.add_downlinks(level2switches)

for l2switchNo in range(len(level2switches)):
level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

def supernode_example_512config(self) -> None:
self.roots = [FireSimSwitchNode()]
level1switches = [FireSimSwitchNode() for x in range(2)]
level2switches = [[FireSimSwitchNode() for x in range(8)] for x in range(2)]
servers = [[UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),␣

→˓FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in␣
→˓range(8)]) for x in range(8)] for x in range(2)]

self.roots[0].add_downlinks(level1switches)
for switchno in range(len(level1switches)):

level1switches[switchno].add_downlinks(level2switches[switchno])
for switchgroupno in range(len(level2switches)):

for switchno in range(len(level2switches[switchgroupno])):
level2switches[switchgroupno][switchno].add_

→˓downlinks(servers[switchgroupno][switchno])

def supernode_example_1024config(self) -> None:
self.roots = [FireSimSwitchNode()]
level1switches = [FireSimSwitchNode() for x in range(4)]
level2switches = [[FireSimSwitchNode() for x in range(8)] for x in range(4)]
servers = [[UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),␣

→˓FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in␣
→˓range(8)]) for x in range(8)] for x in range(4)]

self.roots[0].add_downlinks(level1switches)
for switchno in range(len(level1switches)):

level1switches[switchno].add_downlinks(level2switches[switchno])
for switchgroupno in range(len(level2switches)):

for switchno in range(len(level2switches[switchgroupno])):
level2switches[switchgroupno][switchno].add_

→˓downlinks(servers[switchgroupno][switchno])

def supernode_example_deep64config(self) -> None:
self.roots = [FireSimSwitchNode()]
level1switches = [FireSimSwitchNode() for x in range(2)]

(continues on next page)

92 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation, Release 1.15.0

(continued from previous page)

level2switches = [[FireSimSwitchNode() for x in range(1)] for x in range(2)]
servers = [[UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),␣

→˓FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in␣
→˓range(8)]) for x in range(1)] for x in range(2)]

self.roots[0].add_downlinks(level1switches)
for switchno in range(len(level1switches)):

level1switches[switchno].add_downlinks(level2switches[switchno])
for switchgroupno in range(len(level2switches)):

for switchno in range(len(level2switches[switchgroupno])):
level2switches[switchgroupno][switchno].add_

→˓downlinks(servers[switchgroupno][switchno])

def dual_example_8config(self) -> None:
""" two separate 8-node clusters for experiments, e.g. memcached mutilate. """
self.roots = [FireSimSwitchNode()] * 2
servers = [FireSimServerNode() for y in range(8)]
servers2 = [FireSimServerNode() for y in range(8)]
self.roots[0].add_downlinks(servers)
self.roots[1].add_downlinks(servers2)

def triple_example_8config(self) -> None:
""" three separate 8-node clusters for experiments, e.g. memcached mutilate. """
self.roots = [FireSimSwitchNode()] * 3
servers = [FireSimServerNode() for y in range(8)]
servers2 = [FireSimServerNode() for y in range(8)]
servers3 = [FireSimServerNode() for y in range(8)]
self.roots[0].add_downlinks(servers)
self.roots[1].add_downlinks(servers2)
self.roots[2].add_downlinks(servers3)

def no_net_config(self) -> None:
self.roots = [FireSimServerNode() for x in range(self.no_net_num_nodes)]

Spins up all of the precompiled, unnetworked targets
def all_no_net_targets_config(self) -> None:

hwdb_entries = [
"firesim_boom_singlecore_no_nic_l2_llc4mb_ddr3",
"firesim_rocket_quadcore_no_nic_l2_llc4mb_ddr3",

]
assert len(hwdb_entries) == self.no_net_num_nodes
self.roots = [FireSimServerNode(hwdb_entries[x]) for x in range(self.no_net_num_

→˓nodes)]

######Used only for tutorial purposes####################
def example_sha3hetero_2config(self):
self.roots= [FireSimSwitchNode()]
servers = [FireSimServerNode(server_hardware_config=
"firesim_boom_singlecore_nic_l2_llc4mb_ddr3"),
FireSimServerNode(server_hardware_config=
"firesim_rocket_singlecore_sha3_nic_l2_llc4mb_ddr3")]
self.roots[0].add_downlinks(servers)

5.6. Manager Network Topology Definitions (user_topology.py) 93

FireSim Documentation, Release 1.15.0

5.7 AGFI Metadata/Tagging

In the AWS EC2 case, when you build an AGFI in FireSim, the AGFI description stored by AWS is populated with
metadata that helps the manager decide how to deploy a simulation. The important metadata is listed below, along with
how each field is set and used:

• firesim-buildtriplet: This always reflects the triplet combination used to BUILD the AGFI.

• firesim-deploytriplet: This reflects the triplet combination that is used to DEPLOY the AGFI. By default,
this is the same as firesim-buildtriplet. In certain cases however, your users may not have access to a
particular configuration, but a simpler configuration may be sufficient for building a compatible software driver
(e.g. if you have proprietary RTL in your FPGA image that doesn’t interface with the outside system). In this
case, you can specify a custom deploytriplet at build time. If you do not do so, the manager will automatically
set this to be the same as firesim-buildtriplet.

• firesim-commit: This is the commit hash of the version of FireSim used to build this AGFI. If the AGFI was
created from a dirty copy of the FireSim repo, “-dirty” will be appended to the commit hash.

94 Chapter 5. Manager Usage (the firesim command)

CHAPTER

SIX

WORKLOADS

This section describes workload definitions in FireSim.

6.1 Defining Custom Workloads

This page documents the JSON input format that FireSim uses to understand your software workloads that run on the
target design. Most of the time, you should not be writing these files from scratch. Instead, use FireMarshal to build a
workload (including Linux kernel images and root filesystems) and use firemarshal’s install command to generate
an initial .json file for FireSim. Once you generate a base .json with FireMarshal, you can add some of the options
noted on this page to control additional files used as inputs/outputs to/from simulations.

Workloads in FireSim consist of a series of Jobs that are assigned to be run on individual simulations. Currently, we
require that a Workload defines either:

• A single type of job, that is run on as many simulations as specfied by the user. These workloads are usually
suffixed with -uniform, which indicates that all nodes in the workload run the same job. An example of such a
workload is deploy/workloads/linux-uniform.json.

• Several different jobs, in which case there must be exactly as many jobs as there are running simulated nodes.
An example of such a workload is deploy/workloads/ping-latency.json.

FireSim uses these workload definitions to help the manager deploy your simulations. Historically, there was also a
script to build workloads using these JSON files, but this has been replaced with a more powerful tool, FireMarshal.
New workloads should always be built with FireMarshal.

In the following subsections, we will go through the two aforementioned example workload configurations, describing
the how the manager uses each part of the JSON file inline.

The following examples use the default buildroot-based linux distribution (br-base). In order to customize Fedora, you
should refer to the Running Fedora on FireSim page.

6.1.1 Uniform Workload JSON

deploy/workloads/linux-uniform.json is an example of a “uniform” style workload, where each simulated node runs
the same software configuration.

Let’s take a look at this file:

{
"benchmark_name" : "linux-uniform",
"common_bootbinary" : "br-base-bin",
"common_rootfs" : "br-base.img",

(continues on next page)

95

https://www.github.com/firesim/firesim/blob/1.15.0/deploy/workloads/linux-uniform.json
https://www.github.com/firesim/firesim/blob/1.15.0/deploy/workloads/ping-latency.json
https://www.github.com/firesim/firesim/blob/1.15.0/deploy/workloads/linux-uniform.json

FireSim Documentation, Release 1.15.0

(continued from previous page)

"common_outputs" : ["/etc/os-release"],
"common_simulation_outputs" : ["uartlog", "memory_stats*.csv"]

}

There is also a corresponding directory named after this workload/file:

centos@ip-192-168-2-7.ec2.internal:~/firesim/deploy/workloads/linux-uniform$ ls -la
total 4
drwxrwxr-x 2 centos centos 69 Feb 8 00:07 .
drwxrwxr-x 19 centos centos 4096 Feb 8 00:39 ..
lrwxrwxrwx 1 centos centos 47 Feb 7 00:38 br-base-bin -> ../../../sw/firesim-
→˓software/images/br-base-bin
lrwxrwxrwx 1 centos centos 53 Feb 8 00:07 br-base-bin-dwarf -> ../../../sw/firesim-
→˓software/images/br-base-bin-dwarf
lrwxrwxrwx 1 centos centos 47 Feb 7 00:38 br-base.img -> ../../../sw/firesim-
→˓software/images/br-base.img

We will elaborate on this later.

Looking at the JSON file, you’ll notice that this is a relatively simple workload definition.

In this “uniform” case, the manager will name simulations after the benchmark_name field, appending a number for
each simulation using the workload (e.g. linux-uniform0, linux-uniform1, and so on). It is standard pratice to
keep benchmark_name, the JSON filename, and the above directory name the same. In this case, we have set all of
them to linux-uniform.

Next, the common_bootbinary field represents the binary that the simulations in this workload are expected to boot
from. The manager will copy this binary for each of the nodes in the simulation (each gets its own copy). The
common_bootbinary path is relative to the workload’s directory, in this case deploy/workloads/linux-uniform. You’ll
notice in the above output from ls -la that this is actually just a symlink to br-base-bin that is built by the Fire-
Marshal tool.

Similarly, the common_rootfs field represents the disk image that the simulations in this workload are expected to
boot from. The manager will copy this root filesystem image for each of the nodes in the simulation (each gets its own
copy). The common_rootfs path is relative to the workload’s directory, in this case deploy/workloads/linux-uniform.
You’ll notice in the above output from ls -la that this is actually just a symlink to br-base.img that is built by the
FireMarshal tool.

The common_outputs field is a list of outputs that the manager will copy out of the root filesystem image AFTER
a simulation completes. In this simple example, when a workload running on a simulated cluster with firesim
runworkload completes, /etc/os-release will be copied out from each rootfs and placed in the job’s output direc-
tory within the workload’s output directory (See the firesim runworkload section). You can add multiple paths here.
Additionally, you can use bash globbing for file names (ex: file*name).

The common_simulation_outputs field is a list of outputs that the manager will copy off of the simulation host
machine AFTER a simulation completes. In this example, when a workload running on a simulated cluster with
firesim runworkload completes, the uartlog (an automatically generated file that contains the full console output
of the simulated system) and memory_stats.csv files will be copied out of the simulation’s base directory on the host
instance and placed in the job’s output directory within the workload’s output directory (see the firesim runworkload
section). You can add multiple paths here. Additionally, you can use bash globbing for file names (ex: file*name).

96 Chapter 6. Workloads

https://www.github.com/firesim/firesim/blob/1.15.0/deploy/workloads/linux-uniform
https://www.github.com/firesim/firesim/blob/1.15.0/deploy/workloads/linux-uniform

FireSim Documentation, Release 1.15.0

6.1.2 Non-uniform Workload JSON (explicit job per simulated node)

Now, we’ll look at the ping-latency workload, which explicitly defines a job per simulated node.

{
"benchmark_name" : "ping-latency",
"common_bootbinary" : "bbl-vmlinux",
"common_outputs" : [],
"common_simulation_inputs" : [],
"common_simulation_outputs" : ["uartlog"],
"no_post_run_hook": "",
"workloads" : [
{
"name": "pinger",
"simulation_inputs": [],
"simulation_outputs": [],
"outputs": []

},
{
"name": "pingee",
"simulation_inputs": [],
"simulation_outputs": [],
"outputs": []

},
{
"name": "idler-1",
"simulation_inputs": [],
"simulation_outputs": [],
"outputs": []

},
{
"name": "idler-2",
"simulation_inputs": [],
"simulation_outputs": [],
"outputs": []

},
{
"name": "idler-3",
"simulation_inputs": [],
"simulation_outputs": [],
"outputs": []

},
{
"name": "idler-4",
"simulation_inputs": [],
"simulation_outputs": [],
"outputs": []

},
{
"name": "idler-5",
"simulation_inputs": [],
"simulation_outputs": [],
"outputs": []

(continues on next page)

6.1. Defining Custom Workloads 97

FireSim Documentation, Release 1.15.0

(continued from previous page)

},
{
"name": "idler-6",
"simulation_inputs": [],
"simulation_outputs": [],
"outputs": []

}
]

}

Additionally, let’s take a look at the state of the ping-latency directory AFTER the workload is built (assume that a
tool like FireMarshal already created the rootfses and linux images):

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/workloads/ping-
→˓latency$ ls -la
total 15203216
drwxrwxr-x 3 centos centos 4096 May 18 07:45 .
drwxrwxr-x 13 centos centos 4096 May 18 17:14 ..
lrwxrwxrwx 1 centos centos 41 May 17 21:58 bbl-vmlinux -> ../linux-uniform/br-
→˓base-bin
-rw-rw-r-- 1 centos centos 7 May 17 21:58 .gitignore
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-1.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-2.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-3.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-4.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-5.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:46 idler-6.ext2
drwxrwxr-x 3 centos centos 16 May 17 21:58 overlay
-rw-r--r-- 1 centos centos 1946009600 May 18 07:44 pingee.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:44 pinger.ext2
-rw-rw-r-- 1 centos centos 2236 May 17 21:58 ping-latency-graph.py

First, let’s identify some of these files:

• bbl-vmlinux: This workload just uses the default linux binary generated for the linux-uniform workload.

• .gitignore: This just ignores the generated rootfses, which you probably don’t want to commit to the repo.

• idler-[1-6].ext2, pingee.ext2, pinger.ext2: These are rootfses that we want to run on different nodes
in our simulation. They can be generated with a tool like FireMarshal.

Next, let’s review some of the new fields present in this JSON file:

• common_simulation_inputs: This is an array of extra files that you would like to supply to the simulator
as input. One example is supplying files containing DWARF debugging info for TracerV + Stack Unwinding.
See the Modifying your workload description section of the TracerV + Flame Graphs: Profiling Software with
Out-of-Band Flame Graph Generation page for an example.

• no_post_run_hook: This is a placeholder for running a script on your manager automatically once your work-
load completes. To use this option, rename it to post_run_hook and supply a command to be run. The manager
will automatically suffix the command with the path of the workload’s results directory.

• workloads: This time, you’ll notice that we have this array, which is populated by objects that represent indi-
vidual jobs (note the naming discrepancy here, from here on out, we will refer to the contents of this array as
jobs rather than workloads). Each job has some additional fields:

98 Chapter 6. Workloads

FireSim Documentation, Release 1.15.0

– name: In this case, jobs are each assigned a name manually. These names MUST BE UNIQUE within a
particular workload.

– simulation_inputs: Just like common_simulation_inputs, but specific to this job.

– simulation_outputs: Just like common_simulation_outputs, but specific to this job.

– outputs: Just like common_outputs, but specific to this job.

Because each of these jobs do not supply a rootfs field, the manager instead assumes that that the rootfs for each job
is named name.ext2. To explicitly supply a rootfs name that is distinct from the job name, add the rootfs field to a
job and supply a path relative to the workload’s directory.

Once you specify the .json for this workload (and assuming you have built the corresponding rootfses with FireMar-
shal, you can run it with the manager by setting workload_name: ping-latency.json in config_runtime.ini.
The manager will automatically look for the generated rootfses (based on workload and job names that it reads from
the JSON) and distribute work appropriately.

Just like in the uniform case, it will copy back the results that we specify in the JSON file. We’ll end up with a directory
in firesim/deploy/results-workload/ named after the workload name, with a subdirectory named after each job
in the workload, which will contain the output files we want.

6.2 FireMarshal

Workload generation in FireSim is handled by a tool called FireMarshal in firesim/sw/firesim-software/.

Workloads in FireMarshal consist of a series of Jobs that are assigned to logical nodes in the target system. If no jobs
are specified, then the workload is considered uniform and only a single image will be produced for all nodes in the
system. Workloads are described by a json file and a corresponding workload directory and can inherit their defini-
tions from existing workloads. Typically, workload configurations are kept in sw/firesim-software/workloads/
although you can use any directory you like. We provide a few basic workloads to start with including buildroot or
Fedora-based linux distributions and bare-metal.

Once you define a workload, the marshal command will produce a corresponding boot-binary and rootfs for each job
in the workload. This binary and rootfs can then be launched on qemu or spike (for functional simulation), or installed
to firesim for running on real RTL.

For more information, see the official FireMarshal documentation, and its quickstart tutorial.

6.3 SPEC 2017

SPEC2017 support in FireSim is provided through FireMarshal, which cross-compiles spec using Speckle in Chipyard.
Build SPEC2017 in <chipyard-dir>/target-software/spec2017, and then install to FireSim’s workload direc-
tory using FireMarshal’s install command. See https://github.com/ucb-bar/spec2017-workload for more detail on the
SPEC2017 workload definition.

When using reference inputs, SPEC workloads tend to complete within one to two days, but this varies strongly as a
function of the target microarchitecture, FPGA frequency, and FMR.

6.2. FireMarshal 99

https://firemarshal.readthedocs.io/en/latest/
https://firemarshal.readthedocs.io/en/latest/Tutorials/quickstart.html
https://github.com/ucb-bar/spec2017-workload

FireSim Documentation, Release 1.15.0

6.4 Running Fedora on FireSim

FireSim also supports running a fedora-based linux workload. To build this workload, you can follow FireMarshal’s
quickstart guide (replace all instances of br-base.json with fedora-base.json).

To boot Fedora on FireSim, we provide a pre-written FireSim workload JSON deploy/workloads/fedora-uniform.json,
that points to the generated Fedora images. Simply change the workload_name option in your config_runtime.ini
to fedora-uniform.json and then follow the standard FireSim procedure for booting a workload (e.g. Running a
Single Node Simulation or Running a Cluster Simulation).

6.5 ISCA 2018 Experiments

This page contains descriptions of the experiments in our ISCA 2018 paper and instructions for reproducing them on
your own simulations.

One important difference between the configuration used in the ISCA 2018 paper and the open-source release of FireSim
is that the ISCA paper used a proprietary L2 cache design that is not open-source. Instead, the open-source FireSim
uses an LLC model that models the behavior of having an L2 cache as part of the memory model. Even with the LLC
model, you should be able to see the same trends in these experiments, but exact numbers may vary.

Each section below describes the resources necessary to run the experiment. Some of these experiments require a large
number of instances – you should make sure you understand the resource requirements before you run one of the scripts.

Compatiblity: These were last tested with commit 4769e5d86acf6a9508d2b5a63141dc80a6ef20a6 (Oct. 2019) of
FireSim. After this commit, the Linux version in FireSim has been bumped past Linux 4.15. To reproduce workloads
that rely on OS behavior that has changed, like memcached-thread-imbalance, you must use the last tested Oct.
2019 commit.

6.5.1 Prerequisites

These guides assume that you have previously followed the single-node/cluster-scale experiment guides in the FireSim
documentation. Note that these are advanced experiments, not introductory tutorials.

6.5.2 Building Benchmark Binaries/Rootfses

We include scripts to automatically build all of the benchmark rootfs images that will be used below. To
build them, make sure you have already run ./marshal build workloads/br-base.json in firesim/sw/
firesim-software, then run:

cd firesim/deploy/workloads/
make allpaper

100 Chapter 6. Workloads

https://firemarshal.readthedocs.io/en/latest/quickstart.html
https://www.github.com/firesim/firesim/blob/1.15.0/deploy/workloads/fedora-uniform.json
https://sagark.org/assets/pubs/firesim-isca2018.pdf

FireSim Documentation, Release 1.15.0

6.5.3 Figure 5: Ping Latency vs. Configured Link Latency

Resource requirements:

run_farm_tag: pinglatency-mainrunfarm
run_farm_hosts_to_use:
- f1.16xlarge: 1

To Run:

cd firesim/deploy/workloads/
./run-ping-latency.sh withlaunch

6.5.4 Figure 6: Network Bandwidth Saturation

Resource requirements:

run_farm_tag: bwtest-mainrunfarm
run_farm_hosts_to_use:
- f1.16xlarge: 2

To Run:

cd firesim/deploy/workloads/
./run-bw-test.sh withlaunch

6.5.5 Figure 7: Memcached QoS / Thread Imbalance

Resource requirements:

run_farm_tag: memcached-mainrunfarm
run_farm_hosts_to_use:
- f1.16xlarge: 3

To Run:

cd firesim/deploy/workloads/
./run-memcached-thread-imbalance.sh withlaunch

6.5.6 Figure 8: Simulation Rate vs. Scale

Resource requirements:

run_farm_tag: simperftestscale-mainrunfarm
run_farm_hosts_to_use:
- f1.16xlarge: 32

To Run:

cd firesim/deploy/workloads/
./run-simperf-test-scale.sh withlaunch

6.5. ISCA 2018 Experiments 101

FireSim Documentation, Release 1.15.0

A similar benchmark is also provided for supernode mode, see run-simperf-test-scale-supernode.sh.

6.5.7 Figure 9: Simulation Rate vs. Link Latency

Resource requirements:

run_farm_tag: simperftestlatency-mainrunfarm
run_farm_hosts_to_use:
- f1.16xlarge: 1

To Run:

cd firesim/deploy/workloads/
./run-simperf-test-latency.sh withlaunch

A similar benchmark for supernode mode will be provided soon. See https://github.com/firesim/firesim/issues/244

6.5.8 Running all experiments at once

This script simply executes all of the above scripts in parallel. One caveat is that the bw-test script currently cannot run
in parallel with the others, since it requires patching the switches. This will be resolved in a future release.

cd firesim/deploy/workloads/
./run-all.sh

6.6 GAP Benchmark Suite

You can run the reference implementation of the GAP (Graph Algorithm Performance) Benchmark Suite. We provide
scripts that cross-compile the graph kernels for RISCV.

For more information about the benchmark itself, please refer to the site: http://gap.cs.berkeley.edu/benchmark.html

Some notes:

• Only the Kron input graph is currently supported.

• Benchmark uses graph500 input graph size of 2^20 vertices by default. test input size has 2^10 vertices and
can be used by specifying an argument into make: make gapbs input=test

• The reference input size with 2^27 verticies is not currently supported.

By default, the gapbs workload definition runs the benchmark multithreaded with number of threads equal to the
number of cores. To change the number of threads, you need to edit firesim/deploy/workloads/runscripts/
gapbs-scripts/gapbs.sh. Additionally, the workload does not verify the output of the benchmark by default. To
change this, add a --verify parameter to the json.

To Build Binaries and RootFSes:

cd firesim/deploy/workloads/
make gapbs

Run Resource Requirements:

102 Chapter 6. Workloads

https://github.com/firesim/firesim/issues/244
http://gap.cs.berkeley.edu/benchmark.html

FireSim Documentation, Release 1.15.0

run_farm_tag: gapbs-runfarm
run_farm_hosts_to_use:
- f1.16xlarge: 0

To Run:

./run-workload.sh workloads/gapbs.yaml --withlaunch

Simulation times are host and target dependent. For reference, on a four-core rocket-based SoC with a DDR3 + 1 MiB
LLC model, with a 90 MHz host clock, test and graph500 input sizes finish in a few minutes.

6.7 [DEPRECATED] Defining Custom Workloads

Danger: This version of the Defining Custom Workloads page is kept here to document some of the legacy
workload configurations still present in deploy/workloads/. New workloads should NOT be generated using
these instructions. New workloads should be written by following the current version of the Defining Custom
Workloads page.

Workloads in FireSim consist of a series of Jobs that are assigned to be run on individual simulations. Currently, we
require that a Workload defines either:

• A single type of job, that is run on as many simulations as specfied by the user. These workloads are usually
suffixed with -uniform, which indicates that all nodes in the workload run the same job. An example of such a
workload is deploy/workloads/linux-uniform.json.

• Several different jobs, in which case there must be exactly as many jobs as there are running simulated nodes.
An example of such a workload is deploy/workloads/ping-latency.json.

FireSim can take these workload definitions and perform two functions:

• Building workloads using deploy/workloads/gen-benchmark-rootfs.py

• Deploying workloads using the manager

In the following subsections, we will go through the two aforementioned example workload configurations, describing
how these two functions use each part of the json file inline.

ERRATA: You will notice in the following json files the field “workloads” this should really be named “jobs” – we
will fix this in a future release.

ERRATA: The following instructions assume the default buildroot-based linux distribution (br-base). In order to
customize Fedora, you should build the basic Fedora image (as described in Running Fedora on FireSim) and modify
the image directly (or in QEMU). Imporantly, Fedora currently does not support the “command” option for workloads.

6.7. [DEPRECATED] Defining Custom Workloads 103

https://www.github.com/firesim/firesim/blob/1.15.0/deploy/workloads/linux-uniform.json
https://www.github.com/firesim/firesim/blob/1.15.0/deploy/workloads/ping-latency.json
https://www.github.com/firesim/firesim/blob/1.15.0/deploy/workloads/gen-benchmark-rootfs.py

FireSim Documentation, Release 1.15.0

6.7.1 Uniform Workload JSON

deploy/workloads/linux-uniform.json is an example of a “uniform” style workload, where each simulated node runs
the same software configuration.

Let’s take a look at this file:

{
"benchmark_name" : "linux-uniform",
"common_bootbinary" : "br-base-bin",
"common_rootfs" : "br-base.img",
"common_outputs" : ["/etc/os-release"],
"common_simulation_outputs" : ["uartlog", "memory_stats*.csv"]

}

There is also a corresponding directory named after this workload/file:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/workloads/linux-
→˓uniform$ ls -la
total 4
drwxrwxr-x 2 centos centos 42 May 17 21:58 .
drwxrwxr-x 13 centos centos 4096 May 18 17:14 ..
lrwxrwxrwx 1 centos centos 41 May 17 21:58 br-base-bin -> ../../../sw/firesim-
→˓software/images/br-base-bin
lrwxrwxrwx 1 centos centos 41 May 17 21:58 br-base.img -> ../../../sw/firesim-
→˓software/images/br-base.img

We will elaborate on this later.

Looking at the JSON file, you’ll notice that this is a relatively simple workload definition.

In this “uniform” case, the manager will name simulations after the benchmark_name field, appending a number for
each simulation using the workload (e.g. linux-uniform0, linux-uniform1, and so on). It is standard pratice to
keep benchmark_name, the json filename, and the above directory name the same. In this case, we have set all of them
to linux-uniform.

Next, the common_bootbinary field represents the binary that the simulations in this workload are expected to boot
from. The manager will copy this binary for each of the nodes in the simulation (each gets its own copy). The
common_bootbinary path is relative to the workload’s directory, in this case deploy/workloads/linux-uniform. You’ll
notice in the above output from ls -la that this is actually just a symlink to br-base-bin that is built by the Fire-
Marshal tool.

Similarly, the common_rootfs field represents the disk image that the simulations in this workload are expected to
boot from. The manager will copy this root filesystem image for each of the nodes in the simulation (each gets its own
copy). The common_rootfs path is relative to the workload’s directory, in this case deploy/workloads/linux-uniform.
You’ll notice in the above output from ls -la that this is actually just a symlink to br-base.img that is built by the
FireMarshal tool.

The common_outputs field is a list of outputs that the manager will copy out of the root filesystem image AFTER
a simulation completes. In this simple example, when a workload running on a simulated cluster with firesim
runworkload completes, /etc/os-release will be copied out from each rootfs and placed in the job’s output di-
rectory within the workload’s output directory (See the firesim runworkload section). You can add multiple paths
here.

The common_simulation_outputs field is a list of outputs that the manager will copy off of the simulation host
machine AFTER a simulation completes. In this example, when a workload running on a simulated cluster with
firesim runworkload completes, the uartlog (an automatically generated file that contains the full console output
of the simulated system) and memory_stats.csv files will be copied out of the simulation’s base directory on the host

104 Chapter 6. Workloads

https://www.github.com/firesim/firesim/blob/1.15.0/deploy/workloads/linux-uniform.json
https://www.github.com/firesim/firesim/blob/1.15.0/deploy/workloads/linux-uniform
https://www.github.com/firesim/firesim/blob/1.15.0/deploy/workloads/linux-uniform

FireSim Documentation, Release 1.15.0

instance and placed in the job’s output directory within the workload’s output directory (see the firesim runworkload
section). You can add multiple paths here.

ERRATA: “Uniform” style workloads currently do not support being automatically built – you can currently hack
around this by building the rootfs as a single-node non-uniform workload, then deleting the workloads field of the
JSON to make the manager treat it as a uniform workload. This will be fixed in a future release.

6.7.2 Non-uniform Workload JSON (explicit job per simulated node)

Now, we’ll look at the ping-latency workload, which explicitly defines a job per simulated node.

{
"common_bootbinary" : "bbl-vmlinux",
"benchmark_name" : "ping-latency",
"deliver_dir" : "/",
"common_args" : [],
"common_files" : ["bin/pinglatency.sh"],
"common_outputs" : [],
"common_simulation_outputs" : ["uartlog"],
"no_post_run_hook": "",
"workloads" : [
{
"name": "pinger",
"files": [],
"command": "pinglatency.sh && poweroff -f",
"simulation_outputs": [],
"outputs": []

},
{
"name": "pingee",
"files": [],
"command": "while true; do sleep 1000; done",
"simulation_outputs": [],
"outputs": []

},
{
"name": "idler-1",
"files": [],
"command": "while true; do sleep 1000; done",
"simulation_outputs": [],
"outputs": []

},
{
"name": "idler-2",
"files": [],
"command": "while true; do sleep 1000; done",
"simulation_outputs": [],
"outputs": []

},
{
"name": "idler-3",
"files": [],
"command": "while true; do sleep 1000; done",

(continues on next page)

6.7. [DEPRECATED] Defining Custom Workloads 105

FireSim Documentation, Release 1.15.0

(continued from previous page)

"simulation_outputs": [],
"outputs": []

},
{
"name": "idler-4",
"files": [],
"command": "while true; do sleep 1000; done",
"simulation_outputs": [],
"outputs": []

},
{
"name": "idler-5",
"files": [],
"command": "while true; do sleep 1000; done",
"simulation_outputs": [],
"outputs": []

},
{
"name": "idler-6",
"files": [],
"command": "while true; do sleep 1000; done",
"simulation_outputs": [],
"outputs": []

}
]

}

Additionally, let’s take a look at the state of the ping-latency directory AFTER the workload is built:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/workloads/ping-
→˓latency$ ls -la
total 15203216
drwxrwxr-x 3 centos centos 4096 May 18 07:45 .
drwxrwxr-x 13 centos centos 4096 May 18 17:14 ..
lrwxrwxrwx 1 centos centos 41 May 17 21:58 bbl-vmlinux -> ../linux-uniform/br-
→˓base-bin
-rw-rw-r-- 1 centos centos 7 May 17 21:58 .gitignore
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-1.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-2.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-3.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-4.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-5.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:46 idler-6.ext2
drwxrwxr-x 3 centos centos 16 May 17 21:58 overlay
-rw-r--r-- 1 centos centos 1946009600 May 18 07:44 pingee.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:44 pinger.ext2
-rw-rw-r-- 1 centos centos 2236 May 17 21:58 ping-latency-graph.py

First, let’s identify some of these files:

• bbl-vmlinux: Just like in the linux-uniform case, this workload just uses the default Linux binary gen-
erated in firesim-software. Note that it’s named differently here, but still symlinks to br-base-bin in
linux-uniform.

106 Chapter 6. Workloads

FireSim Documentation, Release 1.15.0

• .gitignore: This just ignores the generated rootfses, which we’ll learn about below.

• idler-[1-6].ext2, pingee.ext2, pinger.ext2: These are rootfses that are generated from the json script
above. We’ll learn how to do this shortly.

Additionally, let’s look at the overlay subdirectory:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/workloads/ping-
→˓latency/overlay$ ls -la */*
-rwxrwxr-x 1 centos centos 249 May 17 21:58 bin/pinglatency.sh

This is a file that’s actually committed to the repo, that runs the benchmark we want to run on one of our simulated
systems. We’ll see how this is used soon.

Now, let’s take a look at how we got here. First, let’s review some of the new fields present in this JSON file:

• common_files: This is an array of files that will be included in ALL of the job rootfses when they’re built. This
is relative to a path that we’ll pass to the script that generates rootfses.

• workloads: This time, you’ll notice that we have this array, which is populated by objects that represent indi-
vidual jobs. Each job has some additional fields:

– name: In this case, jobs are each assigned a name manually. These names MUST BE UNIQUE within a
particular workload.

– files: Just like common_files, but specific to this job.

– command: This is the command that will be run automatically immediately when the simulation running
this job boots up. This is usually the command that starts the workload we want.

– simulation_outputs: Just like common_simulation_outputs, but specific to this job.

– outputs: Just like common_outputs, but specific to this job.

In this example, we specify one node that boots up and runs the pinglatency.sh benchmark, then powers off cleanly
and 7 nodes that just idle waiting to be pinged.

Given this JSON description, our existing pinglatency.sh script in the overlay directory, and the base rootfses
generated in firesim-software, the following command will automatically generate all of the rootfses that you
see in the ping-latency directory.

[from the workloads/ directory]
./gen-benchmark-rootfs.py -w ping-latency.json -r -b ../../sw/firesim-software/images/br-
→˓base.img -s ping-latency/overlay

Notice that we tell this script where the json file lives, where the base rootfs image is, and where we expect to find
files that we want to include in the generated disk images. This script will take care of the rest and we’ll end up with
idler-[1-6].ext2, pingee.ext2, and pinger.ext2!

You’ll notice a Makefile in the workloads/ directory – it contains many similar commands for all of the workloads
included with FireSim.

Once you generate the rootfses for this workload, you can run it with the manager by setting workload_name:
ping-latency.json in config_runtime.ini. The manager will automatically look for the generated rootfses
(based on workload and job names that it reads from the json) and distribute work appropriately.

Just like in the uniform case, it will copy back the results that we specify in the json file. We’ll end up with a directory
in firesim/deploy/results-workload/ named after the workload name, with a subdirectory named after each job
in the workload, which will contain the output files we want.

6.7. [DEPRECATED] Defining Custom Workloads 107

FireSim Documentation, Release 1.15.0

108 Chapter 6. Workloads

CHAPTER

SEVEN

TARGETS

FireSim generates SoC models by transforming RTL emitted by a Chisel generator, such as the Rocket SoC generator.
Subject to conditions outlined in Restrictions on Target RTL, if it can be generated by Chisel, it can be simulated in
FireSim.

7.1 Restrictions on Target RTL

Current limitations in Golden Gate place the following restrictions on the (FIR)RTL that can be transformed and thus
used in FireSim:

1. The top-level module must have no inputs or outputs. Input stimulus and output capture must be implemented
using target RTL or target-to-host Bridges.

2. All target clocks must be generated by a single RationalClockBridge.

3. Black boxes must be “clock-gateable” by replacing its input clock with a gated equivalent which will be used to
stall simulation time in that module.

a. As a consequence, target clock-gating cannot be implemented using black-box primitives, and must instead
be modeled by adding clock-enables to all state elements of the gated clock domain (i.e., by adding an enable
or feedback mux on registers to conditionally block updates, and by gating write-enables on memories).

4. Asynchronous reset must only be implemented using Rocket Chip’s black-box async reset. These are replaced
with synchronously reset registers using a FIRRTL transformation.

7.1.1 Including Verilog IP

FireSim now supports target designs that incorporate Verilog IP using the standard BlackBox interface from Chisel.
For an example of how to add Verilog IP to a target system based on Rocket Chip, see the Incorporating Verilog Blocks
section of the Chipyard documentation.

1. For the transform to work, the Chisel Blackbox that wraps the Verilog IP must have input clocks that can safely
be clock-gated.

2. The compiler that produces the decoupled simulator (“FAME Transform”) automatically recognizes such black-
boxes inside the target design.

3. The compiler automatically gates each clock of the Verilog IP to ensure that it deterministically advances in
lockstep with the rest of the simulator.

4. This allows any Verilog module, subject to the constraint above, to be instantiated anywhere in the target design
using the standard Chisel Blackbox interface.

109

https://github.com/freechipsproject/chisel3/wiki/Blackboxes
https://chipyard.readthedocs.io/en/latest/Customization/Incorporating-Verilog-Blocks.html

FireSim Documentation, Release 1.15.0

7.1.2 Multiple Clock Domains

FireSim can support simulating targets that have multiple clock domains. As stated above, all clocks must be generated
using a single RationalClockBridge. For most users the default FireSim test harness in Chipyard will suffice, if you
need to define a custom test harness instantiate the RationalClockBridge like so:

// Here we request three target clocks (the base clock is implicit). All
// clocks beyond the base clock are specified using the RationalClock case
// class which gives the clock domain's name, and its clock multiplier and
// divisor relative to the base clock.
val clockBridge = RationalClockBridge(RationalClock("HalfRate", 1, 2),

RationalClock("ThirdRate", 1, 3))

// The clock bridge has a single output: a Vec[Clock] of the requested clocks
// in the order they were specified, which we are now free to use through our
// Chisel design. While not necessary, here we unassign the Vec to give them
// more informative references in our Chisel.
val Seq(fullRate, halfRate, thirdRate) = clockBridge.io.clocks.toSeq

Further documentation can be found in the source (sim/midas/src/main/scala/midas/widgets/ClockBridge.
scala).

The Base Clock

By convention, target time is specified in cycles of the base clock, which is defined to be the clock of the
RationalClockBridge whose clock ratio (multiplier / divisor) is one. While we suggest making the base clock
the fastest clock in your system, as in any microprocessor-based system it will likely correspond to your core clock
frequency, this is not a constraint.

Limitations:

• The number of target clocks FireSim can simulate is bounded by the number of BUFGCE resources available on
the host FPGA, as these are used to independently clock-gate each target clock.

• As its name suggests, the RationalClockBridge can only generate target clocks that are rationally related.
Specifically, all requested frequencies must be expressable in the form:

𝑓𝑖 =
𝑓𝑙𝑐𝑚
𝑘𝑖

Where,
– 𝑓𝑖 is the desired frequency of the 𝑖𝑡ℎ clock

– 𝑓𝑙𝑐𝑚, is the least-common multiple of all requested frequencies

– 𝑘𝑖 is a 16-bit unsigned integer

An arbitrary frequency can be modeled using a sufficiently precise rational multiple. Golden Gate will raise a
compile-time error if it cannot support a desired frequency.

• Each bridge module must reside entirely within a single clock domain. The Bridge’s target interface must contain
a single input clock, and all inputs and outputs of the bridge module must be latched and launched, respectively,
by registers in the same clock domain.

110 Chapter 7. Targets

FireSim Documentation, Release 1.15.0

7.2 Target-Side FPGA Constraints

FireSim provides utilities to generate Xilinx Design Constraints (XDC) from string snippets in target’s Chisel. Golden
Gate collects these annotations and emits separate xdc files for synthesis and implementation. See FPGA Build Files
for a complete listing of output files used in FPGA compilation.

7.2.1 RAM Inference Hints

Vivado generally does a reasonable job inferring embedded memories from FireSim-generated RTL, though there are
some cases in which it must be coaxed. For example:

• Due to insufficient BRAM resources, you may wish to use URAM for a memory that’d infer as BRAM.

• If Vivado can’t find pipeline registers to absorb into a URAM or none exist in the target, you may get an warning
like:

[Synth 8-6057] Memory: "<memory>" defined in module: "<module>" implemented as␣
→˓Ultra-Ram
has no pipeline registers. It is recommended to use pipeline registers to achieve␣
→˓high
performance.

Since Golden Gate modifies the module hierarchy extensively, it’s highly desirable to annotate these memories in the
Chisel source so that their hints may move with the memory instance. This is a more robust alternative to relying on
wildcard / glob matches from a static XDC specification.

Chisel memories can be annotated in situ like so:

import midas.targetutils.xdc._
val mem = SyncReadMem(1 << addrBits, UInt(dataBits.W))
RAMStyleHint(mem, RAMStyles.ULTRA)
// Alternatively: RAMStyleHint(mem, RAMStyles.BRAM)

Alternatively, you can “dot-in” (traverse public members of a Scala class hierarchy) to annotate a memory in a sub-
module. Here’s an example:

val modA = Module(new SyncReadMemModule(None))
val modB = Module(new SyncReadMemModule(None))
RAMStyleHint(modA.mem, RAMStyles.ULTRA)
RAMStyleHint(modB.mem, RAMStyles.BRAM)

These annotations can be deployed anywhere: in the target, in bridge modules, and in internal FireSim RTL. The result-
ing constraints should appear the synthesis xdc file emitted by Golden Gate. For more information see the ScalaDoc for
RAMStyleHint or read the source located at: sim/midas/targetutils/src/main/scala/midas/xdc/RAMStyleHint.scala.

7.2. Target-Side FPGA Constraints 111

https://www.github.com/firesim/firesim/blob/1.15.0/sim/midas/targetutils/src/main/scala/midas/xdc/RAMStyleHint.scala

FireSim Documentation, Release 1.15.0

7.3 Provided Target Designs

7.3.1 Target Generator Organization

FireSim provides multiple projects, each for a different type of target. Each project has its own chisel generator that
invokes Golden Gate, its own driver sources, and a makefrag that plugs into the Make-based build system that resides
in sim/. These projects are:

1. firesim (Default): rocket chip-based targets. These include targets with either BOOM or rocket pipelines, and
should be your starting point if you’re building an SoC with the Rocket Chip generator.

2. midasexamples: the Golden Gate example designs. Located at sim/src/main/scala/midasexamples, these are a
set of simple chisel circuits like GCD, that demonstrate how to use Golden Gate. These are useful test cases for
bringing up new Golden Gate features.

3. fasedtests: designs to do integration testing of FASED memory-system timing models.

Projects have the following directory structure:

sim/
-Makefile # Top-level makefile for projects where FireSim is the top-level repo
-Makefrag # Target-agnostic makefrag, with recipes to generate drivers and RTL␣
→˓simulators
-src/main/scala/{target-project}/

Makefrag # Defines target-specific make variables and recipes.
-src/main/cc/{target-project}/

{driver-csrcs}.cc # The target's simulation driver, and sofware-model␣
→˓sources

{driver-headers}.h
-src/main/makefrag/{target-project}/

Generator.scala # Contains the main class that generates target␣
→˓RTL and calls Golden Gate

{other-scala-sources}.scala

7.3.2 Specifying A Target Instance

To generate a specific instance of a target, the build system leverages four Make variables:

1. TARGET_PROJECT: this points the Makefile (sim/Makefile) at the right target-specific Makefrag, which defines
the generation and metasimulation software recipes. The makefrag for the default target project is defined at
sim/src/main/makefrag/firesim.

2. DESIGN: the name of the top-level Chisel module to generate (a Scala class name). These are defined in FireChip
Chipyard generator.

3. TARGET_CONFIG: specifies a Config instance that is consumed by the target design’s generator. For the default
firesim target project, predefined configs are described in in the FireChip Chipyard generator.

4. PLATFORM_CONFIG: specifies a Config instance that is consumed by Golden Gate and specifies compiler-
level and host-land parameters, such as whether to enable assertion synthesis, or multi-ported RAM op-
timizations. Common platform configs are described in firesim-lib/sim/src/main/scala/configs/
CompilerConfigs.scala).

TARGET_CONFIG and PLATFORM_CONFIG are strings that are used to construct a Config instance (derives from
RocketChip’s parameterization system, Config, see the CDE repo). These strings are of the form “{. . . _}{<Class

112 Chapter 7. Targets

https://www.github.com/firesim/firesim/blob/1.15.0/sim/src/main/scala/midasexamples
https://github.com/chipsalliance/cde

FireSim Documentation, Release 1.15.0

Name>_}<Class Name>”. Only the final, base class name is compulsory: class names that are prepended with “_” are
used to create a compound Config instance.

// Specify by setting TARGET_CONFIG=Base
class Base extends Config((site, here, up) => {...})
class Override1 extends Config((site, here, up) => {...})
class Override2 extends Config((site, here, up) => {...})
// Specify by setting TARGET_CONFIG=Compound
class Compound extends Config(new Override2 ++ new Override1 ++ new Base)
// OR by setting TARGET_CONFIG=Override2_Override1_Base
// Can specify undefined classes this way. ex: TARGET_CONFIG=Override2_Base

With this scheme, you don’t need to define a Config class for every instance you wish to generate. We use this scheme
to specify FPGA frequencies (eg. “BaseF1Config_F90MHz”) in manager build recipes, but it’s also very useful for
doing sweeping over a parameterization space.

Note that the precedence of Configs decreases from left to right in a string. Appending a config to an ex-
isting one will only have an effect if it sets a field not already set in higher precendence Configs. For exam-
ple, “BaseF1Config_F90MHz” is equivalent to “BaseF1Config_F90MHz_F80MHz” as DesiredHostFrequency
resolves to 90 MHz, but “F90MHz_BaseF1Config” is distinct from “F80MHz_F90MHz_BaseF1Config” in that
DesiredHostFrequency resolves to 90 and 80 MHz respectively.

How a particular Config resolves it’s Field s can be unintuitive for complex compound Config s. One precise way to
check a config is doing what you expect is to open the scala REPL, instantiate an instance of the desired Config, and
inspect its fields.

$ make sbt # Launch into SBT's shell with extra FireSim arguments

sbt:firechip> console # Launch the REPL

scala> val inst = (new firesim.firesim.FireSimRocketChipConfig).toInstance # Make an␣
→˓instance

inst: freechips.rocketchip.config.Config = FireSimRocketChipConfig

scala> import freechips.rocketchip.subsystem._ # Get some important Fields

import freechips.rocketchip.subsystem.RocketTilesKey

scala> inst(RocketTilesKey).size # Query number of cores

res2: Int = 1

scala> inst(RocketTilesKey).head.dcache.get.nWays # Query L1 D$ associativity

res3: Int = 4

7.3. Provided Target Designs 113

FireSim Documentation, Release 1.15.0

7.4 Rocket Chip Generator-based SoCs (firesim project)

Using the Make variables listed above, we give examples of generating different targets using the default Rocket Chip-
based target project.

7.4.1 Rocket-based SoCs

Three design classes use Rocket scalar in-order pipelines.

Single core, Rocket pipeline (default)

make TARGET_CONFIG=FireSimRocketConfig

Single-core, Rocket pipeline, with network interface

make TARGET_CONFIG=WithNIC_FireSimRocketChipConfig

Quad-core, Rocket pipeline

make TARGET_CONFIG=FireSimQuadRocketConfig

7.4.2 BOOM-based SoCs

The BOOM (Berkeley Out-of-Order Machine) superscalar out-of-order pipelines can also be used with the same design
classes that the Rocket pipelines use. Only the TARGET_CONFIG needs to be changed, as shown below:

Single-core BOOM

make TARGET_CONFIG=FireSimLargeBoomConfig

Single-core BOOM, with network interface

make TARGET_CONFIG=WithNIC_FireSimBoomConfig

7.4.3 Generating A Different FASED Memory-Timing Model Instance

Golden Gate’s memory-timing model generator, FASED, can elaborate a space of different DRAM model in-
stances: we give some typical ones here. These targets use the Makefile-defined defaults of DESIGN=FireSim
PLATFORM_CONFIG=BaseF1Config.

Quad-rank DDR3 first-ready, first-come first-served memory access scheduler

make TARGET_CONFIG=DDR3FRFCFS_FireSimRocketConfig

As above, but with a 4 MiB (maximum simulatable capacity) last-level-cache model

make TARGET_CONFIG=DDR3FRFCFSLLC4MB_FireSimRocketConfig

FASED timing-model configurations are passed to the FASED Bridges in your Target’s FIRRTL, and so must be
prepended to TARGET_CONFIG.

114 Chapter 7. Targets

https://github.com/ucb-bar/riscv-boom

FireSim Documentation, Release 1.15.0

7.5 Midas Examples (midasexamples project)

This project can generate a handful of toy target-designs (set with the make variable DESIGN). Each of these designs
has their own chisel source file and serves to demostrate the features of Golden Gate.

Some notable examples are:

1. GCD: the “Hello World!” of hardware.

2. WireInterconnect: demonstrates how combinational paths can be modeled with Golden Gate.

3. PrintfModule: demonstrates synthesizable printfs

4. AssertModule: demonstrates synthesizable assertions

To generate a target, set the make variable TARGET_PROJECT=midasexamples. so that the right project makefrag is
sourced.

7.5.1 Examples

To generate the GCD midasexample:

make DESIGN=GCD TARGET_PROJECT=midasexamples

7.6 FASED Tests (fasedtests project)

This project generates target designs capable of driving considerably more bandwidth to an AXI4-memory slave than
current FireSim targets. These are used to do integration and stress testing of FASED instances.

7.6.1 Examples

Generate a synthesizable AXI4Fuzzer (based off of Rocket Chip’s TL fuzzer), driving a DDR3 FR-FCFS-based FASED
instance.

make TARGET_PROJECT=fasedtests DESIGN=AXI4Fuzzer TARGET_CONFIG=FRFCFSConfig

As above, now configured to drive 10 million transactions through the instance.

make TARGET_PROJECT=fasedtests DESIGN=AXI4Fuzzer TARGET_CONFIG=NT10e7_FRFCFSConfig

7.5. Midas Examples (midasexamples project) 115

FireSim Documentation, Release 1.15.0

116 Chapter 7. Targets

CHAPTER

EIGHT

DEBUGGING IN SOFTWARE

This section describes methods of debugging the target design and the simulation in FireSim, before running on the
FPGA.

8.1 Debugging & Testing with Metasimulation

When discussing RTL simulation in FireSim, we are generally referring to metasimulation: simulating the FireSim
simulator’s RTL, typically using VCS or Verilator. In contrast, we’ll refer to simulation of the target’s unmodified (by
GoldenGate decoupling, host and target transforms) RTL as target-level simulation. Target-level simulation in Chipyard
is described at length here.

Metasimulation is the most productive way to catch bugs before generating an AGFI, and a means for reproducing
bugs seen on the FPGA. By default, metasimulation uses an abstract but fast model of the host: the FPGA’s DRAM
controllers are modeled with a single-cycle memory system, the PCI-E subsystem is not simulated, instead the driver
presents DMA and MMIO traffic directly on the FPGATop interfaces. Since FireSim simulations are robust against
timing differences across hosts, target behavior observed in an FPGA-hosted simulation should be exactly reproducible
in a metasimulation.

As a final note, metasimulations are generally only slightly slower than target-level simulations. Example performance
numbers can be found at Metasimulation vs. Target simulation performance.

8.1.1 Supported Host Simulators

Currently, the following host simulators are supported for metasimulation:

• Verilator

– FOSS, automatically installed during FireSim setup.

– Referred to throughout the codebase as verilator.

• Synopsys VCS

– License required.

– Referred to throughout the codebase as vcs.

Pull requests to add support for other simulators are welcome.

117

https://chipyard.readthedocs.io/en/latest/Simulation/Software-RTL-Simulation.html
https://www.veripool.org/verilator/
https://www.synopsys.com/verification/simulation/vcs.html

FireSim Documentation, Release 1.15.0

8.1.2 Running Metasimulations using the FireSim Manager

The FireSim manager supports running metasimulations using the standard firesim {launchrunfarm,
infrasetup, runworkload, terminaterunfarm} flow that is also used for FPGA-accelerated simulations.
Rather than using FPGAs, these metasimulations run within one of the aforementioned software simulators (Supported
Host Simulators) on standard compute hosts (i.e. those without FPGAs). This allows users to write a single definition of
a target (configured design and software workload), while seamlessly moving between software-only metasimulations
and FPGA-accelerated simulations.

As an example, if you have the default config_runtime.yaml that is setup for FPGA-accelerated simulations (e.g.
the one used for the 8-node networked simulation from the :ref:cluster-sim section), a few modifications to the
configuration files can convert it to running a distributed metasimulation.

First, modify the existing metasimulation mapping in config_runtime.yaml to the following:

metasimulation:
metasimulation_enabled: true
vcs or verilator. use vcs-debug or verilator-debug for waveform generation
metasimulation_host_simulator: verilator
plusargs passed to the simulator for all metasimulations
metasimulation_only_plusargs: "+fesvr-step-size=128 +max-cycles=100000000"
plusargs passed to the simulator ONLY FOR vcs metasimulations
metasimulation_only_vcs_plusargs: "+vcs+initreg+0 +vcs+initmem+0"

This configures the manager to run Verilator-hosted metasimulations (without waveform generation) for the target
specified in config_runtime.yaml. When in metasimulation mode, the default_hw_config that you specify in
target_config references an entry in config_build_recipes.yaml instead of an entry in config_hwdb.ini.

As is the case when the manager runs FPGA-accelerated simulations, the number of metasimulations that are run is
determined by the parameters in the target_config section, e.g. topology and no_net_num_nodes. Many parallel
metasimulations can then be run by writing a FireMarshal workload with a corresponding number of jobs.

In metasimulation mode, the run farm configuration must be able to support the required number of metasimula-
tions (see run_farm for details). The num_metasims parameter on a run farm host specification defines how many
metasimulations are allowed to run on a particular host. This corresponds with the num_fpgas parameter used in
FPGA-accelerated simulation mode. However num_metasims does not correspond as tightly with any physical prop-
erty of the host; it can be tuned depending on the complexity of your design and the compute/memory resources on a
host.

For example, in the case of the AWS EC2 run farm (aws_ec2.yaml), we define three instance types (z1d.{3, 6,
12}xlarge) by default that loosely correspond with f1.{2, 4, 16}xlarge instances, but instead have no FPGAs
and run only metasims (of course, the f1.* instances could run metasims, but this would be wasteful):

run_farm_hosts_to_use:
- z1d.3xlarge: 0
- z1d.6xlarge: 0
- z1d.12xlarge: 1

run_farm_host_specs:
- z1d.3xlarge:

num_fpgas: 0
num_metasims: 1
use_for_switch_only: false

- z1d.6xlarge:
num_fpgas: 0
num_metasims: 2

(continues on next page)

118 Chapter 8. Debugging in Software

FireSim Documentation, Release 1.15.0

(continued from previous page)

use_for_switch_only: false
- z1d.12xlarge:

num_fpgas: 0
num_metasims: 8
use_for_switch_only: false

In this case, the run farm will use a z1d.12xlarge instance to host 8 metasimulations.

To generate waveforms in a metasimulation, change metasimulation_host_simulator to a simulator ending in
-debug (e.g. verilator-debug). When running with a simulator with waveform generation, make sure to add
waveform.vpd to the common_simulation_outputs area of your workload JSON file, so that the waveform is copied
back to your manager host when the simulation completes.

A last notable point is that unlike the normal FPGA simulation case, there are two output logs in metasimulations.
There is the expected uartlog file that holds the stdout from the metasimulation (as in FPGA-based simula-
tions). However, there will also be a metasim_stderr.out file that holds stderr coming out of the metasimula-
tion, commonly populated by printf calls in the RTL, including those that are not marked for printf synthesis.
If you want to copy metasim_stderr.out to your manager when a simulation completes, you must add it to the
common_simulation_outputs of the workload JSON.

Other than the changes discussed in this section, manager behavior is identical between FPGA-based simulations and
metasimulations. For example, simulation outputs are stored in deploy/results-workload/ on your manager host,
FireMarshal workload definitions are used to supply target software, etc. All standard manager functionality is sup-
ported in metasimulations, including running networked simulations and using existing FireSim debugging tools (i.e.
AutoCounter, TracerV, etc).

Once the configuration changes discussed thus far in this section are made, the standard firesim {launchrunfarm,
infrasetup, runworkload, terminaterunfarm} set of commands will run metasimulations.

If you are planning to use FireSim metasimulations as your primary simulation tool while developing a new target
design, see the (optional) firesim builddriver command, which can build metasimulations through the manager
without requiring run farm hosts to be launched or accessible. More about this command is found in the firesim
builddriver section.

8.1.3 Understanding a Metasimulation Waveform

Module Hierarchy

To build out a simulator, Golden Gate adds multiple layers of module hierarchy to the target design and performs
additional hierarchy mutations to implement bridges and resource optimizations. Metasimulation uses the FPGATop
module as the top-level module, which excludes the platform shim layer (F1Shim, for EC2 F1). The original top-level
of the input design is nested three levels below FPGATop:

Note that many other bridges (under FPGATop), channel implementations (under SimWrapper), and optimized models
(under FAMETop) may be present, and vary from target to target. Under the FAMETop module instance you will find
the original top-level module (FireSimPDES_, in this case), however it has now been host-decoupled using the default
LI-BDN FAME transformation and is referred to as the hub model. It will have ready-valid I/O interfaces for all of the
channels bound to it, and internally containing additional channel enqueue and clock firing logic to control the advance
of simulated time. Additionally, modules for bridges and optimized models will no longer be found contained in this
submodule hierarchy. Instead, I/O for those extracted modules will now be as channel interfaces.

8.1. Debugging & Testing with Metasimulation 119

FireSim Documentation, Release 1.15.0

Fig. 1: The module hierarchy visible in a typical metasimulation.

120 Chapter 8. Debugging in Software

FireSim Documentation, Release 1.15.0

Clock Edges and Event Timing

Since FireSim derives target clocks by clock gating a single host clock, and since bridges and optimized models may
introduce stalls of their own, timing of target clock edges in a metasimulation will appear contorted relative to a conven-
tional target-simulation. Specifically, the host-time between clock edges will not be proportional to target-time elapsed
over that interval, and will vary in the presence of simulator stalls.

Finding The Source Of Simulation Stalls

In the best case, FireSim simulators will be able to launch new target clock pulses on every host clock cycle. In other
words, for single-clock targets the simulation can run at FMR = 1. In the single clock case delays are introduced by
bridges (like FASED memory timing models) and optimized models (like a multi-cycle Register File model). You
can identify which bridges are responsible for additional delays between target clocks by filtering for *sink_valid
and *source_ready on the hub model. When <channel>_sink_valid is deasserted, a bridge or model has not yet
produced a token for the current timestep, stalling the hub. When <channel>_source_ready is deasserted, a bridge
or model is back-pressuring the channel.

8.1.4 Scala Tests

To make it easier to do metasimulation-based regression testing, the ScalaTests wrap calls to Makefiles, and run a
limited set of tests on a set of selected designs, including all of the MIDAS examples and a handful of Chipyard-based
designs. This is described in greater detail in the Developer documentation.

8.1.5 Running Metasimulations through Make

Warning: This section is for advanced developers; most metasimulation users should use the manager-based
metasimulation flow described above.

Metasimulations are run out of the firesim/sim directory.

[in firesim/sim]
make <verilator|vcs>

To compile a simulator with full-visibility waveforms, type:

make <verilator|vcs>-debug

As part of target-generation, Rocket Chip emits a make fragment with recipes for running suites of assembly tests.
MIDAS puts this in firesim/sim/generated-src/f1/<DESIGN>-<TARGET_CONFIG>-<PLATFORM_CONFIG>/
firesim.d. Make sure your $RISCV environment variable is set by sourcing firesim/sourceme-f1-manager.sh
or firesim/env.sh, and type:

make run-<asm|bmark>-tests EMUL=<vcs|verilator>

To run only a single test, the make target is the full path to the output. Specifically:

make EMUL=<vcs|verilator> $PWD/output/f1/<DESIGN>-<TARGET_CONFIG>-<PLATFORM_CONFIG>/
→˓<RISCV-TEST-NAME>.<vpd|out>

8.1. Debugging & Testing with Metasimulation 121

FireSim Documentation, Release 1.15.0

A .vpd target will use (and, if required, build) a simulator with waveform dumping enabled, whereas a .out target
will use the faster waveform-less simulator.

Additionally, you can run a unique binary in the following way:

make SIM_BINARY=<PATH_TO_BINARY> run-<vcs|verilator>
make SIM_BINARY=<PATH_TO_BINARY> run-<vcs|verilator>-debug

Examples

Run all RISCV-tools assembly and benchmark tests on a Verilated simulator.

[in firesim/sim]
make
make -j run-asm-tests
make -j run-bmark-tests

Run all RISCV-tools assembly and benchmark tests on a Verilated simulator with waveform dumping.

make verilator-debug
make -j run-asm-tests-debug
make -j run-bmark-tests-debug

Run rv64ui-p-simple (a single assembly test) on a Verilated simulator.

make
make $(pwd)/output/f1/FireSim-FireSimRocketConfig-BaseF1Config/rv64ui-p-simple.out

Run rv64ui-p-simple (a single assembly test) on a VCS simulator with waveform dumping.

make vcs-debug
make EMUL=vcs $(pwd)/output/f1/FireSim-FireSimRocketConfig-BaseF1Config/rv64ui-p-simple.
→˓vpd

8.1.6 Metasimulation vs. Target simulation performance

Generally, metasimulations are only slightly slower than target-level simulations. This is illustrated in the chart below.

Type Waves VCS Verilator Verilator -O1 Verilator -O2
Target Off 4.8 kHz 3.9 kHz 6.6 kHz N/A
Target On 0.8 kHz 3.0 kHz 5.1 kHz N/A
Meta Off 3.8 kHz 2.4 kHz 4.5 kHz 5.3 KHz
Meta On 2.9 kHz 1.5 kHz 2.7 kHz 3.4 KHz

Note that using more aggressive optimization levels when compiling the Verilated-design dramatically lengthens com-
pile time:

Type Waves VCS Verilator Verilator -O1 Verilator -O2
Meta Off 35s 48s 3m32s 4m35s
Meta On 35s 49s 5m27s 6m33s

122 Chapter 8. Debugging in Software

FireSim Documentation, Release 1.15.0

Notes: Default configurations of a single-core, Rocket-based instance running rv64ui-v-add. Frequencies are given
in target-Hz. Presently, the default compiler flags passed to Verilator and VCS differ from level to level. Hence, these
numbers are only intended to give ball park simulation speeds, not provide a scientific comparison between simulators.
VCS numbers collected on a local Berkeley machine, Verilator numbers collected on a c4.4xlarge. (metasimulation
Verilator version: 4.002, target-level Verilator version: 3.904)

8.1. Debugging & Testing with Metasimulation 123

FireSim Documentation, Release 1.15.0

124 Chapter 8. Debugging in Software

CHAPTER

NINE

DEBUGGING AND PROFILING ON THE FPGA

A common issue with FPGA-prototyping is the difficulty involved in trying to debug and profile systems once they are
running on the FPGA. FireSim addresses these issues with a variety of tools for introspecting on designs once you have
a FireSim simulation running on an FPGA. This section describes these features.

9.1 Capturing RISC-V Instruction Traces with TracerV

FireSim can provide a cycle-by-cycle trace of a target CPU’s architectural state over the course of execution, including
fields like instruction address, raw instruction bits, privilege level, exception/interrupt status and cause, and a valid
signal. This can be useful for profiling or debugging. TracerV is the FireSim bridge that provides this functionality.
This feature was introduced in our FirePerf paper at ASPLOS 2020 .

This section details how to capture these traces in cycle-by-cycle formats, usually for debugging purposes.

For profiling purposes, FireSim also supports automatically producing stack traces from this data and producing Flame
Graphs, which is documented in the TracerV + Flame Graphs: Profiling Software with Out-of-Band Flame Graph
Generation section.

9.1.1 Building a Design with TracerV

In all FireChip designs, TracerV is included by default. Other targets can enable it by attaching a TracerV Bridge to
the RISC-V trace port of each core they wish to trace (there should be one bridge per core). By default, only the cycle
number, instruction address, and valid bit are collected.

9.1.2 Enabling Tracing at Runtime

To improve simulation preformance, FireSim does not collect and record data from the TracerV Bridge by default. To
enable collection, modify the enable flag in the tracing section in your config_runtime.yaml file to yes instead
of no:

tracing:
enable: yes

Now when you run a workload, a trace output file will be placed in the sim_slot_<slot #> directory on the F1
instance under the name TRACEFILE-C0. The C0 represents core 0 in the simulated SoC. If you have multiple cores,
each will have its own file (ending in C1, C2, etc). To copy all TracerV trace files back to your manager, you can add
TRACEFILE* to your common_simulation_outputs or simulation_outputs in your workload .json file. See
the Defining Custom Workloads section for more information about these options.

125

https://sagark.org/assets/pubs/fireperf-asplos2020.pdf

FireSim Documentation, Release 1.15.0

9.1.3 Selecting a Trace Output Format

FireSim supports three trace output formats, which can be set in your config_runtime.yaml file with the
output_format option in the tracing section:

tracing:
enable: yes

Trace output formats. Only enabled if "enable" is set to "yes" above
0 = human readable; 1 = binary (compressed raw data); 2 = flamegraph (stack
unwinding -> Flame Graph)
output_format: 0

See the “Interpreting the Trace Result” section below for a description of these formats.

9.1.4 Setting a TracerV Trigger

Tracing the entirety of a long-running job like a Linux-based workload can generate a large trace and you may only
care about the state within a certain timeframe. Therefore, FireSim allows you to specify a trigger condition for starting
and stopping trace data collection.

By default, TracerV does not use a trigger, so data collection starts at cycle 0 and ends at the last cycle of the simulation.
To change this, modify the following under the tracing section of your config_runtime.yaml. Use the selector
field to choose the type of trigger (options are described below). The start and end fields are used to supply the start
and end values for the trigger.

tracing
enable: yes

Trace output formats. Only enabled if "enable" is set to "yes" above
0 = human readable; 1 = binary (compressed raw data); 2 = flamegraph (stack
unwinding -> Flame Graph)
output_format: 0

Trigger selector.
0 = no trigger; 1 = cycle count trigger; 2 = program counter trigger; 3 =
instruction trigger
selector: 1
start: 0
end: -1

The four triggering methods available in FireSim are as follows:

No trigger

Records the trace for the entire simulation.

This is option 0 in the .yaml above.

The start and end fields are ignored.

126 Chapter 9. Debugging and Profiling on the FPGA

FireSim Documentation, Release 1.15.0

Target cycle trigger

Trace recording begins when a specified start cycle is reached and ends when a specified end cycle is reached. Cycles
are specified in base target-clock cycles (the zeroth output clock from the ClockBridge). For example, if the base clock
drives the uncore, and the core clock frequency is 2x the uncore frequency, specifying start and end cycles of 100 and
200 result in instructions being collected between core-clock cycles 200 and 400.

This is option 1 in the .yaml above.

The start and end fields are interpreted as decimal integers.

Program Counter (PC) value trigger

Trace recording begins when a specified program counter value is reached and ends when a specified program counter
value is reached.

This is option 2 in the .yaml above.

The start and end fields are interpreted as hexadecimal values.

Instruction value trigger

Trace recording begins when a specific instruction is seen in the instruction trace and ends when a specific instruction is
seen in the instruction trace. This method is particularly valuable for setting the trigger from within the target software
under evaluation, by inserting custom “NOP” instructions. Linux distributions included with FireSim include small
trigger programs by default for this purpose; see the end of this subsection.

This is option 3 in the .yaml above.

The start and end fields are interpreted as hexadecimal values. For each, the field is a 64-bit value, with the upper
32-bits representing a mask and the lower 32-bits representing a comparison value. That is, the start or stop condition
will be satisfied when the following evaluates to true:

((inst value) & (upper 32 bits)) == (lower 32 bits)

That is, setting start: ffffffff00008013 will cause recording to start when the instruction value is exactly
00008013 (the addi x0, x1, 0 instruction in RISC-V).

This form of triggering is useful when recording traces only when a particular application is running within Linux. To
simplify the use of this triggering mechanism, workloads derived from br-base.json in FireMarshal automatically
include the commands firesim-start-trigger and firesim-end-trigger, which issue a addi x0, x1, 0 and
addi x0, x2, 0 instruction respectively. In your config_runtime.yaml, if you set the following trigger settings:

selector: 3
start: ffffffff00008013
end: ffffffff00010013

And then run the following at the bash prompt on the simulated system:

$ firesim-start-trigger && ./my-interesting-benchmark && firesim-end-trigger

The trace will contain primarily only traces for the duration of my-interesting-benchmark. Note that there will be
a small amount of extra trace information from firesim-start-trigger and firesim-end-trigger, as well as
the OS switching between these and my-interesting-benchmark.

9.1. Capturing RISC-V Instruction Traces with TracerV 127

FireSim Documentation, Release 1.15.0

Attention: While it is unlikely that a compiler will generate the aforementioned trigger instructions within normal
application code, it is also a good idea to confirm that these instructions are not inadvertently present within the
section of code you wish to profile. This will result in the trace recording inadvertently turning on and off in the
middle of the workload.

On the flip-side, a developer can deliberately insert the aforementioned addi instructions into the code they wish
to profile, to enable more fine-grained control.

9.1.5 Interpreting the Trace Result

Human readable output

This is output_format: 0.

The human readable trace output format looks like so:

Clock Domain: baseClock, Relative Frequency: 1/1 of Base Clock
Cycle: 0000000000000079 I0: 0000000000010040
Cycle: 0000000000000105 I0: 000000000001004c
Cycle: 0000000000000123 I0: 0000000000010054
Cycle: 0000000000000135 I0: 0000000000010058
Cycle: 0000000000000271 I0: 000000000001005c
Cycle: 0000000000000307 I0: 0000000000010000
Cycle: 0000000000000327 I0: 0000000000010008
Cycle: 0000000000000337 I0: 0000000000010010
Cycle: 0000000000000337 I1: 0000000000010014
Cycle: 0000000000000337 I2: 0000000000010018

In this output, each line begins with the cycle (in decimal) in the core’s clock domain that instruction was committed.
For a given cycle, the instruction address (in hex) of each committed is prefixed I<#> according to their appearance
in program order: I0 is the oldest instruction committed, I1 is the second oldest, and so forth. If no instructions were
committed in a given cycle, that cycle will be skipped in the output file.

Cycle: 0000000000000337 I0: 0000000000010010
Cycle: 0000000000000337 I1: 0000000000010014

|--------------| ^ |--------|
| | 40 bits of instruction address (hex)
| per-cycle commit-order

64-bit local-cycle count

Binary output

This is output_format: 1.

This simply writes the 512 bits received from the FPGA each cycle to the output file in binary. Each 512-bit chunk
is stored little-endian. The lowermost 64 bits stores the cycle, the second 64-bits stores the address and valid bits of
committed instruction 0 in little-endian, the next 64-bits stores the address and valid bits of committed instruction 1 in
little-endian, and so on, up to a maximum of 7 instructions.

128 Chapter 9. Debugging and Profiling on the FPGA

FireSim Documentation, Release 1.15.0

Flame Graph output

This is output_format: 2. See the TracerV + Flame Graphs: Profiling Software with Out-of-Band Flame Graph
Generation section.

9.1.6 Caveats

There are currently a few restrictions / manual tweaks that are required when using TracerV under certain conditions:

• TracerV by default outputs only instruction address and a valid bit and assumes that the combination of
these fits within 64 bits. Changing this requires modifying sim/firesim-lib/src/main/scala/bridges/
TracerVBridge.scala.

• The maximum IPC of the traced core cannot exceed 7.

• Please reach out on the FireSim mailing list if you need help addressing any of these restrictions: https://groups.
google.com/forum/#!forum/firesim

9.2 Assertion Synthesis: Catching RTL Assertions on the FPGA

Golden Gate can synthesize assertions present in FIRRTL (implemented as stop statements) that would otherwise be
lost in the FPGA synthesis flow. Rocket and BOOM include hundreds of such assertions which, when synthesized, can
provide great insight into why the target may be failing.

9.2.1 Enabling Assertion Synthesis

To enable assertion synthesis prepend WithSynthAsserts config to your PLATFORM_CONFIG. During compi-
lation, Golden Gate will print the number of assertions it’s synthesized. In the generated header, you will find the
definitions of all synthesized assertions. The synthesized_assertions_t bridge driver will be automatically in-
stantiated.

9.2.2 Runtime Behavior

If an assertion is caught during simulation, the driver will print the assertion cause, the path to module instance in
which it fired, a source locator, and the cycle on which the assertion fired. Simulation will then terminate.

An example of an assertion caught in a dual-core instance of BOOM is given below:

id: 1190, module: IssueSlot_4, path: FireSimNoNIC.tile_1.core.issue_units_0.slots_3]
Assertion failed

at issue_slot.scala:214 assert (!slot_p1_poisoned)
at cycle: 2142042185

Just as in a software-hosted RTL simulation using verilator or VCS, the reported cycle is the number of target cycles
that have elapsed in the clock domain in which the assertion was instantiated (in Chisel specifically this is the implicit
clock at the time you called assert). If you rerun a FireSim simulation with identical inputs, the same assertion should
fire deterministically at the same cycle.

9.2. Assertion Synthesis: Catching RTL Assertions on the FPGA 129

https://groups.google.com/forum/#!forum/firesim
https://groups.google.com/forum/#!forum/firesim

FireSim Documentation, Release 1.15.0

9.2.3 Related Publications

Assertion synthesis was first presented in our FPL2018 paper, DESSERT.

9.3 Printf Synthesis: Capturing RTL printf Calls when Running on the
FPGA

Golden Gate can synthesize printfs present in Chisel/FIRRTL (implemented as printf statements) that would oth-
erwise be lost in the FPGA synthesis flow. Rocket and BOOM have printfs of their commit logs and other useful
transaction streams.

C0: 409 [1] pc=[008000004c] W[r10=0000000000000000][1] R[r 0=0000000000000000]␣
→˓R[r20=0000000000000003] inst=[f1402573] csrr a0, mhartid
C0: 410 [0] pc=[008000004c] W[r 0=0000000000000000][0] R[r 0=0000000000000000]␣
→˓R[r20=0000000000000003] inst=[f1402573] csrr a0, mhartid
C0: 411 [0] pc=[008000004c] W[r 0=0000000000000000][0] R[r 0=0000000000000000]␣
→˓R[r20=0000000000000003] inst=[f1402573] csrr a0, mhartid
C0: 412 [1] pc=[0080000050] W[r 0=0000000000000000][0] R[r10=0000000000000000]␣
→˓R[r 0=0000000000000000] inst=[00051063] bnez a0, pc + 0
C0: 413 [1] pc=[0080000054] W[r 5=0000000080000054][1] R[r 0=0000000000000000]␣
→˓R[r 0=0000000000000000] inst=[00000297] auipc t0, 0x0
C0: 414 [1] pc=[0080000058] W[r 5=0000000080000064][1] R[r 5=0000000080000054]␣
→˓R[r16=0000000000000003] inst=[01028293] addi t0, t0, 16
C0: 415 [1] pc=[008000005c] W[r 0=0000000000010000][1] R[r 5=0000000080000064]␣
→˓R[r 5=0000000080000064] inst=[30529073] csrw mtvec, t0

Synthesizing these printfs lets you capture the same logs on a running FireSim instance.

9.3.1 Enabling Printf Synthesis

To synthesize a printf, you need to annotate the specific printfs you’d like to capture in your Chisel source code like so:

midas.targetutils.SynthesizePrintf(printf("x%d p%d 0x%x\n", rf_waddr, rf_waddr, rf_
→˓wdata))

Be judicious, as synthesizing many, frequently active printfs will slow down your simulator.

Once your printfs have been annotated, enable printf synthesis by prepending the WithPrintfSynthesis
configuration mixin to your PLATFORM_CONFIG in config_build_recipes.yaml. For example, if
your previous PLATFORM_CONFIG was PLATFORM_CONFIG=BaseF1Config_F120MHz, then change it to
PLATFORM_CONFIG=WithPrintfSynthesis_BaseF1Config_F120MHz. Notice that you must prepend the
mixin (rather than appending). During compilation, Golden Gate will print the number of printfs it has synthesized.
In the target’s generated header (FireSim-generated.const.h), you’ll find metadata for each of the printfs Golden
Gate synthesized. This is passed as argument to the constructor of the synthesized_prints_t bridge driver, which
will be automatically instantiated in FireSim driver.

130 Chapter 9. Debugging and Profiling on the FPGA

https://people.eecs.berkeley.edu/~biancolin/papers/dessert-fpl18.pdf

FireSim Documentation, Release 1.15.0

9.3.2 Runtime Arguments

+print-file Specifies the file name prefix. Generated files will be of the form <print-file><N>, with one output file
generated per clock domain. The associated clock domain’s name and frequency relative to the base clock is
included in the header of the output file.

+print-start Specifies the target-cycle in cycles of the base clock at which the printf trace should be captured in the
simulator. Since capturing high-bandwidth printf traces will slow down simulation, this allows the user to reach
the region-of-interest at full simulation speed.

+print-end Specifies the target-cycle in cycles of the base clock at which to stop pulling the synthesized print trace
from the simulator.

+print-binary By default, a captured printf trace will be written to file formatted as it would be emitted by a software
RTL simulator. Setting this dumps the raw binary coming off the FPGA instead, improving simulation rate.

+print-no-cycle-prefix (Formatted output only) This removes the cycle prefix from each printf to save bandwidth in
cases where the printf already includes a cycle field. In binary-output mode, since the target cycle is implicit in
the token stream, this flag has no effect.

You can set some of these options by changing the fields in the “synthprint” section of your config_runtime.yaml.

synth_print:
Start and end cycles for outputting synthesized prints.
They are given in terms of the base clock and will be converted
for each clock domain.
start: 0
end: -1
When enabled (=yes), prefix print output with the target cycle at which the print␣

→˓was triggered
cycle_prefix: yes

The “start” field corresponds to “print-start”, “end” to “print-end”, and “cycleprefix” to “print-no-cycle-prefix”.

9.3.3 Related Publications

Printf synthesis was first presented in our FPL2018 paper, DESSERT.

9.4 AutoILA: Simple Integrated Logic Analyzer (ILA) Insertion

Sometimes it takes too long to simulate FireSim on RTL simulators, and in some occasions we would also like to debug
the simulation infrastructure itself. For these purposes, we can use the Xilinx Integrated Logic Analyzer resources on
the FPGA.

ILAs allows real time sampling of pre-selected signals during FPGA runtime, and provided and interface for setting
trigger and viewing samples waveforms from the FPGA. For more information about ILAs, please refer to the Xilinx
guide on the topic.

The midas.targetutils package provides annotations for labeling signals directly in the Chisel source. These will
be consumed by a downstream FIRRTL pass which wires out the annotated signals, and binds them to an appropriately
sized ILA instance.

9.4. AutoILA: Simple Integrated Logic Analyzer (ILA) Insertion 131

https://people.eecs.berkeley.edu/~biancolin/papers/dessert-fpl18.pdf

FireSim Documentation, Release 1.15.0

9.4.1 Enabling AutoILA

To enable AutoILA, mixin WithAutoILA must be prepended to the PLATFORM_CONFIG. Prior to version 1.13, this
was done by default.

9.4.2 Annotating Signals

In order to annotate a signal, we must import the midas.targetutils.FpgaDebug annotator. FpgaDebug’s apply
method accepts a vararg of chisel3.Data. Invoke it as follows:

import midas.targetutils.FpgaDebug

class SomeModuleIO(implicit p: Parameters) extends SomeIO()(p){
val out1 = Output(Bool())
val in1 = Input(Bool())
FpgaDebug(out1, in1)

}

You can annotate signals throughout FireSim, including in Golden Gate Rocket-Chip Chisel sources, with the only
exception being the Chisel3 sources themselves (eg. in Chisel3.util.Queue).

Note: In case the module with the annotated signal is instantiated multiple times, all instatiations of the annotated
signal will be wired to the ILA.

9.4.3 Setting a ILA Depth

The ILA depth parameter specifies the duration in cycles to capture annotated signals around a trigger. Increasing
this parameter may ease debugging, but will also increase FPGA resource utilization. The default depth is 1024 cy-
cles. The desired depth can be configured much like the desired HostFrequency by appending a mixin to the PLAT-
FORM_CONFIG. See Target-Side FPGA Constraints for details on PLATFORM_CONFIG.

Below is an example PLATFORM_CONFIG that can be used in the build_recipes config file.

PLATFORM_CONFIG=ILADepth8192_BaseF1Config

9.4.4 Using the ILA at Runtime

Prerequisite: Make sure that ports 8443, 3121 and 10201 are enabled in the “firesim” AWS security group.

In order to use the ILA, we must enable the GUI interface on our manager instance. In the past, AWS had a cus-
tom setup_gui.sh script. However, this was recently deprecated due to compatibility issues with various packages.
Therefore, AWS currently recommends using NICE DCV as a GUI client. You should download a DCV client, and
then run the following commands on your FireSim manager instance:

sudo yum -y groupinstall "GNOME Desktop"
sudo yum -y install glx-utils
sudo rpm --import https://s3-eu-west-1.amazonaws.com/nice-dcv-publish/NICE-GPG-KEY
wget https://d1uj6qtbmh3dt5.cloudfront.net/2019.0/Servers/nice-dcv-2019.0-7318-el7.tgz
tar xvf nice-dcv-2019.0-7318-el7.tgz
cd nice-dcv-2019.0-7318-el7
sudo yum -y install nice-dcv-server-2019.0.7318-1.el7.x86_64.rpm
sudo yum -y install nice-xdcv-2019.0.224-1.el7.x86_64.rpm

(continues on next page)

132 Chapter 9. Debugging and Profiling on the FPGA

https://docs.aws.amazon.com/dcv/latest/adminguide/what-is-dcv.html
https://docs.aws.amazon.com/dcv/latest/userguide/client.html

FireSim Documentation, Release 1.15.0

(continued from previous page)

sudo systemctl enable dcvserver
sudo systemctl start dcvserver
sudo passwd centos
sudo systemctl stop firewalld
dcv create-session --type virtual --user centos centos

These commands will setup Linux desktop pre-requisites, install the NICE DCV server, ask you to setup the password
to the centos user, disable firewalld, and finally create a DCV session. You can now connect to this session through
the DCV client.

After access the GUI interface, open a terminal, and open vivado. Follow the instructions in the AWS-FPGA guide
for connecting xilinx hardware manager on vivado (running on a remote machine) to the debug target .

where <hostname or IP address> is the internal IP of the simulation instance (not the manager instance. i.e. The
IP starting with 192.168.X.X). The probes file can be found in the manager instance under the path firesim/deploy/
results-build/<build_identifier>/cl_firesim/build/checkpoints/<probes_file.ltx>

Select the ILA with the description of WRAPPER_INST/CL/CL_FIRESIM_DEBUG_WIRING_TRANSFORM, and you
may now use the ILA just as if it was on a local FPGA.

9.5 AutoCounter: Profiling with Out-of-Band Performance Counter
Collection

FireSim can provide visibility into a simulated CPU’s architectural and microarchitectural state over the course of
execution through the use of counters. These are similar to performance counters provided by processor vendors, and
more general counters provided by architectural simulators.

This functionality is provided by the AutoCounter feature (introduced in our FirePerf paper at ASPLOS 2020), and
can be used for profiling and debugging. Since AutoCounter injects counters only in simulation (unlike target-level
performance counters), these counters do not affect the behavior of the simulated machine, no matter how often they
are sampled.

9.5.1 Chisel Interface

AutoCounter enables the addition of ad-hoc counters using the PerfCounter object in the midas.targetutils package.
PerfCounters counters can be added in one of two modes:

1. Accumulate, using the standard PerfCounter.applymethod. Here the annotated UInt (1 or more bits) is added
to a 64b accumulation register: the target is treated as representing an N-bit UInt and will increment the counter
by a value between [0, 2^n - 1] per cycle.

2. Identity, using the PerfCounter.identity method. Here the annotated UInt is sampled directly. This can be
used to annotate a sample with values are not accumulator-like (e.g., a PC), and permits the user to define more
complex instrumentation logic in the target itself.

We give examples of using PerfCounter below:

// A standard boolean event. Increments by 1 or 0 every local clock cycle.
midas.targetutils.PerfCounter(en_clock, "gate_clock", "Core clock gated")

// A multibit example. If the core can retire three isntructions per cycle,
// encode this as a two-bit unit. Extra-width is OK but the encoding to the UInt
// (e.g., doing a pop count), must be done by the user.

(continues on next page)

9.5. AutoCounter: Profiling with Out-of-Band Performance Counter Collection 133

https://github.com/aws/aws-fpga/blob/master/hdk/docs/Virtual_JTAG_XVC.md#connecting-xilinx-hardware-manager-vivado-lab-edition-running-on-a-remote-machine-to-the-debug-target-fpga-enabled-ec2-instance
https://github.com/aws/aws-fpga/blob/master/hdk/docs/Virtual_JTAG_XVC.md#connecting-xilinx-hardware-manager-vivado-lab-edition-running-on-a-remote-machine-to-the-debug-target-fpga-enabled-ec2-instance
https://sagark.org/assets/pubs/fireperf-asplos2020.pdf

FireSim Documentation, Release 1.15.0

(continued from previous page)

midas.targetutils.PerfCounter(insns_ret, "iret", "Instructions retired")

// An identity value. Note: the pc here must be <= 64b wide.
midas.targetutils.PerfCounter.identity(pc, "pc", "The value of the program counter at␣
→˓the time of a sample")

See the PerfCounter Scala API docs for more detail about the Chisel-side interface.

9.5.2 Enabling AutoCounter in Golden Gate

By default, annotated events are not synthesized into AutoCounters. To enable AutoCounter when compiling a design,
prepend the WithAutoCounter config to your PLATFORM_CONFIG. During compilation, Golden Gate will print the
signals it is generating counters for.

9.5.3 Rocket Chip Cover Functions

The cover function is applied to various signals in the Rocket Chip generator repository to mark points of interest (i.e.,
interesting signals) in the RTL. Tools are free to provide their own implementation of this function to process these
signals as they wish. In FireSim, these functions can be used as a hook for automatic generation of counters.

Since cover functions are embedded throughout the code of Rocket Chip (and possibly other code repositories), Auto-
Counter provides a filtering mechanism based on module granularity. As such, only cover functions that appear within
selected modules will generate counters.

The filtered modules can be indicated using one of two methods:

1. A module selection annotation within the top-level configuration implementation (when using Chipyard,
this would usually be DigitalTop, but can also be any other module). To use this method, add the
AutoCounterCoverModuleAnnotation annotation with the name of the module for which you want the cover
functions to be turned into AutoCounters. The following example will generate counters from cover functions
within the StreamWriter module:

class DigitalTop(implicit p: Parameters) extends ChipyardSystem
{
override lazy val module = new DigitalTopModule(this)

chisel3.experimental.annotate(AutoCounterCoverModuleAnnotation("StreamWriter"))
}

2. An input file with a list of module names. This input file is named autocounter-covermodules.txt, and
includes a list of module names separated by new lines (no commas).

9.5.4 AutoCounter Runtime Parameters

AutoCounter currently takes a single runtime configurable parameter, defined under the autocounter: section in the
config_runtime.yaml file. The read_rate parameter defines the rate at which the counters should be read, and is
measured in target-cycles of the base target-clock (clock 0 produced by the ClockBridge). Hence, if the read_rate is
defined to be 100 and the tile frequency is 2x the base clock (ex., which may drive the uncore), the simulator will read
and print the values of the counters every 200 core-clock cycles. If the core-domain clock is the base clock, it would
do so every 100 cycles. By default, the read_rate is set to 0 cycles, which disables AutoCounter.

134 Chapter 9. Debugging and Profiling on the FPGA

https://fires.im/firesim/latest/api/midas/targetutils/PerfCounter\protect \T1\textdollar .html

FireSim Documentation, Release 1.15.0

autocounter:
read counters every 100 cycles
read_rate: 100

Note: AutoCounter is designed as a coarse-grained observability mechanism, as sampling each counter requires two
(blocking) MMIO reads (each read takes O(100) ns on EC2 F1). As a result sampling at intervals less than O(10000)
cycles may adversely affect simulation performance for large numbers of counters. If you intend on reading counters
at a finer granularity, consider using synthesizable printfs.

9.5.5 AutoCounter CSV Output Format

AutoCounter output files are CSVs generated in the working directory where the simulator was invoked (this applies
to metasimulators too), with the default names AUTOCOUNTERFILE<i>.csv, one per clock domain. The CSV output
format is depicted below, assuming a sampling period of N base clock cycles.

Table 1: AutoCounter CSV Format
version version number
Clock Domain Name name Base Multiplier M Base Divisor N
label local_cycle label0 label1 . . . labelN
description local clock cycle desc0 desc1 . . . descN
type Accumulate type0 type1 . . . typeN
event width 1 width0 width1 . . . widthN
accumulator width 64 64 64 . . . 64
N cycle @ time N value0 @ tN value1 @ tN . . . value @ tN
.
kN cycle @ time kN value0 @ tkN value1 @ tkN . . . valueN @ tkN

Column Notes:

1. Each column beyond the first two corresponds to a PerfCounter instance in the clock domain.

2. Column 0 past the header corresponds to the base clock cycle of the sample.

3. The local_cycle counter (column 1) is implemented as an always enabled single-bit event, and increments even
when the target is under reset.

Row Notes:

1. Header row 0: autocounter csv format version, an integer.

2. Header row 1: clock domain information.

3. Header row 2: the label parameter provided to PerfCounter suffixed with the instance path.

4. Header row 3: the description parameter provided to PerfCounter. Quoted.

5. Header row 4: the width of the field annotated in the target.

6. Header row 5: the width of the accumulation register. Not configurable, but makes it clear when to expect
rollover.

7. Header row 6: indicates the accumulation scheme. Can be “Identity” or “Accumulate”.

8. Sample row 0: sampled values at the bitwidth of the accumulation register.

9. Sample row k: ditto above, k * N base cycles later

9.5. AutoCounter: Profiling with Out-of-Band Performance Counter Collection 135

FireSim Documentation, Release 1.15.0

9.5.6 Using TracerV Trigger with AutoCounter

In order to collect AutoCounter results from only from a particular region of interest in the simulation, AutoCounter
has been integrated with TracerV triggers. See the Setting a TracerV Trigger section for more information.

9.5.7 AutoCounter using Synthesizable Printfs

The AutoCounter transformation in Golden Gate includes an event-driven mode that uses Synthesizable Printfs (see
Printf Synthesis: Capturing RTL printf Calls when Running on the FPGA) to export counter results as they are up-
dated rather than sampling them periodically with a dedicated Bridge. This mode can be enabled by prepending the
WithAutoCounterCoverPrintf config to your PLATFORM_CONFIG instead of WithAutoCounterCover. Based on
the selected event mode the printfs will have the following runtime behavior:

• Accumulate: On a non-zero increment, the local cycle count and the new counter value are printed. This produces
a series of prints with monotonically increasingly values.

• Identity: On a transition of the annotated target, the local cycle count and the new value are printed. Thus a target
that transitions every cycle will produce printf traffic every cycle.

This mode may be useful for temporally fine-grained observation of counters. The counter values will be printed to
the same output stream as other synthesizable printfs. This mode uses considerably more FPGA resources per counter,
and may consume considerable amounts of DMA bandwidth (since it prints every cycle a counter increments), which
may adversly affect simulation performance (increased FMR).

9.5.8 Reset & Timing Considerations

• Events and identity values provided while under local reset, or while the GlobalResetCondition asserted, are
zero-ed out. Similarly, printfs that might otherwise be active under a reset are masked out.

• The sampling period in slower clock domains is currently calculated using a truncating division of the period in
the base clock domain. Thus, when the base clock period can not be cleanly divided, samples in the slower clock
domain will gradually fall out of phase with samples in the base clock domain. In all cases, the “local_cycle”
column is most accurate measure of sample time.

9.6 TracerV + Flame Graphs: Profiling Software with Out-of-Band
Flame Graph Generation

FireSim supports generating Flame Graphs out-of-band, to visualize the performance of software running on simulated
processors. This feature was introduced in our FirePerf paper at ASPLOS 2020 .

Before proceeding, make sure you understand the Capturing RISC-V Instruction Traces with TracerV section.

9.6.1 What are Flame Graphs?

Fig. 1: Example Flame Graph (from http://www.brendangregg.com/FlameGraphs/)

Flame Graphs are a type of histogram that shows where software is spending its time, broken down by components of
the stack trace (e.g., function calls). The x-axis represents the portion of total runtime spent in a part of the stack trace,
while the y-axis represents the stack depth at that point in time. Entries in the flame graph are labeled with and sorted
by function name (not time).

136 Chapter 9. Debugging and Profiling on the FPGA

http://www.brendangregg.com/flamegraphs.html
https://sagark.org/assets/pubs/fireperf-asplos2020.pdf
http://www.brendangregg.com/FlameGraphs/

FireSim Documentation, Release 1.15.0

Given this visualization, time-consuming routines can easily be identified: they are leaves (top-most horizontal bars)
of the stacks in the flame graph and consume a significant proportion of overall runtime, represented by the width of
the horizontal bars.

Traditionally, data to produce Flame Graphs is collected using tools like perf, which sample stack traces on running
systems in software. However, these tools are limited by the fact that they are ultimately running additional software
on the system being profiled, which can change the behavior of the software that needs to be profiled. Furthermore, as
sampling frequency is increased, this effect becomes worse.

In FireSim, we use the out-of-band trace collection provided by TracerV to collect these traces cycle-exactly and without
perturbing running software. On the host-software side, TracerV unwinds the stack based on DWARF information
about the running binary that you supply. This stack trace is then fed to the open-source FlameGraph stack trace
visualizer to produce Flame Graphs.

9.6.2 Prerequisites

1. Make sure you understand the Capturing RISC-V Instruction Traces with TracerV section.

2. You must have a design that integrates the TracerV bridge. See the Building a Design with TracerV section.

9.6.3 Enabling Flame Graph generation in config_runtime.yaml

To enable Flame Graph generation for a simulation, you must set enable: yes and output_format: 2 in the
tracing section of your config_runtime.yaml file, for example:

tracing:
enable: yes

Trace output formats. Only enabled if "enable" is set to "yes" above
0 = human readable; 1 = binary (compressed raw data); 2 = flamegraph (stack
unwinding -> Flame Graph)
output_format: 2

Trigger selector.
0 = no trigger; 1 = cycle count trigger; 2 = program counter trigger; 3 =
instruction trigger
selector: 1
start: 0
end: -1

The trigger selector settings can be set as described in the Setting a TracerV Trigger section. In particular, when
profiling the OS only when a desired application is running (e.g., iperf3 in our ASPLOS 2020 paper), instruction
value triggering is extremely useful. See the Instruction value trigger section for more.

9.6. TracerV + Flame Graphs: Profiling Software with Out-of-Band Flame Graph Generation 137

https://github.com/brendangregg/FlameGraph
https://github.com/brendangregg/FlameGraph
https://sagark.org/assets/pubs/fireperf-asplos2020.pdf

FireSim Documentation, Release 1.15.0

9.6.4 Producing DWARF information to supply to the TracerV driver

When running in FirePerf mode, the TracerV software driver expects a binary containing DWARF debugging informa-
tion, which it will use to obtain labels for stack unwinding.

TracerV expects this file to be named exactly as your bootbinary, but suffixed with -dwarf. For example (and as we
will see in the following section), if your bootbinary is named br-base-bin, TracerV will require you to provide a
file named br-base-bin-dwarf.

If you are generating a Linux distribution with FireMarshal, this file containing debug information for the generated
Linux kernel will automatically be provided (and named correctly) in the directory containing your images. For ex-
ample, building the br-base.json workload will automatically produce br-base-bin, br-base-bin-dwarf (for
TracerV flame graph generation), and br-base.img.

9.6.5 Modifying your workload description

Finally, we must make three modifications to the workload description to complete the flame graph flow. For general
documentation on workload descriptions, see the Defining Custom Workloads section.

1. We must add the file containing our DWARF information as one of the simulation_inputs, so that it is auto-
matically copied to the remote F1 instance running the simulation.

2. We must modify simulation_outputs to copy back the generated trace file.

3. We must set the post_run_hook to gen-all-flamegraphs-fireperf.sh (which FireSim puts on your path
by default), which will produce flame graphs from the trace files.

To concretize this, let us consider the default linux-uniform.json workload, which does not support Flame Graph
generation:

{
"benchmark_name" : "linux-uniform",
"common_bootbinary" : "br-base-bin",
"common_rootfs" : "br-base.img",
"common_outputs" : ["/etc/os-release"],
"common_simulation_outputs" : ["uartlog", "memory_stats*.csv"]

}

Below is the modified version of this workload, linux-uniform-flamegraph.json, which makes the aforemen-
tioned three changes:

{
"benchmark_name" : "linux-uniform",
"common_bootbinary" : "br-base-bin",
"common_rootfs" : "br-base.img",
"common_simulation_inputs" : ["br-base-bin-dwarf"],
"common_outputs" : ["/etc/os-release"],
"common_simulation_outputs" : ["uartlog", "memory_stats*.csv", "TRACEFILE*"],
"post_run_hook" : "gen-all-flamegraphs-fireperf.sh"

}

Note that we are adding TRACEFILE* to common_simulation_outputs, which will copy back all generated trace files
to your workload results directory. The gen-all-flamegraphs-fireperf.sh script will automatically produce a
flame graph for each generated trace.

Lastly, if you have created a new workload definition, make sure you update your config_runtime.yaml to use this
new workload definition.

138 Chapter 9. Debugging and Profiling on the FPGA

FireSim Documentation, Release 1.15.0

9.6.6 Running a simulation

At this point, you can follow the standard FireSim flow to run a workload. Once your workload completes, you will
find trace files with stack traces (as opposed to instruction traces) and generated flame graph SVGs in your workload’s
output directory.

9.6.7 Caveats

The current stack trace construction code does not distinguish between different userspace programs, instead consoli-
dating them into one entry. Expanded support for userspace programs will be available in a future release.

9.7 Dromajo Co-simulation with BOOM designs

Instead of using TracerV to provide a cycle-by-cycle trace of a target CPU’s architectural state, you can use the Dromajo
co-simulator to verify the functionality of a BOOM design.

Note: This work is highly experimental. We hope to integrate this into FireSim in a cleaner fashion at a later point.

Note: This work currently only works for single core BOOM designs.

9.7.1 Building a Design with Dromajo

In all FireChip designs, TracerV is included by default. To enable Dromajo, you just need to add the Dromajo bridge
(WithDromajoBridge) to your BOOM target design config (default configs. located in $CHIPYARD/generators/
firechip/src/main/scala/TargetConfigs.scala). An example configuration with Dromajo is shown below:

class FireSimLargeBoomConfig extends Config(
new WithDromajoBridge ++ // add Dromajo bridge to simulation
new WithDefaultFireSimBridges ++
new WithDefaultMemModel ++
new WithFireSimConfigTweaks ++
new chipyard.LargeBoomConfig)

At this point, you should run the firesim buildafi command for the BOOM config wanted.

9.7.2 Running a FireSim Simulation

To run a simulation with Dromajo, you must modify the workload json to support Dromajo. The following is an
example using the base Linux workload generated from FireMarshal and modifying it for Dromajo. Here is the modified
workload json (renamed to br-base-dromajo from br-base):

{
"benchmark_name": "br-base-dromajo",
"common_simulation_outputs": [
"uartlog",
"dromajo_snap.re_regs"

(continues on next page)

9.7. Dromajo Co-simulation with BOOM designs 139

https://github.com/chipsalliance/dromajo
https://github.com/chipsalliance/dromajo

FireSim Documentation, Release 1.15.0

(continued from previous page)

],
"common_bootbinary": "../../../../../software/firemarshal/images/br-base-bin",
"common_rootfs": "../../../../../software/firemarshal/images/br-base.img",
"common_simulation_inputs": [
"br-base-bin.rom",
"br-base-bin.dtb"

]
}

You will notice there are two extra simulation inputs needed compared to the “base” unmodified br-base workload: a
bootrom (rom) and a device tree blob (dtb). Both files are found in your generated sources and should be moved into
the workload directory (i.e. workloads/br-base-dromajo).

cd $CHIPYARD

copy/rename the rom file and put in the proper folder
cp sim/generated-src/f1/<LONG_NAME>/<LONG_NAME>.rom $FIRESIM/deploy/workloads/br-base-
→˓dromajo/br-base-bin.rom

copy/rename the dtb file and put in the proper folder
cp sim/generated-src/f1/<LONG_NAME>/<LONG_NAME>.dtb $FIRESIM/deploy/workloads/br-base-
→˓dromajo/br-base-bin.dtb

After this process, you should see the following workloads/br-base-dromajo folder layout:

br-base-dromajo/
br-base-bin.rom
br-base-bin.dtb
README

Note: The name of the rom and dtb files must match the name of the workload binary i.e. common_bootbinary.

At this point you are ready to run the simulation with Dromajo. The commit log trace will by default print to the
uartlog. However, you can avoid printing it out by changing verbose == false in the dromajo_cosim.cpp file
located in $CHIPYARD/tools/dromajo/dromajo-src/src/ folder.

9.7.3 Troubleshooting Dromajo Simulations with Meta-Simulations

If FPGA simulation fails with Dromajo, you can use metasimulation to determine if your Dromajo setup is correct.
First refer to Debugging & Testing with Metasimulation for more information on metasimulation. The main difference
between those instructions and simulations with Dromajo is that you need to manually point to the dtb, rom, and binary
files when invoking the simulator. Here is an example of a make command that can be run to check for a correct setup.

enter simulation directory
cd $FIRESIM/sim/

make command to run a binary
<BIN> - absolute path to binary
<DTB> - absolute path to dtb file
<BOOTROM> - absolute path to rom file

(continues on next page)

140 Chapter 9. Debugging and Profiling on the FPGA

FireSim Documentation, Release 1.15.0

(continued from previous page)

<YourBoomConfig> - Single-core BOOM configuration to test
make TARGET_CONFIG=<YourBoomConfig> SIM_BINARY=<BIN> EXTRA_SIM_ARGS="+drj_dtb=<DTB> +drj_
→˓rom=<BOOTROM> +drj_bin=<BIN>" run-vcs

It is important to have the +drj_* arguments, otherwise Dromajo will not match the simulation running on the DUT.

Note: Sometimes simulations in VCS will diverge unless a +define+RANDOM=0 is added to the VCS flags in sim/
midas/src/main/cc/rtlsim/Makefrag-vcs.

Warning: Dromajo currently only works in VCS and FireSim simulations.

9.8 Debugging a Hanging Simulator

A common symptom of a failing simulation is that appears to hang. Debugging this is especially daunting in FireSim
because it’s not immediately obvious if it’s a bug in the target, or somewhere in the host. To make it easier to identify
the problem, the simulation driver includes a polling watchdog that tracks for simulation progress, and periodically
updates an output file, heartbeat.csv, with a target cycle count and a timestamp. When debugging these issues, we
always encourage the use of metasimulation to try reproducing the failure if possible. We outline three common cases
in the section below.

9.8.1 Case 1: Target hang.

Symptoms: There is no output from the target (i.e., the uartlog might cease), but simulated time continues to advance
(heartbeat.csv will be periodically updated). Simulator instrumentation (TracerV, printf) may continue to produce
new output.

Causes: Typically, a bug in the target RTL. However, bridge bugs leading to erroneous token values will also produce
this behavior.

Next steps: You can deploy the full suite of FireSim’s debugging tools for failures of this nature, since assertion
synthesis, printf synthesis, and other target-side features still function. Assume there is a bug in the target RTL and
trace back the failure to a bridge if applicable.

9.8.2 Case 2: Simulator hang due to FPGA-side token starvation.

Symptoms: The driver’s main loop spins freely, as no bridge gets new work to do. As a result, the polling interval
quickly elapses and the simulation is torn down due to a lack of forward progress.

Causes: Generally, a bug in a bridge implementation (ex. the BridgeModule has accidentally dequeued a token without
producing a new output token; the BridgeModule is waiting on a driver interaction that never occurs).

Next steps: These are the trickiest to solve. Try to identify the bridge that’s responsible by removing unnecessary ones,
using an AutoILA, and adding printfs to BridgeDriver sources. Target-side debugging utilities may be used to identify
problematic target behavior, but tend not to be useful for identifying the root cause.

9.8. Debugging a Hanging Simulator 141

FireSim Documentation, Release 1.15.0

9.8.3 Case 3: Simulator hang due to driver-side deadlock.

Symptoms: The loss of all output, notably, heartbeat.csv ceases to be further updated.

Causes: Generally, a bridge driver bug. For example, the driver may be busy waiting on some output from the FPGA,
but the FPGA-hosted part of the simulator has stalled waiting for tokens.

Next Steps: Identify the buggy driver using printfs or attaching to the running simulator using GDB.

9.8.4 Simulator Heartbeat PlusArgs

+heartbeat-polling-interval=<int>: Specifies the number of round trips through the simulator main loop be-
fore polling the FPGA’s target cycle counter. Disable the heartbeat by setting this to -1.

142 Chapter 9. Debugging and Profiling on the FPGA

CHAPTER

TEN

NON-SOURCE DEPENDENCY MANAGEMENT

In Setting up your Manager Instance, we quickly copy-pasted the contents of scripts/machine-launch-script.
sh into the EC2 Management Console and that script installed many dependencies that FireSim needs using conda, a
platform-agnostic package manager, specifically using packages from the conda-forge community.

In many situations, you may not need to know anything about conda. By default, the machine-launch-script.
sh installs conda into /opt/conda and all of the FireSim dependencies into a ‘named environment’ firesim at
/opt/conda/envs/firesim. machine-launch-setup.sh also adds the required setup to the system-wide /etc/
profile.d/conda.sh init script to add /opt/conda/envs/firesim/bin to everyone’s path.

However, the script is also flexible. For example, if you do not have root access, you can specify an alternate install
location with the --prefix option to machine-launch-script.sh. The only requirement is that you are able to
write into the install location. See machine-launch-script.sh --help for more details.

Warning: To run a simulation on a F1 FPGA , FireSim currently requires that you are able to act as root via sudo.

However, you can do many things without having root, like Building Your Own Hardware Designs (FireSim FPGA
Images), meta-simulation of a FireSim system using Verilator or even developing new features in FireSim.

10.1 Updating a Package Version

If you need a newer version of package, the most expedient method to see whether there is a newer version available on
conda-forge is to run conda update <package-name>. If you are lucky, and the dependencies of the package you
want to update are simple, you’ll see output that looks something like this

bash-4.2$ conda update moto
Collecting package metadata (current_repodata.json): done
Solving environment: done

Package Plan

environment location: /opt/conda

added / updated specs:
- moto

The following NEW packages will be INSTALLED:

graphql-core conda-forge/noarch::graphql-core-3.2.0-pyhd8ed1ab_0
(continues on next page)

143

https://conda.io/en/latest/index.html
https://conda-forge.org/#about
meta-simulation
https://conda-forge.org

FireSim Documentation, Release 1.15.0

(continued from previous page)

The following packages will be UPDATED:

moto 2.2.19-pyhd8ed1ab_0 --> 3.1.0-pyhd8ed1ab_0

Proceed ([y]/n)?

The addition of graphql-core makes sense because the diff of moto’s setup.py between 2.2.19 and 3.1.0 shows it was
clearly added as a new dependence.

And this output tells us that latest version of moto available is 3.1.0. Now, you might be tempted to hit <<Enter>>
and move forward with your life.

Attention: However, it is always a better idea to modify the version in machine-launch-script.sh so that:
#. you remember to commit and share the new version requirement. #. you are providing a complete set of
requirements for conda to solve. There is a subtle difference between installing everything you need in a single
conda install vs incrementally installing one or two packages at a time because the version constraints are not
maintained between conda invocations. (NOTE: certain packages like Python are implicitly pinned at environment
creation and will only be updated if explicitly requested .)

So, modify machine-launch-script.sh with the updated version of moto, and run it. If you’d like to see what
machine-launch-script.sh will do before actually making changes to your environment, feel free to give it the
--dry-run option, look at the output and then run again without --dry-run.

In this case, when you are finished, you can run conda list --revisions and you should see output like the fol-
lowing

bash-4.2$ conda list --revisions
2022-03-15 19:21:10 (rev 0)
+_libgcc_mutex-0.1 (conda-forge/linux-64)
+_openmp_mutex-4.5 (conda-forge/linux-64)
+_sysroot_linux-64_curr_repodata_hack-3 (conda-forge/noarch)
+alsa-lib-1.2.3 (conda-forge/linux-64)
+appdirs-1.4.4 (conda-forge/noarch)
+argcomplete-1.12.3 (conda-forge/noarch)

... many packages elided for this example ...

+xxhash-0.8.0 (conda-forge/linux-64)
+xz-5.2.5 (conda-forge/linux-64)
+yaml-0.2.5 (conda-forge/linux-64)
+zipp-3.7.0 (conda-forge/noarch)
+zlib-1.2.11 (conda-forge/linux-64)
+zstd-1.5.2 (conda-forge/linux-64)

2022-03-15 19:34:06 (rev 1)
moto {2.2.19 (conda-forge/noarch) -> 3.1.0 (conda-forge/noarch)}

This shows you that the first time machine-launch-script.sh was run, it created ‘revision’ 0 of the environment
with many packages. After updating the version of moto and rerunning, ‘revision’ 1 was created by updating the
version of moto. At any time, you can revert your conda environment back to an older ‘revision’ using conda install
-revision <n>

144 Chapter 10. Non-Source Dependency Management

https://github.com/spulec/moto/compare/2.2.19...3.1.0#diff-60f61ab7a8d1910d86d9fda2261620314edcae5894d5aaa236b821c7256badd7
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html#preventing-packages-from-updating-pinning
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-python.html#updating-or-upgrading-python

FireSim Documentation, Release 1.15.0

10.2 Multiple Environments

In the example above, we only wanted to update a single package and it was fairly straightforward – it only updated that
package and installed a new dependency. However, what if we’re making a larger change and we think we might need
to have both sets of tools around for awhile?

In this case, make use of the --env <name> option of machine-launch-script.sh. By giving a descriptive name
with that option, you will create another ‘environment’. You can see a listing of available environments by running
conda env list to get output similar to:

bash-4.2$ conda env list
conda environments:
#
base /opt/conda
firesim /opt/conda/envs/firesim
doc_writing * /opt/conda/envs/doc_writing

In the output above, you can see that I had the ‘base’ environment that is created when you install conda as well
as the firesim environment that machine-launch-script.sh creates by default. I also created a ‘doc_writing’
environment to show some of the examples pasted earlier.

You can also see that ‘doc_writing’ has an asterisk next to it, indicating that it is the currently ‘activated’ environment.
To switch to a different environment, I could conda activate <name> e.g. conda activate firesim

By default, machine-launch-script.sh installs the requirements into ‘firesim’ and runs conda init to ensure that
the ‘firesim’ environment is activated at login.

10.3 Adding a New Dependency

Look for what you need in this order:

1. The existing conda-forge packages list. Keep in mind that since conda spans several domains, the package name
may not be exactly the same as a name from PyPI or one of the system package managers.

2. Adding a conda-forge recipe. If you do this, let the firesim@googlegroups.com mailing list know so that we can
help get the addition merged.

3. PyPI (for Python packages). While it is possible to install packages with pip into a conda environment, there
are caveats. In short, you’re less likely to create a mess if you use only conda to manage the requirements and
dependencies in your environment.

4. System packages as a last resort. It’s very difficult to have the same tools on different platforms when they are
being built and shipped by different systems and organizations. That being said, in a pinch, you can find a section
for platform-specific setup in machine-launch-script.sh.

5. As a super last resort, add code to machine-launch-script.sh or build-setup.sh that installs whatever
you need and during your PR, we’ll help you migrate to one of the other options above.

10.2. Multiple Environments 145

https://conda-forge.org/#add_recipe
mailto:firesim@googlegroups.com
https://pypi.org/
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html?highlight=pip#using-pip-in-an-environment
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html?highlight=pip#using-pip-in-an-environment

FireSim Documentation, Release 1.15.0

10.4 Building From Source

If you find that a package is missing an optional feature, consider looking up it’s ‘feedstock’ (aka recipe) repo in The
existing conda-forge packages list. and submitting an issue or PR to the ‘feedstock’ repo.

If you instead need to enable debugging or possibly actively hack on the source of a package:

1. Find the feedstock repo in the feedstock-list

2. Clone the feedstock repo and modify recipe/build.sh (or recipe/meta.yaml if there isn’t a build script)

3. python build-locally.py to build using the conda-forge docker container If the build is successful, you will
have an installable conda package in build_artifacts/linux-64 that can be installed using conda install
-c ./build_artifacts <packagename>. If the build is not successful, you can add the --debug switch to
python build-locally.py and that will drop you into an interactive shell in the container. To find the build
directory and activate the correct environment, just follow the instructions from the message that looks like:

##
Build and/or host environments created for debugging. To enter a debugging␣
→˓environment:

cd /Users/UserName/miniconda3/conda-bld/debug_1542385789430/work && source /Users/
→˓UserName/miniconda3/conda-bld/debug_1542385789430/work/build_env_setup.sh

To run your build, you might want to start with running the conda_build.sh file.
##

If you are developing a Python package, it is usually easiest to install all dependencies using conda and then install your
package in ‘development mode’ using pip install -e <path to clone> (and making sure that you are using pip
from your environment).

10.5 Running conda with sudo

tl;dr; run conda like this when using sudo:

sudo -E $CONDA_EXE <remaining options to conda>

If you look closely at machine-launch-script.sh, you will notice that it always uses the full path to $CONDA_EXE.
This is because /etc/sudoers typically doesn’t bless our custom install prefix of /opt/conda in the secure_path.

You also probably want to include the -E option to sudo (or more specifically
--preserve-env=CONDA_DEFAULT_ENV) so that the default choice for the environment to modify is preserved
in the sudo environment.

10.6 Running things from your conda environment with sudo

If you are running other commands using sudo (perhaps to run something under gdb), remember, the secure_path
does not include the conda environment by default and you will need to specify the full path to what you want to run,
or in some cases, it is easiest to wrap what you want to run in a full login shell invocation like:

sudo /bin/bash -l -c "<command to run as root>"

146 Chapter 10. Non-Source Dependency Management

https://conda-forge.org/feedstock-outputs/
https://conda-forge.org/docs/maintainer/updating_pkgs.html#testing-changes-locally

FireSim Documentation, Release 1.15.0

The -l option to bash ensures that the default conda environment is fully activated. In the rare case that you are using
a non-default named environment, you will want to activate it before running your command:

sudo /bin/bash -l -c "conda activate <myenv> && <command to run as root>"

10.7 Additional Resources

• conda-forge

• Conda Documentation

10.7. Additional Resources 147

https://conda-forge.org
https://conda.io/projects/conda/en/latest/index.html

FireSim Documentation, Release 1.15.0

148 Chapter 10. Non-Source Dependency Management

CHAPTER

ELEVEN

SUPERNODE - MULTIPLE SIMULATED SOCS PER FPGA

Supernode allows users to run multiple simulated SoCs per-FPGA in order to improve FPGA resource utilization and
reduce cost. For example, in the case of using FireSim to simulate a datacenter scale system, supernode mode allows
realistic rack topology simulation (32 simulated nodes) using a single f1.16xlarge instance (8 FPGAs).

Below, we outline the build and runtime configuration changes needed to utilize supernode designs. Supernode is
currently only enabled for RocketChip designs with NICs. More details about supernode can be found in the FireSim
ISCA 2018 Paper.

11.1 Introduction

By default, supernode packs 4 identical designs into a single FPGA, and utilizes all 4 DDR channels available on each
FPGA on AWS F1 instances. It currently does so by generating a wrapper top level target which encapsualtes the four
simulated target nodes. The packed nodes are treated as 4 separate nodes, are assigned their own individual MAC
addresses, and can perform any action a single node could: run different programs, interact with each other over the
network, utilize different block device images, etc. In the networked case, 4 separate network links are presented to the
switch-side.

11.2 Building Supernode Designs

Here, we outline some of the changes between supernode and regular simulations that are required to build supernode
designs.

The Supernode target configuration wrapper can be found in Chipyard in chipyard/generators/firechip/src/
main/scala/TargetConfigs.scala. An example wrapper configuration is:

class SupernodeFireSimRocketConfig extends Config(
new WithNumNodes(4) ++
new freechips.rocketchip.subsystem.WithExtMemSize((1 << 30) * 8L) ++ // 8 GB
new FireSimRocketConfig)

In this example, SupernodeFireSimRocketConfig is the wrapper, while FireSimRocketConfig is the target node
configuration. To simulate a different target configuration, we will generate a new supernode wrapper, with the new
target configuration. For example, to simulate 4 quad-core nodes on one FPGA, you can use:

class SupernodeFireSimQuadRocketConfig extends Config(
new WithNumNodes(4) ++
new freechips.rocketchip.subsystem.WithExtMemSize((1 << 30) * 8L) ++ // 8 GB
new FireSimQuadRocketConfig)

149

https://sagark.org/assets/pubs/firesim-isca2018.pdf
https://sagark.org/assets/pubs/firesim-isca2018.pdf

FireSim Documentation, Release 1.15.0

Next, when defining the build recipe, we must remmber to use the supernode configuration: The DESIGN param-
eter should always be set to FireSim, while the TARGET_CONFIG parameter should be set to the wrapper config-
uration that was defined in chipyard/generators/firechip/src/main/scala/TargetConfigs.scala. The
PLATFORM_CONFIG can be selected the same as in regular FireSim configurations. For example:

DESIGN: FireSim
TARGET_CONFIG: SupernodeFireSimQuadRocketConfig
PLATFORM_CONFIG: BaseF1Config
deploy_triplet: None

We currently provide a single pre-built AGFI for supernode of 4 quad-core RocketChips with DDR3 memory models.
You can build your own AGFI, using the supplied samples in config_build_recipes.yaml. Importantly, in order
to meet FPGA timing contraints, Supernode target may require lower host clock frequencies. host clock frequencies
can be configured as parts of the PLATFORM_CONFIG in config_build_recipes.yaml.

11.3 Running Supernode Simulations

Running FireSim in supernode mode follows the same process as in “regular” mode. Currently, the only difference is
that the main simulation screen remains with the name fsim0, while the three other simulation screens can be accessed
by attaching screen to uartpty1, uartpty2, uartpty3 respectively. All simulation screens will generate uart logs
(uartlog1, uartlog2, uartlog3). Notice that you must use sudo in order to attach to the uartpty or view the uart
logs. The additional uart logs will not be copied back to the manager instance by default (as in a “regular” FireSim
simulation). It is neccessary to specify the copying of the additional uartlogs (uartlog1, uartlog2, uartlog3) in the
workload definition.

Supernode topologies utilize a FireSimSuperNodeServerNode class in order to represent one of the 4 simulated tar-
get nodes which also represents a single FPGA mapping, while using a FireSimDummyServerNode class which rep-
resent the other three simulated target nodes which do not represent an FPGA mapping. In supernode mode, topologies
should always add nodes in pairs of 4, as one FireSimSuperNodeServerNode and three FireSimDummyServerNode
s.

Various example Supernode topologies are provided, ranging from 4 simulated target nodes to 1024 simulated target
nodes.

Below are a couple of useful examples as templates for writing custom Supernode topologies.

A sample Supernode topology of 4 simulated target nodes which can fit on a single f1.2xlarge is:

def supernode_example_4config(self):
self.roots = [FireSimSwitchNode()]
servers = [FireSimSuperNodeServerNode()] + [FireSimDummyServerNode() for x in␣

→˓range(3)]
self.roots[0].add_downlinks(servers)

A sample Supernode topology of 32 simulated target nodes which can fit on a single f1.16xlarge is:

def supernode_example_32config(self):
self.roots = [FireSimSwitchNode()]
servers = UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),␣

→˓FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in␣
→˓range(8)])

self.roots[0].add_downlinks(servers)

Supernode config_runtime.yaml requires selecting a supernode agfi in conjunction with a defined supernode topol-
ogy.

150 Chapter 11. Supernode - Multiple Simulated SoCs Per FPGA

FireSim Documentation, Release 1.15.0

11.4 Work in Progress!

We are currently working on restructuring supernode to support a wider-variety of use cases (including non-networked
cases, and increased packing of nodes). More documentation will follow. Not all FireSim features are currently avail-
able on Supernode. As a rule-of-thumb, target-related features have a higher likelihood of being supported “out-of-
the-box”, while features which involve external interfaces (such as TracerV) has a lesser likelihood of being supported
“out-of-the-box”

11.4. Work in Progress! 151

FireSim Documentation, Release 1.15.0

152 Chapter 11. Supernode - Multiple Simulated SoCs Per FPGA

CHAPTER

TWELVE

MISCELLANEOUS TIPS

12.1 Add the fsimcluster column to your AWS management console

Once you’ve deployed a simulation once with the manager, the AWS management console will allow you to add a
custom column that will allow you to see at-a-glance which FireSim run farm an instance belongs to.

To do so, click the gear in the top right of the AWS management console. From there, you should see a checkbox for
fsimcluster. Enable it to see the column.

12.2 FPGA Dev AMI Remote Desktop Setup

To Remote Desktop into your manager instance, you must do the following:

curl https://s3.amazonaws.com/aws-fpga-developer-ami/1.5.0/Scripts/setup_gui.sh -o /home/
→˓centos/src/scripts/setup_gui.sh
sudo sed -i 's/enabled=0/enabled=1/g' /etc/yum.repos.d/CentOS-CR.repo
/home/centos/src/scripts/setup_gui.sh
keep manager paramiko compatibility
sudo pip2 uninstall gssapi

See

https://forums.aws.amazon.com/message.jspa?messageID=848073#848073

and

https://forums.aws.amazon.com/ann.jspa?annID=5710

12.3 Experimental Support for SSHing into simulated nodes and ac-
cessing the internet from within simulations

This is assuming that you are simulating a 1-node networked cluster. These instructions will let you both ssh into the
simulated node and access the outside internet from within the simulated node:

1. Set your config files to simulate a 1-node networked cluster (example_1config)

2. Run firesim launchrunfarm && firesim infrasetup and wait for them to complete

3. cd to firesim/target-design/switch/

4. Go into the newest directory that is prefixed with switch0-

153

https://forums.aws.amazon.com/message.jspa?messageID=848073#848073
https://forums.aws.amazon.com/ann.jspa?annID=5710

FireSim Documentation, Release 1.15.0

5. Edit the switchconfig.h file so that it looks like this:

// THIS FILE IS MACHINE GENERATED. SEE deploy/buildtools/switchmodelconfig.py

#ifdef NUMCLIENTSCONFIG
#define NUMPORTS 2
#define NUMDOWNLINKS 2
#define NUMUPLINKS 0
#endif
#ifdef PORTSETUPCONFIG
ports[0] = new ShmemPort(0,
→˓"00
→˓", false);
ports[1] = new SSHPort(1);

#endif

#ifdef MACPORTSCONFIG
uint16_t mac2port[3] {1, 2, 0};
#endif

6. Run make then cp switch switch0

7. Run scp switch0 YOUR_RUN_FARM_INSTANCE_IP:switch_slot_0/switch0

8. On the RUN FARM INSTANCE, run:

sudo ip tuntap add mode tap dev tap0 user $USER
sudo ip link set tap0 up
sudo ip addr add 172.16.0.1/16 dev tap0
sudo ifconfig tap0 hw ether 8e:6b:35:04:00:00
sudo sysctl -w net.ipv6.conf.tap0.disable_ipv6=1

9. Run firesim runworkload. Confirm that the node has booted to the login prompt in the fsim0 screen.

10. To ssh into the simulated machine, you will need to first ssh onto the Run Farm instance, then ssh into the
IP address of the simulated node (172.16.0.2), username root, password firesim. You should also prefix with
TERM=linux to get backspace to work correctly: So:

ssh YOUR_RUN_FARM_INSTANCE_IP
from within the run farm instance:
TERM=linux ssh root@172.16.0.2

11. To also be able to access the internet from within the simulation, run the following on the RUN FARM INSTANCE:

sudo sysctl -w net.ipv4.ip_forward=1
export EXT_IF_TO_USE=$(ifconfig -a | sed 's/[\t].*//;/^\(lo:\|\)$/d' | sed 's/[\t].*//;
→˓/^\(tap0:\|\)$/d' | sed 's/://g')
sudo iptables -A FORWARD -i $EXT_IF_TO_USE -o tap0 -m state --state RELATED,ESTABLISHED -
→˓j ACCEPT
sudo iptables -A FORWARD -i tap0 -o $EXT_IF_TO_USE -j ACCEPT
sudo iptables -t nat -A POSTROUTING -o $EXT_IF_TO_USE -j MASQUERADE

12. Then run the following in the simulation:

154 Chapter 12. Miscellaneous Tips

FireSim Documentation, Release 1.15.0

route add default gw 172.16.0.1 eth0
echo "nameserver 8.8.8.8" >> /etc/resolv.conf
echo "nameserver 8.8.4.4" >> /etc/resolv.conf

At this point, you will be able to access the outside internet, e.g. ping google.com or wget google.com.

12.4 Navigating the FireSim Codebase

This is a large codebase with tons of dependencies, so navigating it can be difficult. By default, a tags file is generated
when you run ./build-setup.sh which aids in jumping around the codebase. This file is generated by Exuberant
Ctags and many editors support using this file to jump around the codebase. You can also regenerate the tags file if
you make code changes by running ./gen-tags.sh in your FireSim repo.

For example, to use these tags to jump around the codebase in vim, add the following to your .vimrc:

set tags=tags;/

Then, you can move the cursor over something you want to jump to and hit ctrl-] to jump to the definition and ctrl-t
to jump back out. E.g. in top-level configurations in FireSim, you can jump all the way down through the Rocket Chip
codebase and even down to Chisel.

12.5 Using FireSim CI

For more information on how to deal with the FireSim CI and how to run FPGA simulations in the CI, refer to the the
CI_README.md under the .github/ directory.

12.4. Navigating the FireSim Codebase 155

FireSim Documentation, Release 1.15.0

156 Chapter 12. Miscellaneous Tips

CHAPTER

THIRTEEN

FIRESIM ASKED QUESTIONS

13.1 I just bumped the FireSim repository to a newer commit and sim-
ulations aren’t running. What is going on?

Anytime there is an AGFI bump, FireSim simulations will break/hang due to outdated AFGI. To get the new default
AGFI’s you must run the manager initialization again by doing the following:

cd firesim
source sourceme-f1-manager.sh
firesim managerinit

13.2 Is there a good way to keep track of what AGFI corresponds to
what FireSim commit?

When building an AGFI during firesim buildafi, FireSim keeps track of what FireSim repository commit was
used to build the AGFI. To view a list of AGFI’s that you have built and what you have access to, you can run the
following command:

cd firesim
source sourceme-f1-manager.sh
aws ec2 describe-fpga-images --fpga-image-ids # List all AGFI images

You can also view a specific AGFI image by giving the AGFI ID (found in deploy/config_hwdb.ini) through the
following command:

cd firesim
source sourceme-f1-manager.sh
aws ec2 describe-fpga-images --filter Name=fpga-image-global-id,Values=agfi-<Your ID␣
→˓Here> # List particular AGFI image

After querying an AGFI, you can find the commit hash of the FireSim repository used to build the AGFI within the
“Description” field.

For more information, you can reference the AWS documentation at https://docs.aws.amazon.com/cli/latest/reference/
ec2/describe-fpga-images.html.

157

https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-fpga-images.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-fpga-images.html

FireSim Documentation, Release 1.15.0

13.3 Help, My Simulation Hangs!

Oof. It can be difficult to pin this one down, read through Debugging a Hanging Simulator for some tips to get you
started.

13.4 Should My Simulator Produce Different Results Across Runs?

No.

Unless you’ve intentionally introduced a side-channel (e.g., you’re running an interactive simulation, or you’ve con-
nected the NIC to the internet), this is likely a bug in one of your custom bridge implementations or in FireSim. In fact,
for a given target-design, enabling printf synthesis, assertion synthesis, autocounter, or Auto ILA, should not change
the simulated behavior of the machine.

13.5 Is there a way to compress workload results when copying back
to the manager instance?

FireSim doesn’t support compressing workload results before copying them back to the manager instance. Instead we
recommend that you use a modern filesystem (like ZFS) to provide compression for you. For example, if you want to
use ZFS to transparently compress data:

1. Attach a new volume to your EC2 instance (either at runtime or during launch). This is where data will be stored
in a compressed format.

2. Make sure that the volume is attached (using something like lsblk -f). This new volume should not have a
filesystem type and should be unmounted (volume name example: nvme1n1).

3. Install ZFS according to the ZFS documentation. Check /etc/redhat-release to verify the CentOS version
of the manager instance.

4. Mount the volume and setup the ZFS filesystem with compression.

Warning: Creating the zpool will destroy all pre-existing data on that partition. Double-check that the device
node is correct before running any commands.

replace /dev/nvme1n1 with the proper device node
zpool create -o ashift=12 -O compression=on <POOL_NAME> /dev/nvme1n1
zpool list
zfs list

5. At this point, you can use /<POOL_NAME> as a normal directory to store data into where it will be compressed.
To see the compression ratio, use zfs get compressratio.

158 Chapter 13. FireSim Asked Questions

https://openzfs.github.io/openzfs-docs/Getting%20Started/RHEL-based%20distro/index.html

CHAPTER

FOURTEEN

(EXPERIMENTAL) USING ON PREMISE FPGAS

FireSim now includes support for Vitis U250 FPGAs! This section describes a use case on how to setup FireSim for
building/running Vitis simulations locally. This section assumes you are very familiar with the normal FireSim setup
process, commandline, configuration files, and terminology.

14.1 Setup

First, install and setup Vitis/Vivado/XRT to use the U250.

• Install Vitis/Vivado 2021.1 (refer to the Xilinx website for the installers)

• Important Build and install XRT manually based off the following commit: https://github.com/Xilinx/XRT/
commit/63269b8d4aa04099459c68b283f8512748fb39d6

• Install the U250 board package

Next, setup the FireSim repository.

1. Clone the FireSim repository

2. Use the scripts/machine-launch-script.sh to install Conda and the SW packages needed

3. Continue with the FireSim setup as mentioned by Setting up the FireSim Repo with the following modifications:

• Run firesim managerinit --platform vitis

14.2 Bitstream Build

1. Add the following build recipe to your config_build_recipes.yaml file. This configuration is a simple
singlecore Rocket configuration with a single DRAM channel and no debugging features. Future support will
come with more DRAM channels, and the full suite of FireSim debugging features.

firesim_rocket_singlecore_no_nic:
DESIGN: FireSim
TARGET_CONFIG: FireSimRocketConfig
PLATFORM_CONFIG: BaseVitisConfig
deploy_triplet: null
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/vitis.yaml

159

https://github.com/Xilinx/XRT/commit/63269b8d4aa04099459c68b283f8512748fb39d6
https://github.com/Xilinx/XRT/commit/63269b8d4aa04099459c68b283f8512748fb39d6
https://www.github.com/firesim/firesim/blob/1.15.0/scripts/machine-launch-script.sh

FireSim Documentation, Release 1.15.0

2. Modify the config_build.yaml to the following (leaving other sections intact). Note that you should modify
default_build_dir appropriately. This sets up running builds locally using the externally provisioned build
farm.

build_farm:
base_recipe: build-farm-recipes/externally_provisioned.yaml
recipe_arg_overrides:

default_build_dir: <PATH TO WHERE BUILDS SHOULD RUN>

builds_to_run:
- firesim_rocket_singlecore_no_nic

3. Run firesim buildbitstream

4. If successful, you should see a firesim_rocket_singlecore_no_nic HWDB entry in deploy/
build-hwdb-entries/. It should look something like this:

firesim_rocket_singlecore_no_nic:
xclbin: <PATH TO BUILT XCLBIN>
deploy_triplet_override: FireSim-FireSimRocketConfig-BaseVitisConfig
custom_runtime_config: null

Note: If for some reason the buildbitstream failed, you can download a pre-built xclbin here: https://people.
eecs.berkeley.edu/~abe.gonzalez/firesim_rocket_singlecore_no_nic.xclbin.

14.3 Running A Simulation

1. Modify the config_runtime.yaml to the following (leaving other sections intact). Note that you should mod-
ify default_simulation_dir appropriately. This sets up running simulations locally using the externally
provisioned run farm.

run_farm:
base_recipe: run-farm-recipes/externally_provisioned.yaml
recipe_arg_overrides:
default_simulation_dir: <PATH TO SIMULATION AREA>
run_farm_hosts_to_use:

- localhost: one_fpga_spec
run_farm_host_specs:

- one_fpga_spec:
num_fpgas: 1
num_metasims: 0
use_for_switch_only: false

target_config:
topology: no_net_config
no_net_num_nodes: 1
link_latency: 6405
switching_latency: 10
net_bandwidth: 200
profile_interval: -1

(continues on next page)

160 Chapter 14. (Experimental) Using On Premise FPGAs

https://people.eecs.berkeley.edu/~abe.gonzalez/firesim_rocket_singlecore_no_nic.xclbin
https://people.eecs.berkeley.edu/~abe.gonzalez/firesim_rocket_singlecore_no_nic.xclbin

FireSim Documentation, Release 1.15.0

(continued from previous page)

default_hw_config: firesim_rocket_singlecore_no_nic
plusarg_passthrough: ""

2. Leave or change the single node workload you want to run, and run firesim launchrunfarm, firesim
infrasetup, firesim runworkload, firesim terminaterunfarm like normal.

14.3. Running A Simulation 161

FireSim Documentation, Release 1.15.0

162 Chapter 14. (Experimental) Using On Premise FPGAs

CHAPTER

FIFTEEN

OVERVIEW & PHILOSOPHY

Underpinning FireSim is Golden Gate (MIDAS II), a FIRRTL-based compiler and C++ library, which is used to trans-
form Chisel-generated RTL into a deterministic FPGA-accelerated simulator.

15.1 Golden Gate vs FPGA Prototyping

Key to understanding the design of Golden Gate, is understanding that Golden Gate-generated simulators are not FPGA
prototypes. Unlike in a prototype, Golden Gate-generated simulators decouple the target-design clocks from all FPGA-
host clocks (we say it is host-decoupled): one cycle in the target machine is simulated over a dynamically variable
number FPGA clock cycles. In constrast, a conventional FPGA-prototype “emulates” the SoC by implementing the
target directly in FPGA logic, with each FPGA-clock edge executing a clock edge of the SoC.

15.2 Why Use Golden Gate & FireSim

The host decoupling by Golden Gate-generated simulators enables:

1. Deterministic simulation Golden Gate creates a closed simulation environment such that bugs in the target can
be reproduced despite timing-differences (eg. DRAM refresh, PCI-E transport latency) in the underlying host.
The simulators for the same target can be generated for different host-FPGAs but will maintain the same target
behavior.

2. FPGA-host optimizations Structures in ASIC RTL that map poorly to FPGA logic can be replaced with models
that preserve the target RTL’s behavior, but take more host cycles to save resources. eg. A 5R, 3W-ported register
file with a dual-ported BRAM over 4 cycles.

3. Distributed simulation & software co-simulation Since models are decoupled from host time, it becomes
much easier to host components of the simulator on multiple FPGAs, and on a host-CPU, while still preserving
simulation determinism. This feature serves as the basis for building cycle-accurate scale-out systems with
FireSim.

4. FPGA-hosted, timing-faithful models of I/O devices Most simple FPGA-prototypes use FPGA-attached
DRAM to model the target’s DRAM memory system. If the available memory system does not match that
of the target, the target’s simulated performance will be artificially fast or slow. Host-decoupling permits writing
detailed timing models that provide host-independent, deterministic timing of the target’s memory system, while
still use FPGA-host resources like DRAM as a functional store.

163

FireSim Documentation, Release 1.15.0

15.3 Why Not Golden Gate

Ultimately, Golden Gate-generated simulators introduce overheads not present in an FPGA-prototype that may increase
FPGA resource use, decrease fmax, and decrease overall simulation throughput1. Those looking to develop soft-cores or
develop a complete FPGA-based platform with their own boards and I/O devices would be best served by implementing
their design directly on an FPGA. For those looking to building a system around Rocket-Chip, we’d suggest looking at
SiFive’s Freedom platform to start.

15.4 How is Host-Decoupling Implemented?

Host-decoupling in Golden Gate-generated simulators is implemented by decomposing the target machine into a
dataflow graph of latency-insensitive models. As a user of FireSim, understanding this dataflow abstraction is es-
sential for debugging your system and for developing your own software models and bridges. We describe it in the next
section.

1 These overheads varying depending on the features implemented and optimizations applied. Certain optimizations, currently in development,
may increase fmax or decrease resource utilization over the equivalent prototype.

164 Chapter 15. Overview & Philosophy

https://github.com/sifive/freedom

CHAPTER

SIXTEEN

TARGET ABSTRACTION & HOST DECOUPLING

Golden Gate-generated simulators are deterministic, cycle-exact representations of the source RTL fed to the compiler.
To achieve this, Golden Gate consumes input RTL (as FIRRTL) and transforms it into a latency-insensitive bounded
dataflow network (LI-BDN) representation of the same RTL.

16.1 The Target as a Dataflow Graph

Dataflow graphs in Golden Gate consist of models, tokens, and channels:

1) Models – the nodes of the graph, these capture the behavior of the target machine by consuming and producing
tokens.

2) Tokens – the messages of dataflow graph, these represent a hardware value as they would appear on a wire after
they have converged for a given cycle.

3) Channels – the edges of the graph, these connect the output port of one model to the input of another.

In this system, time advances locally in each model. A model advances once cycle in simulated time when it consumes
one token from each of its input ports and enqueues one token into each of its output ports. Models are latency-
insensitive: they can tolerate variable input token latency as well as backpressure on output channels. Give a sequence
of input tokens for each input port, a correctly implemented model will produce the same sequence of tokens on each
of its outputs, regardless of when those input tokens arrive.

We give an example below of a dataflow graph representation of a 32-bit adder, simulating two cycles of execution.

16.2 Model Implementations

In Golden Gate, there are two dimensions of model implementation:

1) CPU- or FPGA-hosted: simply, where the model is going to execute. CPU-hosted models, being software, are more
flexible and easy to debug but slow. Conversely, FPGA-hosted models are fast, but more difficult to write and debug.

2) Cycle-Exact or Abstract: cycle-exact models faithfully implement a chunk of the SoC’s RTL~(this formalized later),
where as abstract models are handwritten and trade fidelity for reduced complexity, better simulation performance,
improved resource utilization, etc. . .

Hybrid, CPU-FPGA-hosted models are common. Here, a common pattern is write an RTL timing-model and a software
functional model.

165

FireSim Documentation, Release 1.15.0

16.3 Expressing the Target Graph

The target graph is captured in the FIRRTL for your target. The bulk of the RTL for your system will be transformed
by Golden Gate into one or more cycle-exact, FPGA-hosted models. You introduce abstract, FPGA-hosted models
and CPU-hosted models into the graph by using Target-to-Host Bridges. During compilation, Golden Gate extracts the
target-side of the bridge, and instantiates your custom RTL, called an BridgeModule, which together with a CPU-hosted
Bridge Driver, gives you the means to model arbitrary target-behavior. We expand on this in the Bridge section.

16.4 Latency-Insensitive Bounded Dataflow Networks

In order for the resulting simulator to be a faithful representation of the target RTL, models must adhere to three
properties. We refer the reader to the LI-BDN paper for the formal definitions of these properties. English language
equivalents follow.

Partial Implementation: The model output token behavior matches the cycle-by-cyle output of the reference RTL,
given the same input provided to both the reference RTL and the model (as a arbitrarily delayed token stream). Cycle
exact models must implement PI, whereas abstract models do not.

The remaining two properties ensure the graph does not deadlock, and must be implemented by both cycle-exact and
abstract models.

Self-Cleaning: A model that has enqueued N tokens into each of it’s output ports must eventually dequeue N tokens
from each of it’s input ports.

No Extranenous Dependencies: If a given output channel of an LI-BDN simulation model has received a number of
tokens no greater than any other channel, and if the model receives all input tokens required to compute the next output
token for that channel, the model must eventually enqueue that output token, regardless of future external activity. Here,
a model enqueueing an output token is synonymous with the corresponding output channel “receiving” the token.

166 Chapter 16. Target Abstraction & Host Decoupling

https://dspace.mit.edu/bitstream/handle/1721.1/58834/Vijayaraghavan-2009-Bounded%20Dataflow%20Networks%20and%20Latency-Insensitive%20Circuits.pdf?sequence=1&isAllowed=y

CHAPTER

SEVENTEEN

TARGET-TO-HOST BRIDGES

A custom model in a FireSim Simulation, either CPU-hosted or FPGA-hosted, is deployed by using a Target-to-Host
Bridge, or Bridge for short. Bridges provide the means to inject hardware and software models that produce and
consume token streams.

Bridges enable:

1. Deterministic, host-agnostic I/O models. This is the most common use case. Here you instantiate bridges at
the I/O boundary of your chip, to provide a simulation models of the environment your design is executing in.
For an FPGA-hosted model, see FASED memory timing models. For co-simulated models see the UARTBridge,
BlockDeviceBridge, and SerialBridge.

2. Verification against a software golden model. Attach an bridge (anywhere in your target RTL) to an interface
you’d like to monitor, (e.g., a processor trace port). In the host, you can pipe the token stream coming off this
interface to a software model running on a CPU (e.g, a functional ISA simulator). See TracerV.

3. Distributed simulation. The original FireSim application. You can stitch together networks of simulated ma-
chines by instantiating bridges at your SoC boundary. Then write software models and bridge drivers that move
tokens between each FPGA. See the SimpleNICBridge.

4. Resource optimizations. Resource-intensive components of the target can be replaced with models that use
fewer FPGA resources or run entirely in software.

The use of Bridges in a FireSim simulation has many analogs to doing mixed-language (Verilog-C++) simulation of
the same system in software. Where possible, we’ll draw analogies. After reading this page we encourage you to read
the Bridge Walkthrough, which concretely explains the implementation of the UARTBridge.

17.1 Terminology

Bridges have a target side, consisting of a specially annotated Module, and host side, which consists of an FPGA-
hosted bridge module (deriving from BridgeModule) and an optional CPU-hosted bridge driver (deriving from
bridge_driver_t).

In a mixed-language software simulation, a verilog procedural interface (VPI) is analogous to the target side of a bridge,
with the C++ backing that interface being the host side.

167

FireSim Documentation, Release 1.15.0

17.2 Target Side

In your target side, you will mix-in midas.widgets.Bridge into a Chisel BaseModule (this can be a black or white-
box Chisel module) and implement its abstract members. This trait indicates that the associated module will be replaced
with a connection to the host-side of the bridge that sources and sinks token streams. During compilation, the target-side
module will be extracted by Golden Gate and its interface will be driven by your bridge’s host-side implementation.

This trait has two type parameters and two abstract members you’ll need define for your Bridge. Since you must mix
Bridge into a Chisel BaseModule, the IO you define for that module constitutes the target-side interface of your bridge.

17.2.1 Type Parameters:

1. Host Interface Type HPType <: TokenizedRecord: The Chisel type of your Bridge’s host-land inter-
face. This describes how the target interface has been divided into separate token channels. One example,
HostPortIO[T], divides a Chisel Bundle into a single bi-directional token stream and is sufficient for defining
bridges that do not model combinational paths between token streams. We suggest starting with HostPortIO[T]
when defining a Bridge for modeling IO devices, as it is the simplest to reasonable about and can run at FMR =
1. For other port types, see Bridge Host Interaces.

2. BridgeModule Type WidgetType <: BridgeModule: The type of the host-land BridgeModule you want
Golden Gate to connect in-place of your target-side module. Golden Gate will use its class name to invoke its
constructor.

17.2.2 Abstract Members:

1. Host Interface Mock bridgeIO: HPType: Here you’ll instantiate a mock instance of your host-side interface.
This does not add IO to your target-side module. Instead used to emit annotations that tell Golden Gate how
the target-land IO of the target-side module is being divided into channels.

2. Bridge Module Constructor Arg constructorArg: Option[AnyRef]: A optional Scala case class you’d
like to pass to your host-land BridgeModule’s constructor. This will be serialized into an annotation and con-
sumed later by Golden Gate. If provided, your case class should capture all target-land configuration information
you’ll need in your Module’s generator.

Finally at the bottom of your Bridge’s class definition you’ll need to call generateAnnotations(). This is necessary to
have Golden Gate properly detect your bridge.

You can freely instantiate your Bridge anywhere in your Target RTL: at the I/O boundary of your chip or deep in its
module hierarchy. Since all of the Golden Gate-specific metadata is captured in FIRRTL annotations, you can generate
your target design and simulate it a target-level RTL simulation or even pass it off to ASIC CAD tools – Golden Gate’s
annotations will simply be unused.

17.3 What Happens Next?

If you pass your design to Golden Gate, it will find your target-side module, remove it, and wire its dangling target-
interface to the top-level of the design. During host-decoupling transforms, Golden Gate aggregates fields of your
bridge’s target interface based on channel annotations emitted by the target-side of your bridge, and wraps them up into
decoupled interfaces that match your host interface definition. Finally, once Golden Gate is done performing compiler
transformations, it generates the bridge modules (by looking up their constructors and passing them their serialized
constructor argument) and connects them to the tokenized interfaces presented by the now host-decoupled simulator.

168 Chapter 17. Target-to-Host Bridges

FireSim Documentation, Release 1.15.0

17.4 Host Side

The host side of a bridge has two components:

1. A FPGA-hosted bridge module (BridgeModule).

2. An optional, CPU-hosted, bridge driver (bridge_driver_t).

In general, bridges have both: in FASED memory timing models, the BridgeModule contains a timing model that
exposes timing parameters as memory-mapped registers that the driver configures at the start of simulation. In the
Block Device model, the driver periodically polls queues in the bridge module checking for new functional requests
to be served. In the NIC model, the driver moves tokens in bulk between the software switch model and the bridge
module, which simply queues up tokens as they arrive.

Communication between a bridge module and driver is implemented with two types of transport:

1. MMIO: In the module, this is implemented over a 32-bit AXI4-lite bus. Reads and writes to this bus are made by
drivers using simif_t::read() and simif_t::write(). Bridge modules register memory mapped registers
using methods defined in midas.widgets.Widget, addresses for these registers are passed to the drivers in a
generated C++ header.

2. DMA: In the module this is implemented with a wide (e.g., 512-bit) AXI4 bus, that is mastered by the CPU.
Bridge drivers initiate bulk transactions by passing buffers to simif_t::push() and simif_t::pull() (DMA
from the FPGA). DMA is typically used to stream tokens into and out of out of large FIFOs in the BridgeModule.

17.5 Compile-Time (Parameterization) vs Runtime Configuration

As when compiling a software RTL simulator, the simulated design is configured over two phases:

1. Compile Time, by parameterizing the target RTL and BridgeModule generators, and by enabling Golden
Gate optimization and debug transformations. This changes the simulator’s RTL and thus requires a FPGA-
recompilation. This is equivalent to, but considerably slower than, invoking VCS to compile a new simulator.

2. Runtime, by specifying plus args (e.g., +latency=1) that are passed to the BridgeDrivers. This is equivalent to
passing plus args to a software RTL simulator, and in many cases the plus args passed to an RTL simulator and
a FireSim simulator can be the same.

17.6 Target-Side vs Host-Side Parameterization

Unlike in a software RTL simulation, FireSim simulations have an additional phase of RTL elaboration, during which
bridge modules are generated (they are themselves Chisel generators).

The parameterization of your bridge module can be captured in two places.

1. Target side. here parameterization information is provided both as free parameters to the target’s generator, and
extracted from the context in which the bridge is instantiated. The latter might include things like widths of
specific interfaces or bounds on the behavior the target might expose to the bridge (e.g., a maximum number
of inflight requests). All of this information must be captured in a _single_ serializable constructor argument,
generally a case class (see Bridge.constructorArg).

2. Host side. This is parameterization information captured in Golden Gate’s Parameters object. This should be
used to provide host-land implementation hints (that ideally don’t change the simulated behavior of the system),
or to provide arguments that cannot be serialized to the annotation file.

17.4. Host Side 169

FireSim Documentation, Release 1.15.0

In general, if you can capture target-behavior-changing parameterization information from the target-side you should.
This makes it easier to prevent divergence between a software RTL simulation and FireSim simulation of the same
FIRRTL. It’s also easier to configure multiple instances of the same type of bridge from the target side.

170 Chapter 17. Target-to-Host Bridges

CHAPTER

EIGHTEEN

BRIDGE WALKTHROUGH

In this section, we’ll walkthrough a simple Target-to-Host bridge, the UARTBridge, provided with FireSim to demon-
strate how to integrate your own. The UARTBridge uses host-MMIO to model a UART device.

Reading the Bridges section is a prerequisite to reading these sections.

18.1 UART Bridge (Host-MMIO)

Source code for the UART Bridge lives in the following directories:

sim/
-firesim-lib/src/main/

-scala/bridges/UARTBridge.scala # Target-Side Bridge and BridgeModule␣
→˓Definitions

-cc/brides/uart.cc # Bridge Driver source
-cc/brides/uart.h # Bridge Driver header

-src/main/cc/firesim/firesim_top.cc # Driver instantiation in the main simulation␣
→˓driver
-src/main/makefrag/firesim/Makefrag # Build system modifications to compile Bridge␣
→˓Driver code

18.1.1 Target Side

The first order of business when designing a new bridge is to implement its target side. In the case of UART we’ve
defined a Chisel BlackBox1 extending Bridge. We’ll instantiate this BlackBox and connect it to UART IO in the top-
level of our chip. We first define a class that captures the target-side interface of the Bridge:

class UARTBridgeTargetIO(val uParams: UARTParams) extends Bundle {
val clock = Input(Clock())
val uart = Flipped(new UARTPortIO(uParams))
// Note this reset is optional and used only to reset target-state modelled
// in the bridge This reset just like any other Bool included in your target
// interface, simply appears as another Bool in the input token.
val reset = Input(Bool())

}

1 You can also extend a non-BlackBox Chisel Module, but any Chisel source contained within will be removed by Golden Gate. You may wish
to do this to enclose a synthesizable model of the Bridge for other simulation backends, or simply to wrap a larger chunk RTL you wish to model in
the host-side of the Bridge.

171

FireSim Documentation, Release 1.15.0

Here, we define a case class that carries additional metadata to the host-side BridgeModule. For UART, this is simply
the clock-division required to produce the baudrate:

// Out bridge module constructor argument. This captures all of the extra
// metadata we'd like to pass to the host-side BridgeModule. Note, we need to
// use a single case class to do so, even if it is simply to wrap a primitive
// type, as is the case for UART (int)
case class UARTKey(uParams: UARTParams, div: Int)

Finally, we define the actual target-side module (specifically, a BlackBox):

class UARTBridge(uParams: UARTParams)(implicit p: Parameters) extends BlackBox
with Bridge[HostPortIO[UARTBridgeTargetIO], UARTBridgeModule] {

// Since we're extending BlackBox this is the port will connect to in our target's RTL
val io = IO(new UARTBridgeTargetIO(uParams))
// Implement the bridgeIO member of Bridge using HostPort. This indicates that
// we want to divide io, into a bidirectional token stream with the input
// token corresponding to all of the inputs of this BlackBox, and the output token␣

→˓consisting of
// all of the outputs from the BlackBox
val bridgeIO = HostPort(io)

// Do some intermediate work to compute our host-side BridgeModule's constructor␣
→˓argument
val frequency = p(PeripheryBusKey).dtsFrequency.get
val baudrate = uParams.initBaudRate
val div = (frequency / baudrate).toInt

// And then implement the constructorArg member
val constructorArg = Some(UARTKey(uParams, div))

// Finally, and this is critical, emit the Bridge Annotations -- without
// this, this BlackBox would appear like any other BlackBox to Golden Gate
generateAnnotations()

}

To make it easier to instantiate our target-side module, we’ve also defined an optional companion object:

object UARTBridge {
def apply(clock: Clock, uart: UARTPortIO)(implicit p: Parameters): UARTBridge = {
val ep = Module(new UARTBridge(uart.c))
ep.io.uart <> uart
ep.io.clock := clock
ep

}
}

That completes the target-side definition.

172 Chapter 18. Bridge Walkthrough

FireSim Documentation, Release 1.15.0

18.1.2 Host-Side BridgeModule

The remainder of the file is dedicated to the host-side BridgeModule definition. Here we have to process tokens gen-
erated by the target, and expose a memory-mapped interface to the bridge driver.

Inspecting the top of the class:

// Our UARTBridgeModule definition, note:
// 1) it takes one parameter, key, of type UARTKey --> the same case class we captured␣
→˓from the target-side
// 2) It accepts one implicit parameter of type Parameters
// 3) It extends BridgeModule passing the type of the HostInterface
//
// While the Scala type system will check if you parameterized BridgeModule
// correctly, the types of the constructor arugument (in this case UARTKey),
// don't match, you'll only find out later when Golden Gate attempts to generate your␣
→˓module.
class UARTBridgeModule(key: UARTKey)(implicit p: Parameters) extends␣
→˓BridgeModule[HostPortIO[UARTBridgeTargetIO]]()(p) {
lazy val module = new BridgeModuleImp(this) {
val div = key.div
// This creates the interfaces for all of the host-side transport
// AXI4-lite for the simulation control bus, =
// AXI4 for DMA
val io = IO(new WidgetIO())

// This creates the host-side interface of your TargetIO
val hPort = IO(HostPort(new UARTBridgeTargetIO(key.uParams)))

// Generate some FIFOs to capture tokens...
val txfifo = Module(new Queue(UInt(8.W), 128))
val rxfifo = Module(new Queue(UInt(8.W), 128))

val target = hPort.hBits.uart
// In general, your BridgeModule will not need to do work every host-cycle. In␣

→˓simple Bridges,
// we can do everything in a single host-cycle -- fire captures all of the
// conditions under which we can consume and input token and produce a new
// output token
val fire = hPort.toHost.hValid && // We have a valid input token: toHost ~= leaving␣

→˓the transformed RTL
hPort.fromHost.hReady && // We have space to enqueue a new output token
txfifo.io.enq.ready // We have space to capture new TX data

val targetReset = fire & hPort.hBits.reset
rxfifo.reset := reset.asBool || targetReset
txfifo.reset := reset.asBool || targetReset

hPort.toHost.hReady := fire
hPort.fromHost.hValid := fire

Most of what follows is responsible for modeling the timing of the UART. As a bridge designer, you’re free to take
as many host-cycles as you need to process tokens. In simpler models, like this one, it’s often easiest to write logic
that operates in a single cycle but gate state-updates using a “fire” signal that is asserted when the required tokens are
available.

18.1. UART Bridge (Host-MMIO) 173

FireSim Documentation, Release 1.15.0

Now, we’ll skip to the end to see how to add registers to the simulator’s memory map that can be accessed using MMIO
from bridge driver.

// Exposed the head of the queue and the valid bit as a read-only registers
// with name "out_bits" and out_valid respectively
genROReg(txfifo.io.deq.bits, "out_bits")
genROReg(txfifo.io.deq.valid, "out_valid")

// Generate a writeable register, "out_ready", that when written to dequeues
// a single element in the tx_fifo. Pulsify derives the register back to false
// after pulseLength cycles to prevent multiple dequeues
Pulsify(genWORegInit(txfifo.io.deq.ready, "out_ready", false.B), pulseLength = 1)

// Generate regisers for the rx-side of the UART; this is eseentially the reverse of␣
→˓the above

genWOReg(rxfifo.io.enq.bits, "in_bits")
Pulsify(genWORegInit(rxfifo.io.enq.valid, "in_valid", false.B), pulseLength = 1)
genROReg(rxfifo.io.enq.ready, "in_ready")

// This method invocation is required to wire up all of the MMIO registers to
// the simulation control bus (AXI4-lite)
genCRFile()

18.1.3 Host-Side Driver

To complete our host-side definition, we need to define a CPU-hosted bridge driver. Bridge Drivers extend the
bridge_driver_t interface, which declares 5 virtual methods a concrete bridge driver must implement:

/**
* @brief Base class for Bridge Drivers
*
* Bridge Drivers are the CPU-hosted component of a Target-to-Host Bridge. A
* Bridge Driver interacts with their accompanying FPGA-hosted BridgeModule
* using MMIO (via read() and write() methods) or bridge streams (via pull()
* and push()).
*/
class bridge_driver_t {
public:
bridge_driver_t(simif_t *s) : sim(s) {}
virtual ~bridge_driver_t(){};
// Initialize BridgeModule state -- this can't be done in the constructor
// currently
virtual void init() = 0;
// Does work that allows the Bridge to advance in simulation time (one or more
// cycles) The standard FireSim driver calls the tick methods of all
// registered bridge drivers. Bridges whose BridgeModule is free-running need
// not implement this method
virtual void tick() = 0;
// Indicates the simulation should terminate.
// Tie off to false if the brige will never call for the simulation to
// teriminate.
virtual bool terminate() = 0;

(continues on next page)

174 Chapter 18. Bridge Walkthrough

FireSim Documentation, Release 1.15.0

(continued from previous page)

// If the bridge driver calls for termination, encode a cause here. 0 = PASS
// All other codes are bridge-implementation defined
virtual int exit_code() = 0;
// The analog of init(), this provides a final opportunity to interact with
// the FPGA before destructors are called at the end of simulation. Useful
// for doing end-of-simulation clean up that requires calling
// {read,write,push,pull}.
virtual void finish() = 0;

The declaration of the Uart bridge driver lives at sim/firesim-lib/src/main/cc/bridges/uart.h. It is inlined
below:

// See LICENSE for license details
#ifndef __UART_H
#define __UART_H

#include "serial.h"
#include <signal.h>

// The definition of the primary constructor argument for a bridge is generated
// by Golden Gate at compile time _iff_ the bridge is instantiated in the
// target. As a result, all bridge driver definitions conditionally remove
// their sources if the constructor class has been defined (the
// <cname>_struct_guard macros are generated along side the class definition.)
//
// The name of this class and its guards are always BridgeModule class name, in
// all-caps, suffixed with "_struct" and "_struct_guard" respectively.

#ifdef UARTBRIDGEMODULE_struct_guard
class uart_t : public bridge_driver_t {
public:
uart_t(simif_t *sim, UARTBRIDGEMODULE_struct *mmio_addrs, int uartno);
~uart_t();
virtual void tick();
// Our UART bridge's initialzation and teardown procedures don't
// require interaction with the FPGA (i.e., MMIO), and so we don't need
// to define init and finish methods (we can do everything in the
// ctor/dtor)
virtual void init(){};
virtual void finish(){};
// Our UART bridge never calls for the simulation to terminate
virtual bool terminate() { return false; }
// ... and thus, never returns a non-zero exit code
virtual int exit_code() { return 0; }

private:
UARTBRIDGEMODULE_struct *mmio_addrs;
serial_data_t<char> data;
int inputfd;
int outputfd;
int loggingfd;
void send();

(continues on next page)

18.1. UART Bridge (Host-MMIO) 175

FireSim Documentation, Release 1.15.0

(continued from previous page)

void recv();
};
#endif // UARTBRIDGEMODULE_struct_guard

#endif // __UART_H

The bulk of the driver’s work is done in its tick()method. Here, the driver polls the BridgeModule and then does some
work. Note: the name, tick is vestigial: one invocation of tick() may do work corresponding to an arbitrary number
of target cycles. It’s critical that tick be non-blocking, as waiting for work from the BridgeModule may deadlock the
simulator.

18.1.4 Registering the Driver

With the Bridge Driver implemented, we now have to register it in the main simulator simulator class defined in sim/
src/main/cc/firesim/firesim_top.cc. Here, we rely on the C preprocessor macros to instantiate the bridge
driver only when the corresponding BridgeModule is present:

// Here we instantiate our driver once for each bridge in the target
// Golden Gate emits a <BridgeModuleClassName>_<id>_PRESENT macro for each
// instance which you may use to conditionally instantiate your driver

#ifdef UARTBRIDGEMODULE_0_PRESENT
// Create an instance of the constructor argument (this has all of
// addresses of the BridgeModule's memory mapped registers)
UARTBRIDGEMODULE_0_substruct_create;
// Instantiate the driver; register it in the main simulation class
add_bridge_driver(new uart_t(this, UARTBRIDGEMODULE_0_substruct, 0));

#endif

// Repeat the code above with modified indices as many times as necessary
// to support the maximum expected number of bridge instances
#ifdef UARTBRIDGEMODULE_1_PRESENT
UARTBRIDGEMODULE_1_substruct_create;
add_bridge_driver(new uart_t(this, UARTBRIDGEMODULE_1_substruct, 1));

#endif

18.1.5 Build-System Modifications

The final consideration in adding your bridge concerns the build system. You should be able to host the Scala sources
for your bridge with rest of your target RTL: SBT will make sure those classes are available on the runtime class-
path. If you’re hosting your bridge driver sources outside of the existing directories, you’ll need to modify your
target-project Makefrag to include them. The default Chipyard/Rocket Chip-based one lives here: sim/src/main/
makefrag/firesim/Makefrag

Here the main order of business is to add header and source files to DRIVER_H and DRIVER_CC respectively, by modi-
fying the lines below:

##########################
Driver Sources & Flags
##########################

dromajo modifications
(continues on next page)

176 Chapter 18. Bridge Walkthrough

FireSim Documentation, Release 1.15.0

(continued from previous page)

DROMAJO_LIB_NAME = dromajo_cosim
DROMAJO_LIB = $(CONDA_PREFIX)/lib/lib$(DROMAJO_LIB_NAME).a

DROMAJO_H = $(GENERATED_DIR)/dromajo_params.h
DROMAJO_LONG_H = $(GENERATED_DIR)/$(long_name).dromajo_params.h

TESTCHIPIP_CSRC_DIR = $(chipyard_dir)/generators/testchipip/src/main/resources/
→˓testchipip/csrc

CHIPYARD_ROM = $(chipyard_dir)/generators/testchipip/bootrom/bootrom.rv64.img
DROMAJO_ROM = $(GENERATED_DIR)/$(long_name).rom

DTS_FILE = $(GENERATED_DIR)/$(long_name).dts
DROMAJO_DTB = $(GENERATED_DIR)/$(long_name).dtb

$(DROMAJO_LONG_H) $(DTS_FILE): $(simulator_verilog)

$(DROMAJO_H): $(DROMAJO_LONG_H)
rm -rf $(DROMAJO_H)
ln -s $(DROMAJO_LONG_H) $(DROMAJO_H)

$(DROMAJO_DTB): $(DTS_FILE)
dtc -I dts -O dtb -o $(DROMAJO_DTB) $(DTS_FILE)

$(DROMAJO_ROM): $(CHIPYARD_ROM)
rm -rf $(DROMAJO_ROM)
ln -s $(CHIPYARD_ROM) $(DROMAJO_ROM)

DROMAJO_REQS = $(DROMAJO_H) $(DROMAJO_ROM) $(DROMAJO_DTB)

firesim_lib_dir = $(firesim_base_dir)/firesim-lib/src/main/cc
driver_dir = $(firesim_base_dir)/src/main/cc
DRIVER_H = \

$(shell find $(driver_dir) -name "*.h") \
$(shell find $(firesim_lib_dir) -name "*.h") \
$(DROMAJO_REQS) \
$(TESTCHIPIP_CSRC_DIR)/testchip_tsi.h

DRIVER_CC = \
$(addprefix $(driver_dir)/firesim/, $(addsuffix .cc, firesim_top␣

→˓systematic_scheduler firesim_$(PLATFORM))) \
$(wildcard $(addprefix $(firesim_lib_dir)/, $(addsuffix .cc, bridges/* fesvr/

→˓* bridges/tracerv/*))) \
$(RISCV)/lib/libfesvr.a \
$(DROMAJO_LIB) \
$(TESTCHIPIP_CSRC_DIR)/testchip_tsi.cc

Need __STDC_FORMAT_MACROS until usage of inttypes.h (i.e. printf formatting macros) is␣
→˓removed
TARGET_CXX_FLAGS += -D__STDC_FORMAT_MACROS -g -I$(TESTCHIPIP_CSRC_DIR) -I$(firesim_lib_
→˓dir) -I$(CONDA_PREFIX)/include -I$(driver_dir)/firesim -I$(RISCV)/include -I
→˓$(GENERATED_DIR)

(continues on next page)

18.1. UART Bridge (Host-MMIO) 177

FireSim Documentation, Release 1.15.0

(continued from previous page)

TARGET_LD_FLAGS += -L$(RISCV)/lib -L$(CONDA_PREFIX)/lib -l:libdwarf.so -l:libelf.so -lz -
→˓l$(DROMAJO_LIB_NAME)

That’s it! At this point you should be able to both test your bridge in software simulation using metasimulation, or
deploy it to an FPGA.

178 Chapter 18. Bridge Walkthrough

CHAPTER

NINETEEN

SIMULATION TRIGGERS

It is often useful to globally coordinate debug and instrumentation features using specific target-events that may be
distributed across the target design. For instance, you may wish to enable collection of synthesized prints and sampling
of AutoCounters simulataenously when a specific instruction is committed on any core, or alternatively if the memory
system sees a write to a particular memory address. Golden Gate’s trigger system enables this by aggregating annotated
TriggerSources distributed throughout the design using a centralized credit-based system which then drives a single-
bit level-sensitive enable to all TriggerSinks distributed throughout the design. This enable signal is asserted while
the design remains in the region-of-interest (ROI). Sources signal the start of the ROI by granting a credit and signal the
end of the ROI by asserting a debit. Since there can be multiple sources, each of which might grant credits, the trigger
is only disabled when the system has been debited as exactly as many times as it has been credited (it has a balance of
0).

19.1 Quick-Start Guide

19.1.1 Level-Sensitive Trigger Source

Assert the trigger while some boolean enable is true.

import midas.targetutils.TriggerSource
TriggerSource.levelSensitiveEnable(enable)

Caveats:
• The trigger visible at the sink is delayed. See Trigger Timing.

• Assumes this is the only source; the trigger is only cleared if no additional credit has been granted.

19.1.2 Distributed, Edge-Sensitive Trigger Source

Assert trigger enable when some boolean start undergoes a positive transition, and clear the trigger when a second
signal stop undergoes a positive transition.

// Some arbitarily logic to drive the credit source and sink. Replace with your own!
val start = lfsr(1)
val stop = ShiftRegister(lfsr(0), 5)

// Now annotate the signals.
import midas.targetutils.TriggerSource
TriggerSource.credit(start)

(continues on next page)

179

FireSim Documentation, Release 1.15.0

(continued from previous page)

TriggerSource.debit(stop)
// Note one could alternatively write: TriggerSource(start, stop)

Caveats:
• The trigger visible at the sink is delayed. See Trigger Timing.

• Assumes these are the only sources; the trigger is only cleared if no additional credit has been granted.

19.2 Chisel API

Trigger sources and sinks are Boolean signals, synchronous to a particular clock domain, that have been annotated as
such. The midas.targetutils package provides chisel-facing utilities for annotating these signals in your design.
We describe these utilities below, the source for which can be found in sim/midas/targetutils/src/main/scala/
annotations.scala.

19.2.1 Trigger Sources

In order to permit distributing trigger sources across the whole design, you must annotate distinct boolean signals
as credits and debits using methods provided by the TriggerSource object. We provide an example below (the
distributed example from the quick-start guide).

// Some arbitarily logic to drive the credit source and sink. Replace with your own!
val start = lfsr(1)
val stop = ShiftRegister(lfsr(0), 5)

// Now annotate the signals.
import midas.targetutils.TriggerSource
TriggerSource.credit(start)
TriggerSource.debit(stop)
// Note one could alternatively write: TriggerSource(start, stop)

Using the methods above, credits and debits issued while the design is under reset are not counted (the reset used is
implicit reset of the Chisel Module in which you invoked the method). If the module provides no implicit reset or if
you wish to credit or debit the trigger system while the local module’s implicit reset is asserted, use TriggerSource.
{creditEvenUnderReset, debitEvenUnderReset} instead.

19.2.2 Trigger Sinks

Like sources, trigger sinks are boolean signals that have been annotated alongside their associated clock. These signals
will be driven by a Boolean value created by the trigger system. If trigger sources exist in your design, the generated
trigger will override all assignments made in the chisel to the same signal, otherwise, it will take on a default value
provided by the user. We provide an example of annotating a sink using the the TriggerSink object below.

// Note: this can be any reference you wish to have driven by the trigger.
val sinkBool = WireDefault(true.B)

import midas.targetutils.TriggerSink
// Drives true.B if no TriggerSource credits exist in the design.

(continues on next page)

180 Chapter 19. Simulation Triggers

FireSim Documentation, Release 1.15.0

(continued from previous page)

// Note: noSourceDefault defaults to true.B if unset, and can be omitted for brevity
TriggerSink(sinkBool, noSourceDefault = true.B)

Alternatively, if you wish to use a trigger sink as a predicate for a Chisel when block, you may use TriggerSink.
whenEnabled instead

/** A simpler means for predicating stateful updates, printfs, and assertions.
* Sugar for:
* val sinkEnable = Wire(Bool())
* TriggerSink(sinkEnable, false.B)
* when (sinkEnable) { <...> }
*/

TriggerSink.whenEnabled(noSourceDefault = false.B) {
SynthesizePrintf(printf(s"${printfPrefix}CYCLE: %d\n", cycle))

}

19.3 Trigger Timing

Golden Gate implements the trigger system by generating a target circuit that synchronizes all credit and debits into the
base clock domain using a single register stage, before doing a global accounting. If the total number of credits exceeds
debits the trigger is asserted. This trigger is then synchronized in each sink domain using a single register stage before
driving the annotated sink. The circuit that implements this functionality is depicted below:

Fig. 1: Trigger generation circuit. Not shown: a sub-circuit analagous to that which totalCredit’ is replicated to count
debits. Similarly, the sub-circuit feeding the add-reduction is generated for each clock domain that contains at least one
source annotation.

Given the present implementation, an enabled trigger becomes visible in a sink domain no sooner than one base-clock
edge and one local-clock edge have elapsed, in that order, after the credit was asserted. This is depicted in the waveform
below.

Fig. 2: Trigger timing diagram.

Note that trigger sources and sinks that reside in the base clock domain still have the additional synchronization registers
even though they are uneeded. Thus, a credit issued by a source in the base clock domain will be visible to a sink also
in the base clock domain exactly 2 cycles after it was issued.

Bridges that use the default HostPort interface add an additional cycle of latency in the bridge’s local domain since
their token channels model a single register stage to improve simulation FMR. Thus, without using a different HostPort
implementation, trigger sources generated by a Bridge and trigger sinks that feed into a Bridge will each see one
additional bridge-local cycle of latency. In constrast, synthesized printfs and assertions, and AutoCounters all use wire
channels (since they are unidirectional interfaces, the extra register stage is not required to improve FMR) and will see
no additional sink latency.

19.3. Trigger Timing 181

FireSim Documentation, Release 1.15.0

19.4 Limitations & Pitfalls

• The system is limited to no more than one trigger signal. Presently, there is no means to generate unique triggers
for distinct sets of sinks.

• Take care to never issue more debits than credits, as this may falsely enable the trigger under the current imple-
mentation.

182 Chapter 19. Simulation Triggers

CHAPTER

TWENTY

OPTIMIZING FPGA RESOURCE UTILIZATION

One advantage of a host-decoupled simulator is the ability to spread expensive operations out over multiple FPGA cycles
while maintaining perfect cycle accuracy. When employing this strategy, a simulator can rely on a resource-efficient
implementation that takes multiple cycles to complete the underlying computation to determine the next state of the
target design. In the abstract, this corresponds with the simulator having less parallelism in its host implementation
than the target design. While this strategy is intrinsic to the design of the compilers that map RTL circuits to software
simulators executing on sequential, general-purpose hardware, it is less prevalent in FPGA simulation. These space-
time tradeoffs are mostly restricted to hand-written, architecture-specific academic simulators or to implementing highly
specific host features like I/O cuts in a partitioned, multi-FPGA environment.

With the Golden Gate compiler, we provide a framework for automating these optimization, as discussed in the 2019
ICCAD paper on the design of Golden gate. Furthermore, current versions of FireSim include two optional optimiza-
tions that can radically reduce resource utilization (and therefore simulate much large SoCs). The first optimization
reduces the overhead of memories that are extremely to implement via direct RTL translation on an FPGA host, in-
cluding multi-ported register files, while the second applies to repeated instances of large blocks in the target design
by threading the work associated with simulating multiple instances across a single underlying host implementation.

20.1 Multi-Ported Memory Optimization

ASIC multi-ported RAMs are a classic culprit of poor resource utilization in FPGA prototypes, as they cannot be
trivially implemented with Block RAMs (BRAMs) and are instead decomposed into lookup tables (LUTs), multiplexers
and registers. While using double-pumping, BRAM duplication, or FPGA-optimized microarchitectures can help,
Golden Gate can automatically extract such memories and replace them with a decoupled model that simulates the
RAM via serialized accesses to an underlying implementation that is amenable mapping to an efficiency Block RAM
(BRAM). While this serialization comes at the cost of reduced emulation speed, the resulting simulator can fit larger
SoCs onto existing FPGAs. Furthermore, the decoupling framework of Golden Gate ensures that the simulator will
still produce bit-identical, cycle-accurate results.

While the details of this optimization are discussed at length in the ICCAD paper, it is relatively simple to deploy.
First, the desired memories must be annotated via Chisel annotations to indicate that they should be optimized; for
Rocket- and BOOM-based systems, these annotations are already provided for the cores’ register files, which are the
most FPGA-hostile memories in the designs. Next, with these annotations in place, enabling the optimization requires
mixing in the MCRams class to the platform configuration, as shown in the following example build recipe:

firesim-boom-mem-opt:
DESIGN: FireSim
TARGET_CONFIG: WithNIC_DDR3FRFCFSLLC4MB_FireSimLargeBoomConfig
PLATFORM_CONFIG: MCRams_BaseF1Config
deploy_triplet: null

183

https://people.eecs.berkeley.edu/~magyar/documents/goldengate-iccad19.pdf
https://people.eecs.berkeley.edu/~magyar/documents/goldengate-iccad19.pdf

FireSim Documentation, Release 1.15.0

20.2 Multi-Threading of Repeated Instances

While optimizing FPGA-hostile memories can allow up to 50% higher core counts on the AWS-hosted VU9P FPGAs,
significantly larger gains can be had by threading repeated instances in the target system. The model multi-threading
optimization extracts these repeated instances and simulates each instance with a separate thread of execution on a
shared underlying physical implementation.

As with the memory optimization, this requires the desired set of instances to be annotated in the target design. However,
since the largest effective FPGA capacity increases for typical Rocket Chip targets are realized by threading the tiles
that each contain a core complex, these instances are pre-annotated for both Rocket- and BOOM-based systems. To
enable this tile multi-threading, it is necessary to mix in the MTModels class to the platform configuration, as shown in
the following example build recipe:

firesim-threaded-cores-opt:
DESIGN: FireSim
TARGET_CONFIG: WithNIC_DDR3FRFCFSLLC4MB_FireSimQuadRocketConfig
PLATFORM_CONFIG: MTModels_BaseF1Config
deploy_triplet: null

This simulator configuration will rely on a single threaded model to simulate the four Rocket tiles. However, it will still
produce bit- and cycle-identical results to any other platform configuration simulating the same target system.

In practice, the largest benefits will be realized by applying both the MCRams and MCModels optimizations to large,
multi-core BOOM-based systems. While these simulator platforms will have reduced throughput relative to unopti-
mized FireSim simulators, very large SoCs that would otherwise never fit on a single FPGA can be simulated without
the cost and performance drawbacks of partitioning.

firesim-optimized-big-soc:
DESIGN: FireSim
TARGET_CONFIG: MyMultiCoreBoomConfig
PLATFORM_CONFIG: MTModels_MCRams_BaseF1Config
deploy_triplet: null

184 Chapter 20. Optimizing FPGA Resource Utilization

CHAPTER

TWENTYONE

OUTPUT FILES

Golden Gate generates many output files, we describe them here. Note, the GG CML-argument
--output-filename-base=<BASE> defines defines a common prefix for all output files.

21.1 Core Files

These are used in nearly all flows.

• <BASE>.sv: The verilog implementation of the simulator which will be synthesized onto the FPGA. The top-
level is the Shim module specified in the PLATFORM_CONFIG.

• <BASE>.const.h: A target-specific header containing all necessary metadata to instantiate bridge drivers. This
is linked into the simulator driver and meta-simulators (FPGA-level / MIDAS-level). Often referred to as “the
header”.

• <BASE>.runtime.conf : Default plus args for generated FASED memory timing models. Most other bridges
have their defaults baked into the driver.

21.2 FPGA Build Files

These are additional files passed to the FPGA build directory.

• <BASE>.defines.vh: Verilog macro definitions for FPGA synthesis.

• <BASE>.env.tcl: Used a means to inject arbitrary TCL into the start of the build flow. Controls synthesis and
implementation strategies, and sets the host_clock frequency before the clock generator (MCMM) is synthesized.

• <BASE>.ila_insert_vivado.tcl: Synthesizes an ILA for the design. See AutoILA: Simple Integrated Logic An-
alyzer (ILA) Insertion for more details about using ILAs in FireSim.

• <BASE>.ila_insert_{inst, ports, wires}.v: Instantiated in the FPGA project via `include directives to instan-
tiate the generated ILA.

• <BASE>.synthesis.xdc: Xilinx design constraints for synthesis derived from collected XDCAnnotations.

• <BASE>.implementation.xdc: Xilinx design constraints for implementation derived from collected XDCAn-
notations.

185

FireSim Documentation, Release 1.15.0

21.3 Metasimulation Files

These are additional sources used only for compiling metasimulators.

• <BASE>.const.vh: Verilog macros to define variable width fields.

186 Chapter 21. Output Files

CHAPTER

TWENTYTWO

COMPILER & DRIVER DEVELOPMENT

22.1 Integration Tests

These are ScalaTests that call out to FireSim’s Makefiles. These constitute the bulk of FireSim’s tests for Target,
Compiler, and Driver side features. Each of these tests proceeds as follows:

1. Elaborate a small Chisel target design that exercises a single feature (e.g., printf synthesis)

2. Compile the design with GoldenGate

3. Compile metasimulator using a target-specific driver and the Golden Gate-generated collateral

4. Run metasimulation with provided arguments (possibly multiple times)

5. Post-process metasimulation outputs in Scala

Single tests may be run directly out of sim/ as follows:

Run all Chipyard-based tests (uses Rocket + BOOM)
make test

Run all integration tests (very long running, not recommended)
make TARGET_PROJECT=midasexamples test

Run a specific integration test (desired)
make TARGET_PROJECT=midasexamples testOnly=firesim.midasexamples.GCDF1Test

These tests may be run from the SBT console continuously, and SBT will rerun them on Scala changes (but not driver
changes). Out of sim/:

Launch the SBT console into the firesim subproject
NB: omitting TARGET_PROJECT will put you in the FireChip subproject instead
make TARGET_PROJECT=midasexamples sbt

Compile the Scala test sources (optional, to enable tab completion)
sbt:firesim> Test / compile

Run a specific test once
sbt:firesim> testOnly firesim.midasexamples.GCDF1Test

Continuously rerun the test on Scala changes
sbt:firesim> ~testOnly firesim.midasexamples.GCDF1Test

187

https://www.github.com/firesim/firesim/blob/1.15.0/sim/
https://www.github.com/firesim/firesim/blob/1.15.0/sim/

FireSim Documentation, Release 1.15.0

22.1.1 Key Files & Locations

• sim/firesim-lib/src/test/scala/TestSuiteCommon.scala Base ScalaTest class for all tests that use FireSim’s
make build system

• sim/src/test/scala/midasexamples/TutorialSuite.scala Extension of TestSuiteCommon for most integration
tests + concrete subclasses

• sim/src/main/cc/midasexamples/ C++ sources for target-specific drivers

• sim/src/main/cc/midasexamples/Driver.cc driver main; where target-specific drivers are registered

• sim/src/main/cc/midasexamples/simif_peek_poke.h A common driver to extend for simple tests

• sim/src/main/scala/midasexamples/ Where top-level Chisel modules (targets) are defined

22.1.2 Defining a New Test

1. Define a new target module (if applicable) under sim/src/main/scala/midasexamples.

2. Define a driver by extending simif_t or another child class under src/main/cc/midasexamples. Tests se-
quenced with the Peek Poke bridge may extend simif_peek_poke_t.

3. Register the driver’s header in midasexamples/src/main/cc/Driver.cc. The CPP macro
DESIGNNAME_<Module Name> will be set using the top-level module’s name specified in your ScalaTest.

4. Define a ScalaTest class for your design by extending TutorialSuite. Parameters will define define the tuple
(DESIGN, TARGET_CONFIG, PLATFORM_CONFIG), and call out additional plusArgs to pass to the metasimulator.
See the ScalaDoc for more info. Post-processing of metasimulator outputs (e.g., checking output file contents)
can be implemented in the body of your test class.

22.2 Synthesizable Unit Tests

These are derived from Rocket-Chip’s synthesizable unit test library and are used to test smaller, stand-alone Chisel
modules.

Synthesizable unit tests may be run out of sim/ as follows:

Run default tests without waves
$ make run-midas-unittests

Run default suite with waves
$ make run-midas-unittests-debug

Run default suite under Verilator
$ make run-midas-unittests EMUL=verilator

Run a different suite (registered under class name TimeOutCheck)
$ make run-midas-unittests CONFIG=TimeOutCheck

Setting the make variable CONFIG to different scala class names will select between different sets of unittests. All
synthesizable unittests registered under WithAllUnitTests class are run from ScalaTest and in CI.

188 Chapter 22. Compiler & Driver Development

https://www.github.com/firesim/firesim/blob/1.15.0/sim/firesim-lib/src/test/scala/TestSuiteCommon.scala
https://www.github.com/firesim/firesim/blob/1.15.0/sim/src/test/scala/midasexamples/TutorialSuite.scala
https://www.github.com/firesim/firesim/blob/1.15.0/sim/src/main/cc/midasexamples/
https://www.github.com/firesim/firesim/blob/1.15.0/sim/src/main/cc/midasexamples/Driver.cc
https://www.github.com/firesim/firesim/blob/1.15.0/sim/src/main/cc/midasexamples/simif_peek_poke.h
https://www.github.com/firesim/firesim/blob/1.15.0/sim/src/main/scala/midasexamples/
https://www.github.com/firesim/firesim/blob/1.15.0/sim/

FireSim Documentation, Release 1.15.0

22.2.1 Key Files & Locations

• sim/midas/src/main/scala/midas/SynthUnitTests.scala Synthesizable unit test modules are registered here.

• sim/midas/src/main/cc/unittest/Makefrag Make recipes for building and running the tests.

• sim/firesim-lib/src/test/scala/TestSuiteCommon.scala ScalaTest wrappers for running synthesizable unittests

22.2.2 Defining a New Test

1. Define a new Chisel module that extends freechips.rocketchip.unittest.UnitTest

2. Register your modules in a Config using the UnitTests key. See SynthUnitTests.scala for examples.

22.3 Scala Unit Testing

We also use ScalaTest to test individual transforms, classes, and target-side Chisel features (in targetutils pack-
age). These can be found in <subproject>/src/test/scala as is customary of Scala projects. ScalaTests in
targetUtils generally ensure that target-side annotators behave correctly when deployed in a generator (they elab-
orate correctly or they give the desired error message.) ScalaTests in midas are mostly tailored to testing FIRRTL
transforms, and have copied FIRRTL testing utilities into the source tree to make that process easier.

targetUtils scala tests can be run out of sim/ as follows:

Pull open the SBT console in the firesim subproject
$ make TARGET_PROJECT=midasexamples sbt

Switch to the targetutils package
sbt:firesim> project targetutils

Run all scala tests under the ``targetutils`` subproject
sbt:midas-targetutils> test

Golden Gate (formerly midas) scala tests can be run by setting the scala project to midas, as in step 2 above.

22.3.1 Key Files & Locations

• sim/midas/src/test/scala/midas Location of GoldenGate ScalaTests

• sim/midas/targetutils/src/test/scala Location of targetutils ScalaTests

22.3.2 Defining A New Test

Extend the appropriate ScalaTest spec or base class, and place the file under the correct src/test/scala directory.
They will be automatically enumerated by ScalaTest and will run in CI by default.

22.3. Scala Unit Testing 189

https://www.github.com/firesim/firesim/blob/1.15.0/sim/midas/src/main/scala/midas/SynthUnitTests.scala
https://www.github.com/firesim/firesim/blob/1.15.0/sim/midas/src/main/cc/unittest/Makefrag
https://www.github.com/firesim/firesim/blob/1.15.0/sim/firesim-lib/src/test/scala/TestSuiteCommon.scala
https://www.github.com/firesim/firesim/blob/1.15.0/sim/
https://www.github.com/firesim/firesim/blob/1.15.0/sim/midas/src/test/scala/midas
https://www.github.com/firesim/firesim/blob/1.15.0/sim/midas/targetutils/src/test/scala

FireSim Documentation, Release 1.15.0

22.4 C/C++ guidelines

The C++ sources are formatted using clang-format and all submitted pull-requests must be formatted prior to being
accepted and merged. The sources follow the coding style defined here.

git clang-format can be used before committing to ensure that files are properly formatted.

190 Chapter 22. Compiler & Driver Development

https://github.com/firesim/firesim/blob/main/.clang_format

CHAPTER

TWENTYTHREE

COMPLETE FPGA METASIMULATION

Generally speaking, users will only ever need to use conventional metasimulation (formerly, MIDAS-level simulation).
However, when bringing up a new FPGA platform, or making changes to an existing one, doing a complete pre-synthesis
RTL simulation of the FPGA project (which we will refer to as FPGA-level metasimulation) may be required. This
will simulate the entire RTL project passed to Vivado, and includes exact RTL models of the host memory controllers
and PCI-E subsystem used on the FPGA. Note, since FPGA-level metasimulation should generally not be deployed by
users, when we refer to metasimulation in absence of the FPGA-level qualifier we mean the faster form described in
Debugging & Testing with Metasimulation

FPGA-level metasimulations run out of sim/, and consist of two components:

1. A FireSim-f1 driver that talks to a simulated DUT instead of the FPGA

2. The DUT, a simulator compiled with either XSIM or VCS, that receives commands from the aforementioned
FireSim-f1 driver

23.1 Usage

To run a simulation you need to make both the DUT and driver targets by typing:

make xsim
make xsim-dut <VCS=1> & # Launch the DUT
make run-xsim SIM_BINARY=<PATH/TO/BINARY/FOR/TARGET/TO/RUN> # Launch the driver

When following this process, you should wait until make xsim-dut prints opening driver to xsim before running
make run-xsim (getting these prints from make xsim-dut will take a while).

Once both processes are running, you should see:

opening driver to xsim
opening xsim to driver

This indicates that the DUT and driver are successfully communicating. Eventually, the DUT will print a commit trace
from Rocket Chip. There will be a long pause (minutes, possibly an hour, depending on the size of the binary) after
the first 100 instructions, as the program is being loaded into FPGA DRAM.

XSIM is used by default, and will work on EC2 instances with the FPGA developer AMI. If you have a license, setting
VCS=1 will use VCS to compile the DUT (4x faster than XSIM). Berkeley users running on the Millennium machines
should be able to source scripts/setup-vcsmx-env.sh to setup their environment for VCS-based FPGA-level simulation.

The waveforms are dumped in the FPGA build directories (firesim/platforms/f1/aws-fpga/hdk/cl/
developer_designs/cl_<DESIGN>-<TARGET_CONFIG>-<PLATFORM_CONFIG>).

For XSIM:

191

https://www.github.com/firesim/firesim/blob/1.15.0/sim/
https://www.github.com/firesim/firesim/blob/1.15.0/scripts/setup-vcsmx-env.sh

FireSim Documentation, Release 1.15.0

<BUILD_DIR>/verif/sim/vivado/test_firesim_c/tb.wdb

And for VCS:

<BUILD_DIR>/verif/sim/vcs/test_firesim_c/test_null.vpd

When finished, be sure to kill any lingering processes if you interrupted simulation prematurely.

192 Chapter 23. Complete FPGA Metasimulation

CHAPTER

TWENTYFOUR

VISUAL STUDIO CODE INTEGRATION

VSCode is a powerful IDE that can be used to do code and documentation development across the FireSim repository.
It supports a client-server protocol over SSH that enables you to run a local GUI client that interacts with a server
running on your remote manager.

24.1 General Setup

1. Install VSCode. You can grab installers here.

2. Open VSCode and install the Remote Developer Plugin. See the marketplace page for a complete description
of its features.

At this point, VSCode will read in your .ssh/config. Hosts you’ve listed there will be listed under the Remote
Explorer in the left sidebar. You’ll be able to connect to these hosts and create workspaces under FireSim clones
you’ve created there. You may need to give explicit names to hosts that would otherwise be captured as part of a
pattern match or glob in your ssh config.

24.2 Workspace Locations

Certain plugins assume the presence of certain files in particular locations, and often it is diserable to reduce the scope
of files that VSCode will index. We recommend opening workspaces at the following locations:

• Scala and C++ development: sim/

• RST docs: docs/

• Manager (python): deploy/

You can always open a workspace at the root of FireSim – just be cognizant that certain language-specific plugins (e.g.,
may not be configured correclty).

24.3 Scala Development

Warning: Until Chipyard is bumped, you must add bloop to Chipyard’s plugins.sbt for this to work correctly.
See sim/project/plugins.sbt and copy the bloop installation into target-design/chipyard/project/plugins.
sbt.

VSCode has rich support for Scala development, and the Metals plugin is really what makes the magic happen.

193

https://code.visualstudio.com/
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack
https://www.github.com/firesim/firesim/blob/1.15.0/sim/project/plugins.sbt
https://scalameta.org/metals/docs/editors/vscode/

FireSim Documentation, Release 1.15.0

24.3.1 How To Use (Remote Manager)

1. If you haven’t already, clone FireSim and run build-setup.sh on your manager.

2. Ensure your manager instance is listed as a host in your .ssh/config. For example:

Host ec2-manager
User centos
IdentityFile ~/.ssh/<your-firesim.pem>
Hostname <IP ADDR>

3. In VSCode, using the Remote Manager on the left sidebar, connect to your manager instance.

4. Open a workspace in your FireSim clone under sim/.

5. First time per remote: install the Metals plugin on the remote machine.

6. Metals will prompt you with the following: “New SBT Workspace Detected, would you like to import the build?”.
Click Import Build.

At this point, metals should automatically attempt to import the SBT-defined build rooted at sim/. It will:

1. Call out to SBT to run bloopInstall

2. Spin up a bloop build server.

3. Compile all scala sources for the default SBT project in firesim.

Once this process is complete, autocompletion, jump to source, code lenses, and all that good stuff should work cor-
rectly.

24.3.2 Limitations

1. No test task support for ScalaTests that use make. Due to the way FireSim’s ScalaTest calls out to make to
invoke the generator and Golden Gate, Metals’s bloop instance must initialized with env.sh sourced. This will
be resolved in a future PR.

24.3.3 Other Notes

Reliance on SBT multi-project builds breaks the default metals integration. To hide this, we’ve put workspace-specific
settings for metals in sim/.vscode/settings.json which should permit metals to run correctly out of sim/. This instructs
metals that:

1. We’ve already installed bloop (by listing it as a plugin in FireSim and Chipyard).

2. It should use a different sbt launch command to run bloopInstall. This sources env.sh and uses the sbt-
launcher provided by Chipyard.

194 Chapter 24. Visual Studio Code Integration

https://www.github.com/firesim/firesim/blob/1.15.0/sim/.vscode/settings.json

CHAPTER

TWENTYFIVE

MANAGING THE CONDA LOCK FILE

The default conda environment set by build-setup.sh uses the lock file (“*.conda-lock.yml”) at the top of the reposi-
tory. This file is derived from the normal conda requirements file (*.yaml) also located at the top-level of the repository.

25.1 Updating Conda Requirements

If developers want to update the requirements file, they should also update the lock file accordingly. There are two
different methods:

1. Running build-setup.sh --unpinned-deps. This will update the lock file in place so that it can be com-
mitted and will re-setup the FireSim repository.

2. Manually running conda-lock -f <Conda requirements file> -p linux-64 --lockfile <Conda
lock file>

25.2 Caveats of the Conda Lock File and CI

Unfortunately, so far as we know, there is no way to derive the conda requirements file from the conda lock file. Thus,
there is no way to verify that a lock file satisfies a set of requirements given by a requirements file. It is recom-
mended that anytime you update the requirements file, you update the lock file in the same PR. This check is what the
check-conda-lock-modified CI job does. It doesn’t check that the lock file and requirements file have the same
packages and versions, it only checks that both files are modified in the PR.

195

https://github.com/conda-incubator/conda-lock

FireSim Documentation, Release 1.15.0

196 Chapter 25. Managing the Conda Lock File

CHAPTER

TWENTYSIX

EXTERNAL TUTORIAL SETUP

This section of the documentation is for external attendees of a in-person FireSim and Chipyard tutorial. Please follow
along with the following steps to get setup if you already have an AWS EC2 account.

Note: These steps should take around 2hrs if you already have an AWS EC2 account.

1. Start following the FireSim documentation from Initial Setup/Installation but ending at Setting up the FireSim
Repo (make sure to NOT clone the FireSim repository)

2. Run the following commands:

#!/bin/bash

FIRESIM_MACHINE_LAUNCH_GH_URL="https://raw.githubusercontent.com/firesim/firesim/final-
→˓tutorial-2022-isca/scripts/machine-launch-script.sh"

curl -fsSLo machine-launch-script.sh "$FIRESIM_MACHINE_LAUNCH_GH_URL"
chmod +x machine-launch-script.sh
./machine-launch-script.sh

source ~/.bashrc

export MAKEFLAGS=-j16

sudo yum install -y nano

mkdir -p ~/.vim/{ftdetect,indent,syntax} && for d in ftdetect indent syntax ; do wget -O␣
→˓~/.vim/$d/scala.vim https://raw.githubusercontent.com/derekwyatt/vim-scala/master/$d/
→˓scala.vim; done

echo "colorscheme ron" >> /home/centos/.vimrc

cd ~/

(
git clone https://github.com/ucb-bar/chipyard -b final-tutorial-2022-isca-morning␣
→˓chipyard-morning
cd chipyard-morning
./scripts/init-submodules-no-riscv-tools.sh --skip-validate

(continues on next page)

197

FireSim Documentation, Release 1.15.0

(continued from previous page)

./scripts/build-toolchains.sh ec2fast
source env.sh

./scripts/firesim-setup.sh --fast
cd sims/firesim
source sourceme-f1-manager.sh

cd ~/chipyard-morning/sims/verilator/
make
make clean

cd ~/chipyard-morning
chmod +x scripts/repo-clean.sh
./scripts/repo-clean.sh
git checkout scripts/repo-clean.sh

)

cd ~/

(
git clone https://github.com/ucb-bar/chipyard -b final-tutorial-2022-isca chipyard-
→˓afternoon
cd chipyard-afternoon
./scripts/init-submodules-no-riscv-tools.sh --skip-validate

./scripts/build-toolchains.sh ec2fast
source env.sh

./scripts/firesim-setup.sh --fast
cd sims/firesim
source sourceme-f1-manager.sh
cd sim
unset MAKEFLAGS
make f1
export MAKEFLAGS=-j16

cd ../sw/firesim-software
./init-submodules.sh
marshal -v build br-base.json

cd ~/chipyard-afternoon/generators/sha3/software/
git submodule update --init esp-isa-sim
git submodule update --init linux
./build-spike.sh
./build.sh

cd ~/chipyard-afternoon/generators/sha3/software/
marshal -v build marshal-configs/sha3-linux-jtr-test.yaml
marshal -v build marshal-configs/sha3-linux-jtr-crack.yaml
marshal -v install marshal-configs/sha3*.yaml

(continues on next page)

198 Chapter 26. External Tutorial Setup

FireSim Documentation, Release 1.15.0

(continued from previous page)

cd ~/chipyard-afternoon/sims/firesim/sim/
unset MAKEFLAGS
make f1 DESIGN=FireSim TARGET_CONFIG=WithNIC_DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_
→˓WithFireSimHighPerfConfigTweaks_chipyard.QuadRocketConfig PLATFORM_CONFIG=F90MHz_
→˓BaseF1Config
make f1 DESIGN=FireSim TARGET_CONFIG=WithNIC_DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_
→˓WithFireSimHighPerfConfigTweaks_chipyard.LargeBoomConfig PLATFORM_CONFIG=F65MHz_
→˓BaseF1Config
make f1 DESIGN=FireSim TARGET_CONFIG=WithDefaultFireSimBridges_
→˓WithFireSimHighPerfConfigTweaks_chipyard.RocketConfig PLATFORM_CONFIG=F90MHz_
→˓BaseF1Config
make f1 DESIGN=FireSim TARGET_CONFIG=WithNIC_DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_
→˓WithFireSimHighPerfConfigTweaks_chipyard.Sha3RocketConfig PLATFORM_CONFIG=F65MHz_
→˓BaseF1Config
make f1 DESIGN=FireSim TARGET_CONFIG=DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_
→˓WithFireSimHighPerfConfigTweaks_chipyard.Sha3RocketConfig PLATFORM_CONFIG=F65MHz_
→˓BaseF1Config
make f1 DESIGN=FireSim TARGET_CONFIG=DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_
→˓WithFireSimHighPerfConfigTweaks_chipyard.Sha3RocketPrintfConfig PLATFORM_CONFIG=F30MHz_
→˓WithPrintfSynthesis_BaseF1Config
export MAKEFLAGS=-j16

cd ~/chipyard-afternoon
chmod +x scripts/repo-clean.sh
./scripts/repo-clean.sh
git checkout scripts/repo-clean.sh

)

3. Next copy the following contents and replace your entire ~/.bashrc file with this:

.bashrc
Source global definitions
if [-f /etc/bashrc]; then

. /etc/bashrc
fi
Uncomment the following line if you don't like systemctl's auto-paging feature:
export SYSTEMD_PAGER=
User specific aliases and functions
cd /home/centos/chipyard-afternoon && source env.sh && cd sims/firesim && source␣
→˓sourceme-f1-manager.sh && cd /home/centos/
export FDIR=/home/centos/chipyard-afternoon/sims/firesim/
export CDIR=/home/centos/chipyard-afternoon/

4. All done! Now continue with the in-person tutorial.

199

FireSim Documentation, Release 1.15.0

200 Chapter 26. External Tutorial Setup

CHAPTER

TWENTYSEVEN

INDICES AND TABLES

• genindex

• modindex

• search

201

	FireSim Basics
	Three common use cases:
	Single-Node Simulation In Parallel Using On-Premise FPGAs
	Single-Node Simulation In Parallel Using Cloud FPGAs
	Datacenter/Cluster Simulation

	Other Use Cases
	Background/Terminology
	Using FireSim/The FireSim Workflow

	Initial Setup/Installation
	First-time AWS User Setup
	Creating an AWS Account
	AWS Credit at Berkeley
	Requesting Limit Increases

	Configuring Required Infrastructure in Your AWS Account
	Select a region
	Key Setup
	Check your EC2 Instance Limits
	Start a t2.nano instance to run the remaining configuration commands
	Run scripts from the t2.nano
	Terminate the t2.nano
	Subscribe to the AWS FPGA Developer AMI

	Setting up your Manager Instance
	Launching a “Manager Instance”
	Access your instance
	Key Setup, Part 2

	Setting up the FireSim Repo
	Completing Setup Using the Manager

	Running FireSim Simulations
	Running a Single Node Simulation
	Building target software
	Setting up the manager configuration
	Launching a Simulation!
	Starting the Run Farm
	Setting up the simulation infrastructure
	Running a simulation!

	Running a Cluster Simulation
	Returning to a clean configuration
	Building target software
	Setting up the manager configuration
	Launching a Simulation!
	Starting the Run Farm
	Setting up the simulation infrastructure
	Running a simulation!

	Building Your Own Hardware Designs (FireSim FPGA Images)
	Amazon S3 Setup
	Build Recipes
	Running a Build

	Manager Usage (the firesim command)
	Overview
	“Inputs” to the Manager
	Logging

	Manager Command Line Arguments
	--runtimeconfigfile FILENAME
	--buildconfigfile FILENAME
	--buildrecipesconfigfile FILENAME
	--hwdbconfigfile FILENAME
	--overrideconfigdata SECTION PARAMETER VALUE
	--launchtime TIMESTAMP
	TASK

	Manager Tasks
	firesim managerinit --platform {f1,vitis}
	firesim buildafi
	firesim buildbitstream
	firesim builddriver
	firesim tar2afi
	firesim shareagfi
	firesim launchrunfarm
	firesim terminaterunfarm
	firesim infrasetup
	firesim boot
	firesim kill
	firesim runworkload
	firesim runcheck

	Manager Configuration Files
	config_runtime.yaml
	run_farm
	base_recipe
	recipe_arg_overrides

	metasimulation
	metasimulation_enabled
	metasimulation_host_simulator
	metasimulation_only_plusargs
	metasimulation_only_vcs_plusargs

	target_config
	topology
	no_net_num_nodes
	link_latency
	switching_latency
	net_bandwidth
	profile_interval
	default_hw_config

	tracing
	enable
	output_format
	selector, start, and end

	autocounter
	read_rate

	workload
	workload_name
	terminate_on_completion
	suffix_tag

	host_debug
	zero_out_dram
	disable_synth_asserts

	config_build.yaml
	build_farm
	base_recipe
	recipe_arg_overrides

	builds_to_run
	agfis_to_share
	share_with_accounts

	config_build_recipes.yaml
	Build definition sections, e.g. awesome_firesim_config
	DESIGN
	TARGET_CONFIG
	PLATFORM_CONFIG
	deploy_triplet
	TARGET_PROJECT (Optional)
	post_build_hook
	metasim_customruntimeconfig
	bit_builder_recipe
	bit_builder_arg_overrides

	config_hwdb.yaml
	NAME_GOES_HERE
	agfi
	xclbin
	deploy_triplet_override
	custom_runtime_config

	Add more hardware config sections, like NAME_GOES_HERE_2

	Run Farm Recipes (run-farm-recipes/*)
	run_farm_type
	args
	aws_ec2.yaml run farm recipe
	run_farm_tag
	always_expand_runfarm
	launch_instances_timeout_minutes
	run_instance_market
	spot_interruption_behavior
	spot_max_price
	default_simulation_dir
	run_farm_hosts_to_use
	run_farm_host_specs

	externally_provisioned.yaml run farm recipe
	default_platform
	default_simulation_dir
	run_farm_hosts_to_use
	run_farm_host_specs

	Build Farm Recipes (build-farm-recipes/*)
	build_farm_type
	args
	aws_ec2.yaml build farm recipe
	instance_type
	build_instance_market
	spot_interruption_behavior
	spot_max_price
	default_build_dir

	externally_provisioned.yaml build farm recipe
	default_build_dir
	build_farm_hosts

	Bit Builder Recipes (bit-builder-recipes/*)
	bit_builder_type
	args
	f1.yaml bit builder recipe
	s3_bucket_name
	append_userid_region

	vitis.yaml bit builder recipe

	Manager Environment Variables
	FIRESIM_RUNFARM_PREFIX

	Manager Network Topology Definitions (user_topology.py)
	user_topology.py contents:

	AGFI Metadata/Tagging

	Workloads
	Defining Custom Workloads
	Uniform Workload JSON
	Non-uniform Workload JSON (explicit job per simulated node)

	FireMarshal
	SPEC 2017
	Running Fedora on FireSim
	ISCA 2018 Experiments
	Prerequisites
	Building Benchmark Binaries/Rootfses
	Figure 5: Ping Latency vs. Configured Link Latency
	Figure 6: Network Bandwidth Saturation
	Figure 7: Memcached QoS / Thread Imbalance
	Figure 8: Simulation Rate vs. Scale
	Figure 9: Simulation Rate vs. Link Latency
	Running all experiments at once

	GAP Benchmark Suite
	[DEPRECATED] Defining Custom Workloads
	Uniform Workload JSON
	Non-uniform Workload JSON (explicit job per simulated node)

	Targets
	Restrictions on Target RTL
	Including Verilog IP
	Multiple Clock Domains
	The Base Clock
	Limitations:

	Target-Side FPGA Constraints
	RAM Inference Hints

	Provided Target Designs
	Target Generator Organization
	Specifying A Target Instance

	Rocket Chip Generator-based SoCs (firesim project)
	Rocket-based SoCs
	BOOM-based SoCs
	Generating A Different FASED Memory-Timing Model Instance

	Midas Examples (midasexamples project)
	Examples

	FASED Tests (fasedtests project)
	Examples

	Debugging in Software
	Debugging & Testing with Metasimulation
	Supported Host Simulators
	Running Metasimulations using the FireSim Manager
	Understanding a Metasimulation Waveform
	Module Hierarchy
	Clock Edges and Event Timing
	Finding The Source Of Simulation Stalls

	Scala Tests
	Running Metasimulations through Make
	Examples

	Metasimulation vs. Target simulation performance

	Debugging and Profiling on the FPGA
	Capturing RISC-V Instruction Traces with TracerV
	Building a Design with TracerV
	Enabling Tracing at Runtime
	Selecting a Trace Output Format
	Setting a TracerV Trigger
	No trigger
	Target cycle trigger
	Program Counter (PC) value trigger
	Instruction value trigger

	Interpreting the Trace Result
	Human readable output
	Binary output
	Flame Graph output

	Caveats

	Assertion Synthesis: Catching RTL Assertions on the FPGA
	Enabling Assertion Synthesis
	Runtime Behavior
	Related Publications

	Printf Synthesis: Capturing RTL printf Calls when Running on the FPGA
	Enabling Printf Synthesis
	Runtime Arguments
	Related Publications

	AutoILA: Simple Integrated Logic Analyzer (ILA) Insertion
	Enabling AutoILA
	Annotating Signals
	Setting a ILA Depth
	Using the ILA at Runtime

	AutoCounter: Profiling with Out-of-Band Performance Counter Collection
	Chisel Interface
	Enabling AutoCounter in Golden Gate
	Rocket Chip Cover Functions
	AutoCounter Runtime Parameters
	AutoCounter CSV Output Format
	Using TracerV Trigger with AutoCounter
	AutoCounter using Synthesizable Printfs
	Reset & Timing Considerations

	TracerV + Flame Graphs: Profiling Software with Out-of-Band Flame Graph Generation
	What are Flame Graphs?
	Prerequisites
	Enabling Flame Graph generation in config_runtime.yaml
	Producing DWARF information to supply to the TracerV driver
	Modifying your workload description
	Running a simulation
	Caveats

	Dromajo Co-simulation with BOOM designs
	Building a Design with Dromajo
	Running a FireSim Simulation
	Troubleshooting Dromajo Simulations with Meta-Simulations

	Debugging a Hanging Simulator
	Case 1: Target hang.
	Case 2: Simulator hang due to FPGA-side token starvation.
	Case 3: Simulator hang due to driver-side deadlock.
	Simulator Heartbeat PlusArgs

	Non-Source Dependency Management
	Updating a Package Version
	Multiple Environments
	Adding a New Dependency
	Building From Source
	Running conda with sudo
	Running things from your conda environment with sudo
	Additional Resources

	Supernode - Multiple Simulated SoCs Per FPGA
	Introduction
	Building Supernode Designs
	Running Supernode Simulations
	Work in Progress!

	Miscellaneous Tips
	Add the fsimcluster column to your AWS management console
	FPGA Dev AMI Remote Desktop Setup
	Experimental Support for SSHing into simulated nodes and accessing the internet from within simulations
	Navigating the FireSim Codebase
	Using FireSim CI

	FireSim Asked Questions
	I just bumped the FireSim repository to a newer commit and simulations aren’t running. What is going on?
	Is there a good way to keep track of what AGFI corresponds to what FireSim commit?
	Help, My Simulation Hangs!
	Should My Simulator Produce Different Results Across Runs?
	Is there a way to compress workload results when copying back to the manager instance?

	(Experimental) Using On Premise FPGAs
	Setup
	Bitstream Build
	Running A Simulation

	Overview & Philosophy
	Golden Gate vs FPGA Prototyping
	Why Use Golden Gate & FireSim
	Why Not Golden Gate
	How is Host-Decoupling Implemented?

	Target Abstraction & Host Decoupling
	The Target as a Dataflow Graph
	Model Implementations
	Expressing the Target Graph
	Latency-Insensitive Bounded Dataflow Networks

	Target-to-Host Bridges
	Terminology
	Target Side
	Type Parameters:
	Abstract Members:

	What Happens Next?
	Host Side
	Compile-Time (Parameterization) vs Runtime Configuration
	Target-Side vs Host-Side Parameterization

	Bridge Walkthrough
	UART Bridge (Host-MMIO)
	Target Side
	Host-Side BridgeModule
	Host-Side Driver
	Registering the Driver
	Build-System Modifications

	Simulation Triggers
	Quick-Start Guide
	Level-Sensitive Trigger Source
	Distributed, Edge-Sensitive Trigger Source

	Chisel API
	Trigger Sources
	Trigger Sinks

	Trigger Timing
	Limitations & Pitfalls

	Optimizing FPGA Resource Utilization
	Multi-Ported Memory Optimization
	Multi-Threading of Repeated Instances

	Output Files
	Core Files
	FPGA Build Files
	Metasimulation Files

	Compiler & Driver Development
	Integration Tests
	Key Files & Locations
	Defining a New Test

	Synthesizable Unit Tests
	Key Files & Locations
	Defining a New Test

	Scala Unit Testing
	Key Files & Locations
	Defining A New Test

	C/C++ guidelines

	Complete FPGA Metasimulation
	Usage

	Visual Studio Code Integration
	General Setup
	Workspace Locations
	Scala Development
	How To Use (Remote Manager)
	Limitations
	Other Notes

	Managing the Conda Lock File
	Updating Conda Requirements
	Caveats of the Conda Lock File and CI

	External Tutorial Setup
	Indices and tables

