FireSim Documentation
Release 1.17.0

Sagar Karandikar, David Biancolin,
Abraham Gonzalez, Howard Mao,
Donggyu Kim, Alon Amid,
Berkeley Architecture Research

Jul 09, 2023

1 FireSim Basics
Common FireSimusagemodels L
1. Single-Node Simulations Using One or More On-Premises FPGAs
2. Single-Node Simulations Using Cloud FPGAs
3. Datacenter/Cluster Simulations on On-Premises or Cloud FPGAs
Other Use Cases
Choose your platform to get started oL e

2

3

1.1

1.2
1.3

1.1.1
1.1.2
1.1.3

GETTING STARTED:

AWS EC2 F1 Getting Started Guide

2.1

2.2

23

3.1

3.2

33

34

Initial Setup/Installation L L e e e e e e e e e
2.1.1 ~ Background/Terminology e
2.1.2 First-time AWS User Setup o i i e e e e e
2.1.3 Configuring Required Infrastructure in Your AWS Account
2.1.4 Setting up your Manager Instanceo
Running FireSim Simulations e e
2.2.1 Running a Single Node Simulation
222 Running a Cluster Simulation L o
Building Your Own Hardware Designs (FireSim Amazon FPGA Images)
231 Amazon S3Setup e e e
2.3.2 BuildRecipes e e e e e e
2.3.3 Build Farm Instance Types« . o i i i i e e e e
234 RunningaBuild
Xilinx Alveo U250 XDMA-based Getting Started Guide
Initial Setup/Installation L L e e e e e e
3.1.1 Background/Terminology
3.1.2 System Setupo e e e e e e e e e
FireSim Repo Setup L
3.2.1 Settingupthe FireSimRepo e
3.2.2 Initializing FireSim Config Files o
3.2.3 Configuring the FireSim manager to understand your Run Farm Machine setup
Running a Single Node Simulation
3.3.1 Building target software L e e
3.3.2 Setting up the manager configuration L. oo
3.3.3 Building and Deploying simulation infrastructure to the Run Farm Machines
334 Running the simulation e
Building Your Own Hardware Designs
341 System Setup e e e e e e e e e
34.2 Configuring a Build in the Manager
343 Runningthe Build. e

A BA PO W

[c BN |

O

12
23
23
32
43
43
44
44
44

47
47
47
49
54
54
55
55
57
57
57
58
59
62
62
63
64

4 Xilinx Alveo U280 XDMA-based Getting Started Guide

6

4.1

4.2

4.3

4.4

5.1

52

53

54

6.1

6.2

6.3

6.4

Initial Setup/Installation o L L e e e e e e e e e e
4.1.1 Background/Terminology o e e e e
4.1.2 System Setup e e e
FireSim Repo Setup o . e
4.2.1 Settingupthe FireSimRepo L
4.2.2 Initializing FireSim ConfigFiles
4.2.3 Configuring the FireSim manager to understand your Run Farm Machine setup
Running a Single Node Simulation o ..
4.3.1 Building target software L.
4.3.2 Setting up the manager configuration Lo
4.3.3 Building and Deploying simulation infrastructure to the Run Farm Machines
43.4 Running the simulation e e
Building Your Own Hardware Designs
441 SystemSetup
442 Configuring a Build in the Manager
443 RunningtheBuild.
Xilinx VCU118 XDMA-based Getting Started Guide
Initial Setup/Installation L e
5.1.1 ~ Background/Terminology L e e e
5.1.2 0 System Setup e e e e e e e e
FireSim Repo Setup o e e
5.2.1 Settingup the FireSimRepo Lo
5.2.2 Initializing FireSim Config Files
5.2.3 Configuring the FireSim manager to understand your Run Farm Machine setup
Running a Single Node Simulation e
5.3.1 Building target software L L L e e e e
5.3.2 Setting up the manager configuration L
5.3.3 Building and Deploying simulation infrastructure to the Run Farm Machines
5.3.4 Running the simulation L
Building Your Own Hardware Designs i it
5401 System Setup e e e e e e e e e e e
54.2 Configuring a Build in the Manager
543 RunningtheBuild.
RHS Research Nitefury II XDMA-based Getting Started Guide
Initial Setup/Installation L e
6.1.1 Background/Terminology L e
6.1.2 System Setup e e e e e
FireSim Repo Setup L e e
6.2.1 Settingup the FireSimRepo
6.2.2 Initializing FireSim Config Files L .
6.2.3 Configuring the FireSim manager to understand your Run Farm Machine setup
Running a Single Node Simulation
6.3.1 Building target software
6.3.2 Setting up the manager configuration
6.3.3 Building and Deploying simulation infrastructure to the Run Farm Machines
6.3.4 Running the simulation L
Building Your Own Hardware Designs
6.4.1 System Setup e e e e e e
6.4.2 Configuring a Build in the Manager
6.43 RunningtheBuild.

65
65
65
67
72
72
73
73
75
75
75
76
77
80
80
81
82

7 (Experimental) Xilinx Alveo U250 Vitis-based Getting Started Guide

7.1

7.2

1.3

8.1

8.2

8.3

8.4

8.5

8.6

Initial Setup/Installation

7.1.1 Background/Terminology e e e
7.12 FPGAandTool Setup e
7.1.3 Setting up your On-Premises Machine
Running a Single Node Simulation
7.2.1 Building target software L. e e e e e e
7.2.2 Setting up the manager configuration L. Lol e
7.2.3 Building and Deploying simulation infrastructure to the Run Farm Machines
7.2.4 Running the simulation Lo
Building Your Own Hardware Designs e
7.3.1 Configuring a Build in the Manager,
73.2 RunningtheBuild. e e
8 Manager Usage (the firesim command)
OVEIVIEW . . . o i o e e e e e e e e e e e e e e e e e e e
8.1.1 “Imputs” tothe Manager i i it ittt e e e
8.1.2 Logging o e e e e e e e
Manager Command Line Arguments e e e e e
8.2.1 --runtimeconfigfile FILENAME i i
8.2.2 --buildconfigfile FILENAME i i it s e e e e
8.2.3 --buildrecipesconfigfile FILENAME i i v i i v i ..
824 --hwdbconfigfile FILENAME ittt ie e
8.2.5 --overrideconfigdata SECTION PARAMETERVALUE
8.2.6 --launchtime TIMESTAMP e et e e e e e e e e
8.2.7 TASK . . . o e e e e e
Manager Tasks e e e e e e e e e e
8.3.1 firesim managerinit e e e
8.3.2 firesim buildbitstream
8.3.3 firesim builddriver e e
8.3.4 firesim tar2afi e e
8.3.5 firesim shareagfi e
8.3.6 firesim launchrunfarm. e
8.3.7 firesim terminaterunfarm. e
8.3.8 firesim infrasetup e e e
8.3.9 firesim boot e e e e e
8.3.10 firesim kill e e e e
8.3.11 firesim runworkload
83.12 firesim runcheck
8.3.13 firesim enumeratefpgas e e e e e e e
Manager URI Paths o o e
8.4.1 URI SUPPOTT ot e e e e e e e e e e e e e e e e e
Manager Configuration Files e e e
8.5.1 config_runtime.yaml e e e e
8.5.2 config_build.yaml e e e e
8.5.3 config_build_recipes.yaml
8.54 config_hwdb.yaml e
8.5.5 Run Farm Recipes (run-farm-recipes/*)« . i e
8.5.6 Build Farm Recipes (build-farm-recipes/*).
8.5.7 Bit Builder Recipes (bit-builder-recipes/*)
Manager Environment Variables Lo e
8.6.1 FIRESIM_RUNFARM_PREFIX it et ettt et et s
8.6.2 FIRESIM_BUILDFARM_PREFIX. ittt ittt
Manager Network Topology Definitions (user_topology.py) v ..

8.7

119
119
119
121
122
125
125
125
129
129
133
133
134

135
135
135
135
136
138
138
138
138
138
138
138
138
139
139
141
141
142
142
143
144
144
144
144
145
145
145
145
146
146
152
155
165
168
176
180
183
183
183
183

9

10

8.7.1 user_topology.py CONLENtS: v v v i i et e e e e e e e e e e e e e
8.8 AGFI Metadata/Tagging o 0 i e e e e e e e e e e
Workloads
9.1 Defining Custom Workloads
9.1.1 Uniform Workload JSON e
9.1.2 Non-uniform Workload JSON (explicit job per simulatednode)
9.2 FireMarshal oL e e e
9.3 SPEC 2017 o e e
9.4 Running Fedoraon FireSim e
9.5 ISCA 2018 EXperiments v v v v v it et e e e e e e e e e e e e e e e e
0.5.1 Prerequisites o e e e e e e e e e
9.5.2 Building Benchmark Binaries/Rootfses
9.5.3 Figure 5: Ping Latency vs. Configured Link Latency
9.5.4 Figure 6: Network Bandwidth Saturation
9.5.5 Figure 7: Memcached QoS / Thread Imbalance
9.5.6 Figure 8&: Simulation Rate vs. Scale
9.5.7 Figure 9: Simulation Rate vs. Link Latency,
9.5.8 Running all experimentsatonce
9.6 GAPBenchmark Suite L
9.7 [DEPRECATED] Defining Custom Workloads
9.7.1 Uniform Workload JSON e
9.7.2 Non-uniform Workload JSON (explicit job per simulatednode)
Targets
10.1 Restrictionson Target RTL e e e
10.1.1 Including Verilog IP L
10.1.2 Multiple Clock Domains o e
10.2 Target-Side FPGA Constraints o L o it e e e e e e e
10.2.1 RAMInference Hints
10.3 Provided Target Designs o . o e e e e e e e
10.3.1 Target Generator Organization
10.3.2 Specifying A Target Instance Lo Lo
10.4 Rocket Chip Generator-based SoCs (firesim project) vt
10.4.1 Rocket-based SOCs L
1042 BOOM-based SOCS o ottt
10.4.3 Generating A Different FASED Memory-Timing Model Instance
10.5 Midas Examples (midasexamples project) oo
10.5.1 Examples oo e e e e e e e e
10.6 FASED Tests (fasedtests project)« o v v v v vt i it e e e e e
10.6.1 Examples e e e e e e e
11 Debugging in Software
11.1 Debugging & Testing with Metasimulation,
11.1.1 Supported Host Simulators o e e e e
11.1.2 Running Metasimulations using the FireSim Manager
11.1.3 Understanding a Metasimulation Waveform
11.1.4 ScalaTests o o i i i e e e e e e e e e e e
11.1.5 Running Metasimulations throughMake,
11.1.6 Metasimulation vs. Target simulation performance
12 Debugging and Profiling on the FPGA
12.1 Capturing RISC-V Instruction Traces with TracerV
12.1.1 Building a Design with TracerV
12.1.2 Enabling Tracing at Runtime e

193
193
193
195
197
197
198
198
198
198
199
199
199
199
200
200
200
201
202
203

207
207
207
208
209
209
210
210
210
212
212
212
212
213
213
213
213

215
215
215
216
217
219
219
220

12.2

12.3

12.4

12.5

12.6

12.7

12.8

13.1
13.2
13.3
13.4
13.5
13.6

12.1.3 Selecting a Trace Output Format
12.1.4 Setting a TracerV Trigger« o 0 i i e e e e e e e e e e e
12.1.5 Interpreting the Trace Result
12.1.6 Caveats L e e e
Assertion Synthesis: Catching RTL Assertionsonthe FPGA
12.2.1 Enabling Assertion Synthesis L
12.22 Runtime Behavior
12.2.3 Related Publications
Printf Synthesis: Capturing RTL printf Calls when Runningonthe FPGA
12.3.1 Enabling Printf Synthesis
12.3.2 Runtime Arguments o v it e e e e e e e e e e e e e e e e
12.3.3 Related Publications
AutoILA: Simple Integrated Logic Analyzer (ILA) Insertion
12.4.1 Enabling AutoIlLA e
12.4.2 Annotating Signals oL e e
12.43 SettingaILADepth. e
12.4.4 Usingthe ILA atRuntime e
AutoCounter: Profiling with Out-of-Band Performance Counter Collection
12.5.1 Chisel Interface L e
12.5.2 Enabling AutoCounter in Golden Gate
12.5.3 Rocket Chip Cover Functions e
12.5.4 AutoCounter Runtime Parameters
12.5.5 AutoCounter CSV Output Format ittt
12.5.6 Using TracerV Trigger with AutoCounter v v ..
12.5.7 AutoCounter using Synthesizable Printfs 0.
12.5.8 Reset & Timing Considerations ottt
TracerV + Flame Graphs: Profiling Software with Out-of-Band Flame Graph Generation
12.6.1 What are Flame Graphs? e
12.6.2 PrerequiSites o v v i i e e e e e e e e e e e e e e e e e e e
12.6.3 Enabling Flame Graph generation in config_runtime.yaml
12.6.4 Producing DWAREF information to supply to the TracerV driver
12.6.5 Modifying your workload description Lo
12.6.6 Running asimulation e
12.6.7 Caveats e e e
Dromajo Co-simulation with BOOM designs
12.7.1 Building a Design with Dromajo
12.7.2 Running a FireSim Simulation
12.7.3 Troubleshooting Dromajo Simulations with Meta-Simulations
Debugging a Hanging Simulator e e e
12.8.1 Case I: Targethang. e e e e e e e
12.8.2 Case 2: Simulator hang due to FPGA-side token starvation.
12.8.3 Case 3: Simulator hang due to driver-side deadlock.
12.8.4 Simulator Heartbeat PlusArgs L
13 Non-Source Dependency Management
Updating a Package Version e
Multiple Environmentso e e e e
Adding aNew Dependency
Building From Source e
Running Conda withsudo e
Running things from your Conda environment withsudo
Additional Resources e e

13.7

14 Supernode - Multiple Simulated SoCs Per FPGA

241
241
243
243
244
244
244
245

247

15

16

17

18

19

20

21

14.1 Introduction e e e e e e e 247

14.2 Building Supernode Designs e e e e e e 247
14.3 Running Supernode Simulations L L L e e e 248
14.4 Work in Progress! oL e e e 249
Miscellaneous Tips 251
15.1 Add the fsimcluster column to your AWS managementconsole 251
15.2 FPGA Dev AMI Remote Desktop Setup 251
15.3 Experimental Support for SSHing into simulated nodes and accessing the internet from within simu-
[ations L e e e e 251
15.4 Navigating the FireSim Codebase i e 253
15.5 Using FireSim CL. e e e e e 253
FireSim Asked Questions 255
16.1 Tjust bumped the FireSim repository to a newer commit and simulations aren’t running. What is going
ONT . L e e e 255
16.2 Is there a good way to keep track of what AGFI corresponds to what FireSim commit? 255
16.3 Help, My Simulation Hangs! e 256
16.4 Should My Simulator Produce Different Results Across Runs? 256
16.5 TIs there a way to compress workload results when copying back to the manager instance? 256
Overview & Philosophy 257
17.1 Golden Gate vs FPGA Prototyping e 257
17.2 Why Use Golden Gate & FireSim i e 257
173 Why NotGolden Gate o o it e e e e e e e 258
17.4 How is Host-Decoupling Implemented? 258
Target Abstraction & Host Decoupling 259
18.1 The Targetas a Dataflow Graph 259
18.2 Model Implementations L 259
18.3 Expressing the Target Graph 260
18.4 Latency-Insensitive Bounded Dataflow Networks 260
Target-to-Host Bridges 261
19.1 Terminology o o i i e e e e e e e e e 261
192 Target Side e e e e 262
19.2.1 Type Parameters: o o i i e e e e e e e e e e e e e 262
19.2.2 Abstract Members: L e e e e 262
19.3 What Happens Next? e 262
19.4 HostSide e e e e 263
19.5 Compile-Time (Parameterization) vs Runtime Configuration 263
19.6 Target-Side vs Host-Side Parameterization 263
Bridge Walkthrough 265
20.1 UART Bridge (Host-MMIO) e e e e s e 265
20.1.1 Target Side oL e e e e e e e e 265
20.1.2 Host-Side BridgeModule e e 267
20.1.3 Host-Side Driver e e e e 268
20.1.4 Build-System Modifications L 271
Simulation Triggers 273
21.1 Quick-Start Guide L e e e 273
21.1.1 Level-Sensitive Trigger Source it e 273
21.1.2 Distributed, Edge-Sensitive Trigger Source 273
21.2 Chisel APT 274

vi

22

23

24

25

26

27

28

29

30

21.2.1 Trig@er SOUICES . . v v v v v v e
21.2.2 Trigger Sinks o L e e e e e e e e e e e
21.3 Trigger TIMING o o v o o e
21.4 Limitations & Pitfalls e

Optimizing FPGA Resource Utilization
22.1 Multi-Ported Memory Optimization e
22.2 Multi-Threading of Repeated Instances e

Output Files

23.1 CoreFiles. e e
232 FPGABuild Files e
23.3 Metasimulation Files e e e e

Compiler & Driver Development

24.1 Integration TeStS o i L e e e e e e e e e
24.1.1 Key Files & Locations i i e e
24.1.2 Defininga New Test o o 0 i i e e e e e e e e e e e e

24.2 Synthesizable Unit Tests o i i e e e e e e e e e e
2421 KeyFiles & Locations e
2422 DefiningaNew Test o . e e e e e e e

243 ScalaUnitTesting o L o e e e e e e
24.3.1 Key Files & Locations i v i i e e e e e e e e e e e
2432 Defining ANew Test o o e e e e e e e e e e

244 C/CH++guidelines o e e e e e e e

245 Scalaguidelines L e

Complete FPGA Metasimulation
25.1 USAZe . . . v e e e e e e e e e

Visual Studio Code Integration
26.1 General Setup e e e e e e e e e e

26.3 ScalaDevelopment L e e e e e e e
26.3.1 How To Use (Remote Manager) ittt
26.3.2 LIMItations o e
26.3.3 Other NOtES v v e e e e e e e e e e e e e e e

Managing the Conda Lock File
27.1 Updating Conda Requirements o o v i i i i e e e e e e
27.2 Caveats of the Conda Lock Fileand CI,

Manager Development

28.1 Writing PyTests o o o o e e e e e e e e e e e e e e
28.2 Running PyTests Locally 0 o e e e e e e e
283 Adding PyTests ToCIL e

External Tutorial Setup

Indices and tables

277
277
278

279
279
279
280

281
281
282
282
282
283
283
283
283
283
284
284

285
285

287
287
287
287
288
288
288

289
289
289

291
291
291
291

293

297

vii

viii

FireSim Documentation, Release 1.17.0

New to FireSim? Jump to the FireSim Basics page for more info.

GETTING STARTED: 1

FireSim Documentation, Release 1.17.0

2 GETTING STARTED:

CHAPTER
ONE

FIRESIM BASICS

FireSim is an open-source FPGA-accelerated full-system hardware simulation platform that makes it easy to validate,
profile, and debug RTL hardware implementations at 10s to 100s of MHz. FireSim simplifies co-simulating ASIC RTL
with cycle-accurate hardware and software models for other system components (e.g. I/Os). FireSim can productively
scale from individual SoC simulations hosted on on-prem FPGAs (e.g., a single Xilinx Alveo board attached to a
desktop) to massive datacenter-scale simulations harnessing hundreds of cloud FPGAs (e.g., on Amazon EC2 F1).

FireSim users across academia and industry (at 20+ institutions) have published over 40 papers using FireSim in many
areas, including computer architecture, systems, networking, security, scientific computing, circuits, design automa-
tion, and more (see the Publications page on the FireSim website to learn more). FireSim has also been used in the
development of commercially-available silicon. FireSim was originally developed in the Electrical Engineering and
Computer Sciences Department at the University of California, Berkeley, but now has industrial and academic contrib-
utors from all over the world.

This documentation will walk you through getting started with using FireSim on your platform and also serves as a
reference for more advanced FireSim features. For higher-level technical discussion about FireSim, see the FireSim
website.

1.1 Common FireSim usage models

Below are three common usage models for FireSim. The first two are the most common, while the third model is
primarily for those interested in warehouse-scale computer research. The getting started guides on this documentation
site will cover all three models.

1.1.1 1. Single-Node Simulations Using One or More On-Premises FPGAs

In this usage model, FireSim allows for simulation of targets consisting of individual SoC designs (e.g., those produced
by Chipyard) at 150+ MHz running on on-premises FPGAs, such as those attached to your local desktop, laptop, or
cluster. Just like on the cloud, the FireSim manager can automatically distribute and manage jobs on one or more
on-premises FPGAs, including running complex workloads like SPECInt2017 with full reference inputs.

https://fires.im/publications
https://fires.im
https://fires.im
https://chipyard.readthedocs.io/

FireSim Documentation, Release 1.17.0

1.1.2 2. Single-Node Simulations Using Cloud FPGAs

This usage model is similar to the previous on-premises case, but instead deploys simulations on FPGAs attached to
cloud instances, rather than requiring users to obtain and set-up on-premises FPGAs. This allows for dynamically
scaling the number of FPGAs in-use to match workload requirements. For example, on AWS EC2 F1, it is just as cost
effective to run the 10 workloads in SPECInt2017 in parallel on 10 cloud FPGAs vs. running them serially on one
cloud FPGA.

Note: All automation in FireSim works in both the on-premises and cloud usage models, which enables a hybrid
usage model where early development happens on one (or a small cluster of) on-premises FPGA(s), while bursting to
a large number of cloud FPGAs when a high degree of parallelism is necessary.

1.1.3 3. Datacenter/Cluster Simulations on On-Premises or Cloud FPGAs

In this mode, FireSim also models a cycle-accurate network with parameterizeable bandwidth, link latency, and config-
urable topology to accurately model current and future datacenter-scale systems. For example, FireSim has been used
to simulate 1024 quad-core RISC-V Rocket Chip-based nodes, interconnected by a 200 Gbps, 2us Ethernet network.
To learn more about this use case, see our ISCA 2018 paper.

1.2 Other Use Cases

If you have other use-cases that we haven’t covered or don’t fit into the above buckets, feel free to contact us!

1.3 Choose your platform to get started

FireSim supports many types of FPGAs and FPGA platforms! Click one of the following links to work through the
getting started guide for your particular platform.

* AWS EC2 F1 Getting Started Guide
— Status: All FireSim Features Supported.
* Xilinx Alveo U250 XDMA-based Getting Started Guide
— Status: All FireSim Features Supported.
* Xilinx Alveo U280 XDMA-based Getting Started Guide
— Status: All FireSim Features Supported.
Xilinx VCUI118 XDMA-based Getting Started Guide

— Status: All FireSim Features Supported.
* RHS Research Nitefury Il XDMA-based Getting Started Guide
— Status: All FireSim Features Supported.
* (Experimental) Xilinx Alveo U250 Vitis-based Getting Started Guide

— Status: DMA-based Bridges Not Supported. The Vitis-based U250 flow is not recommended unless you
have specific constraints that require using Vitis. Notably, the Vitis-based flow does not support DMA-
based FireSim bridges (e.g., TracerV, Synthesizable Printfs, etc.), while the XDMA-based flows support

4 Chapter 1. FireSim Basics

https://sagark.org/assets/pubs/firesim-isca2018.pdf

FireSim Documentation, Release 1.17.0

all FireSim features, as shown above. If you're unsure, use the XDMA-based U250 flow instead: Xilinx
Alveo U250 XDMA-based Getting Started Guide.

1.3. Choose your platform to get started 5

FireSim Documentation, Release 1.17.0

6 Chapter 1. FireSim Basics

CHAPTER
TWO

AWS EC2 F1 GETTING STARTED GUIDE

The getting started guides that follow this page will guide you through the complete flow for getting an example FireSim
simulation up and running using AWS EC2 F1. At the end of this guide, you’ll have a simulation that simulates a single
quad-core Rocket Chip-based node with a4 MB last level cache, 16 GB DDR3, and no NIC. After this, you can continue
to a guide that shows you how to simulate a globally-cycle-accurate cluster-scale FireSim simulation. The final guide
will show you how to build your own FPGA images with customized hardware. After you complete these guides, you
can look at the “Advanced Docs” in the sidebar to the left.

Here’s a high-level outline of what we’ll be doing in our AWS EC2 F1 getting started guides:
1. Initial Setup/Installation
a. Background/Terminology: We will discuss some key terminology that will be used in the rest of the guides.
b. First-time AWS User Setup: You can skip this if you already have an AWS account/payment method set up.

c. Configuring required AWS resources in your account: This sets up the appropriate VPCs/subnets/security
groups required to run FireSim.

d. Setting up a “Manager Instance” from which you will coordinate building and deploying simulations.

2. Single-node simulation guide: This guide walks you through the process of running one simulation on a Run
Farm consisting of a single £1.2xlarge, using our pre-built public FireSim AGFIs.

3. Cluster simulation guide: This guide walks you through the process of running an 8-node cluster simulation
on a Run Farm consisting of one f1. 16xlarge, using our pre-built public FireSim AGFIs and switch models.

4. Building your own hardware designs guide (Chisel to FPGA Image): This guide walks you through the full
process of taking Rocket Chip RTL and any custom RTL plugged into Rocket Chip and producing a FireSim
AGFI to plug into your simulations. This automatically runs Chisel elaboration, FAME-1 Transformation, and
the Vivado FPGA flow.

Generally speaking, you only need to follow step 4 if you're modifying Chisel RTL or changing non-runtime config-
urable hardware parameters.

2.1 Initial Setup/Installation

This section will guide you through initial setup of your AWS account to support FireSim, as well as cloning/installing
FireSim on your manager instance.

FireSim Documentation, Release 1.17.0

2.1.1 Background/Terminology

Before we jump into setting up FireSim, it is important to clarify several terms that we will use throughout the rest of
this documentation.

First, to disambiguate between the hardware being simulated and the computers doing the simulating, we define:

Target The design and environment being simulated. Commonly, a group of one or more RISC-V SoCs with or
without a network between them.

Host The computers/FPGAs executing the FireSim simulation — the Run Farm below.

We frequently prefix words with these terms. For example, software can run on the simulated RISC-V system (target-
software) or on a host x86 machine (host-software).

Fig. 1: FireSim Infrastructure Diagram

FireSim Manager (firesim) This program (available on your path as firesim once we source necessary scripts)
automates the work required to launch FPGA builds and run simulations. Most users will only have to interact
with the manager most of the time. If you’re familiar with tools like Vagrant or Docker, the firesim command
is just like the vagrant and docker commands, but for FPGA simulators instead of VMs/containers.

Machines used to build and run FireSim simulations are broadly classified into three groups:

Manager Instance This is the main host machine (e.g., a “vanilla” AWS EC2 instance without an FPGA attached)
that you will “do work™ on. This is where you’ll clone your copy of FireSim and use the FireSim Manager to
deploy builds/simulations from.

Build Farm Instances These are a collection of cloud instances (“build farm instances”) that are used by the FireSim
manager to run FPGA bitstream builds. The manager will automatically ship all sources necessary to run builds
to these instances and will run the Verilog to FPGA bitstream build process on them.

8 Chapter 2. AWS EC2 F1 Getting Started Guide

FireSim Documentation, Release 1.17.0

Run Farm Instances These are a collection of cloud instances (“run farm instances”) with FPGAs attached that the
manager manages and deploys simulations onto. You can use multiple Run Farms in parallel to run multiple
separate simulations in parallel.

Later parts of this guide will explain in further detail how each of these instance types is launched and managed.
One final piece of terminology will also be referenced throughout these docs:

Golden Gate The FIRRTL compiler in FireSim that converts target RTL into a decoupled simulator. Formerly named
MIDAS.

2.1.2 First-time AWS User Setup

If you’ve never used AWS before and don’t have an account, follow the instructions below to get started.

Creating an AWS Account

First, you’ll need an AWS account. Create one by going to aws.amazon.com and clicking “Sign Up.” You’ll want to
create a personal account. You will have to give it a credit card number.

Requesting Limit Increases
AWS limits access to particular instance types for new/infrequently used accounts to protect their infrastructure. You
can learn more about how these limits/quotas work here.

You should make sure that your account has the ability to launch a sufficient number of instances to follow this guide by
looking at the “Service Quotas” page in the AWS Console, which you can access here. Be sure that the correct region
is selected once you open this page.

The values listed on this page represent the maximum number vCPUs of any of these instances that you can run at once,
which will limit the size of simulations (e.g., number of parallel FPGAs) that you can run. If you need to increase your
limits, follow the instructions below.

To complete this guide, you need to have the following limits:
* Running On-Demand F instances: 64 vCPUs.
— This is sufficient for 8 parallel FPGAs. Each 8 vCPUs = one FPGA.
e Running On-Demand Standard (A, C, D, H, I, M, R, T, Z) instances: 24 vCPUs.
— This is sufficient for one c5.4xlarge manager instance and one z1d.2xlarge build farm instance.

If you have insufficient limits, request a limit increase by following these steps: https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/ec2-resource-limits.html#request-increase

In your request, enter the vCPU limits for the two instance classes shown above. This process sometimes has a human
in the loop, so you should submit it ASAP. At this point, you should wait for the response to this request.

Hit Next below to continue.

2.1. Initial Setup/Installation 9

https://aws.amazon.com
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html#ec2-on-demand-instances-limits
https://console.aws.amazon.com/servicequotas/home/services/ec2/quotas/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html#request-increase
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html#request-increase

FireSim Documentation, Release 1.17.0

2.1.3 Configuring Required Infrastructure in Your AWS Account

Once we have an AWS Account setup, we need to perform some advance setup of resources on AWS. You will need to
follow these steps even if you already had an AWS account as these are FireSim-specific.

Select a region

Head to the EC2 Management Console. In the top right corner, ensure that the correct region is selected. You should
select one of: us-east-1 (N. Virginia), us-west-2 (Oregon), or eu-west-1 (Ireland), since F1 instances are only
available in those regions.

Once you select a region, it’s useful to bookmark the link to the EC2 console, so that you’re always sent to the console
for the correct region.

Key Setup
In order to enable automation, you will need to create a key named firesim, which we will use to launch all instances
(Manager Instance, Build Farm, Run Farm).

To do so, click “Key Pairs” under “Network & Security” in the left-sidebar. Follow the prompts, name the key firesim,
and save the private key locally as firesim.pem. You can use this key to access all instances from your local machine.
We will copy this file to our manager instance later, so that the manager can also use it.

Double Check your EC2 Instance Limits
AWS limits access to particular instance types for new/infrequently used accounts to protect their infrastructure. You
can learn more about how these limits/quotas work here.

You should make sure that your account has the ability to launch a sufficient number of instances to follow this guide by
looking at the “Service Quotas” page in the AWS Console, which you can access here. Be sure that the correct region
is selected once you open this page.

The values listed on this page represent the maximum number vCPUs of any of these instances that you can run at once,
which will limit the size of simulations (e.g., number of parallel FPGAs) that you can run. If you need to increase your
limits, follow the instructions below.

To complete this guide, you need to have the following limits:
* Running On-Demand F instances: 64 vCPUs.
— This is sufficient for 8 parallel FPGAs. Each 8 vCPUs = one FPGA.
¢ Running On-Demand Standard (A, C, D, H, I, M, R, T, Z) instances: 24 vCPUs.
— This is sufficient for one c5.4xlarge manager instance and one z1d.2xlarge build farm instance.

If you have insufficient limits, follow the instructions on the Requesting Limit Increases page.

10 Chapter 2. AWS EC2 F1 Getting Started Guide

https://console.aws.amazon.com/ec2/v2/home
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html#ec2-on-demand-instances-limits
https://console.aws.amazon.com/servicequotas/home/services/ec2/quotas/

FireSim Documentation, Release 1.17.0

Start a t2.nano instance to run the remaining configuration commands

To avoid having to deal with the messy process of installing packages on your local machine, we will spin up a very
cheap t2.nano instance to run a series of one-time aws configuration commands to setup our AWS account for FireSim.
At the end of these instructions, we’ll terminate the t2.nano instance. If you happen to already have boto3 and the
AWS CLI installed on your local machine, you can do this locally.

Launch a t2.nano by following these instructions:
1. Go to the EC2 Management Console and click “Launch Instance”
In “Application and OS Images (Amazon Machine Image)”, use “Amazon Linux”, which should be the default.
In “Instance type”, select t2.nano.
In “Key pair (login)”, choose the firesim key pair we created previously.

Click “Launch Instance” in the right-hand sidebar (we don’t need to change any other settings)

AN

Click on the instance ID and note the instance’s public IP address.

Run scripts from the t2.nano

SSH into the t2.nano like so:

ssh -i firesim.pem ec2-user@INSTANCE_PUBLIC_IP

Which should present you with something like:

, #_
~_ B Amazon Linux 2023
~~ _###HE\
~~ \### |
~~ \#/ ___ https://aws.amazon.com/linux/amazon-linux-2023
~~ V~"' ">
e /
~~ . _/
-/ -/
_/m/"'

[ec2-user@ip-172-31-85-76 ~]1$

On this machine, run the following:

aws configure
[follow prompts]

Within the prompt, you should specify the same region that you chose above (one of us-east-1, us-west-2,
eu-west-1) and set the default output format to json. You will need to generate an AWS access key in the “Se-
curity Credentials” menu of your AWS settings (as instructed in https://docs.aws.amazon.com/IAM/latest/UserGuide/
id_credentials_access-keys.html#Using_CreateAccessKey). You should keep the AWS access key information in a
safe place, so that you can refer to it again when setting up the manager instance. You can learn more about the aws
configure command on the following page: https://docs.aws.amazon.com/cli/latest/reference/configure/index.html

Again on the t2.nano instance, do the following:

sudo yum install -y python3-pip
sudo python3 -m pip install boto3

(continues on next page)

2.1. Initial Setup/Installation 11

https://console.aws.amazon.com/ec2/v2/home
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/cli/latest/reference/configure/index.html

FireSim Documentation, Release 1.17.0

(continued from previous page)

sudo python3 -m pip install --upgrade awscli

wget https://raw.githubusercontent.com/firesim/firesim/|version|/deploy/awstools/aws_
—setup.py

chmod +x aws_setup.py

./aws_setup.py

The final command should print the following:

Creating VPC for FireSim...

Success!

Creating a subnet in the VPC for each availability zone...
Success!

Creating a security group for FireSim...

Success!

This will have created a VPC named firesim and a security group named firesim in your account.

Terminate the t2.nano

At this point, we are finished with the general account configuration. You should terminate the t2.nano instance you
created, since we do not need it anymore (and it shouldn’t contain any important data).

Subscribe to the AWS FPGA Developer AMI

Go to the AWS Marketplace page for the FPGA Developer AMI. Click the button to subscribe to the FPGA Dev AMI
(it should be free) and follow the prompts to accept the EULA (but do not launch any instances).

Now, hit next to continue on to setting up our Manager Instance.

2.1.4 Setting up your Manager Instance

Launching a “Manager Instance”

Warning: These instructions refer to fields in EC2’s new launch instance wizard. Refer to version 1.13.4 of the
documentation for references to the old wizard, being wary that specifics, such as the AMI ID selection, may be out
of date.

Now, we need to launch a “Manager Instance” that acts as a “head” node that we will ssh or mosh into to work from.
Since we will deploy the heavy lifting to separate z1d.2x1large and f1 instances later, the Manager Instance can be a
relatively cheap instance. In this guide, however, we will use a c5.4xlarge, running the AWS FPGA Developer AMI.
(Be sure to subscribe to the AMI if you have not done so. See Subscribe to the AWS FPGA Developer AMI. Note that
it might take a few minutes after subscribing to the AMI to be able to launch instances using it.)

Head to the EC2 Management Console. In the top right corner, ensure that the correct region is selected.
To launch a manager instance, follow these steps:

1. From the main page of the EC2 Management Console, click Launch Instance button and click Launch Instance
in the dropdown that appears. We use an on-demand instance here, so that your data is preserved when you
stop/start the instance, and your data is not lost when pricing spikes on the spot market.

12 Chapter 2. AWS EC2 F1 Getting Started Guide

https://aws.amazon.com/marketplace/pp/B06VVYBLZZ
https://docs.fires.im/en/1.13.4/
https://console.aws.amazon.com/ec2/v2/home

FireSim Documentation, Release 1.17.0

2. In the Name field, give the instance a recognizable name, for example firesim-manager-1. This is purely for
your own convenience and can also be left blank.

3. In the Application and OS Images search box, search for FPGA Developer AMI - 1.12.
2-40257ab5-6688-4c95-97d1-e251a40£fd1fc and select the AMI that appears under the Community
AMIs tab (there should be only one).

e If you find that there are no results for this search, you can try incrementing the last part of the version
number (Z in X.Y.Z) in the search string, e.g., 1.12.2 -> 1.12.3. Other parts of the search string
should be unchanged.

* Do not use FPGA Developer AMI from the AWS Marketplace AMIs tab, as you will likely get an incorrect
version of the AMI.

4. In the Instance Type drop-down, select the instance type of your choosing. A good choice is a c5.4xlarge (16
cores, 32 GiB DRAM) or a z1d.2xlarge (8 cores, 64 GiB DRAM).

5. In the Key pair (login) drop-down, select the firesim key pair we set up earlier.
6. In the Network settings drop-down click edit and modify the following settings:
1. Under VPC - required, select the firesim VPC. Any subnet within the firesim VPC is fine.

2. Under Firewall (security groups), click Select existing security group and in the Common security groups
dropdown that appears, select the firesim security group that was automatically created for you earlier.
Do NOT select the for-farms-only-firesim security group that might also be in the list (it is also fine
if this group does not appear in your list).

7. In the Configure storage section, increase the size of the root volume to at least 300GB. The default of 120GB
can quickly become too small as you accumulate large Vivado reports/outputs, large waveforms, XSim outputs,
and large root filesystems for simulations. You should remove the small (5-8GB) secondary volume that is added
by default.

8. In the Advanced details drop-down, change the following:

1. Under Termination protection, select Enable. This adds a layer of protection to prevent your manager
instance from being terminated by accident. You will need to disable this setting before being able to
terminate the instance using usual methods.

2. Under User data, paste the following into the provided textbox:

#!/bin/bash

MACHINE_LAUNCH_DIR=/tmp
export HOME="${HOME:-/root}"

CONDA_INSTALL_PREFIX=/opt/conda

CONDA_INSTALLER_VERSION=23.1.0-1
CONDA_INSTALLER="https://github.com/conda-forge/miniforge/releases/download/$

— {CONDA_INSTALLER_VERSION}/Miniforge3-${CONDA_INSTALLER_VERSION}-Linux-x86_64.
—sh"

CONDA_CMD="conda" # some installers install mamba or micromamba
CONDA_ENV_NAME="firesim"

CONDA_SHELL_TYPE=bash

DRY_RUN_OPTION=""
DRY_RUN_ECHO=()
REINSTALL_CONDA=0

(continues on next page)

2.1. Initial Setup/Installation 13

FireSim Documentation, Release 1.17.0

(continued from previous page)

usage()
{

echo "Usage: $0 [options]”

echo

echo "Options:"

echo "[--help] List this help"

echo "[--prefix <prefix>] Install prefix for conda. Defaults to
<>$CONDA_INSTALL_PREFIX."

echo " If <prefix>/bin/conda already exists, it.
—will be used and install is skipped."

echo "[--env <name>] Name of environment to create for conda..
—Defaults to '$CONDA_ENV_NAME'."

echo "[--dry-run] Pass-through to all conda commands and only.
—print other commands."

echo " NOTE: --dry-run will still install conda to.
——--prefix"

echo "[--reinstall-conda] Repairs a broken base environment by.
—reinstalling."

echo " NOTE: will only reinstall conda and exit.
—without modifying the --env"

echo "[--shell] Run initialization for a specific shell..
—Defaults to $CONDA_SHELL_TYPE."

echo

echo "Examples:"

echo " % $0"

echo "

Install into default system-wide prefix (using sudo if needed).
—and add install to system-wide /etc/profile.d"

echo " % $0 --prefix ~/conda --env my_custom_env"

echo Install into $HOME/conda and add install to $CONDA_SHELL_TYPE.
—init files (i.e. ~/.*rc)"

"

echo " % $0 --prefix \${CONDA_EXE%/bin/conda} --env my_custom_env"

echo " Create my_custom_env in existing conda install"

echo " NOTES:"

echo " * CONDA_EXE is set in your environment when you activate a.
—conda env"

echo " *

* my_custom_env will not be activated by default at login see /
—.etc/profile.d/conda.sh & $CONDA_SHELL_TYPE init files (i.e. ~/.*rc)"
}

while [$# -gt ®]; do
case "$1" in
--help)
usage
exit 1
--prefix)
shift
CONDA_INSTALL_PREFIX="$1"
shift

--env)

(continues on next page)

14 Chapter 2. AWS EC2 F1 Getting Started Guide

FireSim Documentation, Release 1.17.0

(continued from previous page)

shift
CONDA_ENV_NAME="¢1"
shift
if [["$CONDA_ENV_NAME" == "base"]]; then
echo "::ERROR:: best practice is to install into a named.
—,environment, not base. Aborting."
exit 1
fi
--dry-run)
shift

DRY_RUN_OPTION="--dry-run"

DRY_RUN_ECHO=(echo "Would Run:")
--reinstall-conda)

shift

REINSTALL_CONDA=1

--shell)
shift
CONDA_SHELL_TYPE="§$1"
shift

echo "Invalid Argument: $1"
usage
exit 1
esac
done

if [[$REINSTALL_CONDA -eq 1 &% -n "$DRY_RUN_OPTION"]]; then

echo "::ERROR:: --dry-run and --reinstall-conda are mutually exclusive. .
—Pick one or the other."
fi
set -ex

set -o pipefail
{

uname options are not portable so do what https://www.gnu.org/software/
—.coreutils/faq/coreutils-faq.html#uname-is-system-specific

suggests and iteratively probe the system type

if ! type uname >&/dev/null; then

echo "::ERROR:: need 'uname' command available to determine if we.
—support this sytem"
exit 1
fi
if [["$(uname)" != "Linux"]]; then

echo "::ERROR:: $0 only supports 'Linux' not '$(uname)'"

(continues on next page)

2.1. Initial Setup/Installation 15

FireSim Documentation, Release 1.17.0

(continued from previous page)

exit 1

fi

if [["$(uname -mo)" != "x86_64 GNU/Linux"]]; then
echo "::ERROR:: $0 only supports 'x86_64 GNU/Linux' not '$(uname -io)'"
exit 1

fi

if [[! -r /etc/os-release]]; then

echo "::ERROR:: $0 depends on /etc/os-release for distro-specific setup.
—and it doesn't exist here"
exit 1

fi

OS_FLAVOR=$(grep 'AID=' /etc/os-release | awk -F= '{print $2}' | tr -d '"")
OS_VERSION=$(grep 'AVERSION_ID=' /etc/os-release | awk -F= '{print $2}'
tr _d vnl)

|

echo "machine launch script started" > "$MACHINE_LAUNCH_DIR/machine-
—.]launchstatus"
chmod ugo+r "$MACHINE_LAUNCH_DIR/machine-launchstatus"”

platform-specific setup (pre-conda install)
case "$0S_FLAVOR" in
ubuntu)
centos)
amzn)
debian)
)
echo "::ERROR:: Unknown OS flavor '$OS_FLAVOR'. Unable to do.
—platform-specific setup."
exit 1

esac

everything else is platform-agnostic and could easily be expanded to.
—Windows and/or O0SX

SUDO=""
prefix_parent=$(dirname "$CONDA_INSTALL_PREFIX")
if [[! -e "$prefix_parent”]]; then

mkdir -p "$prefix_parent" || SUDO=sudo
elif [[! -w "$prefix_parent"]]; then
SUDO=sudo

fi

if [[-n "$SUDO"]1]; then
echo "::INFO:: using 'sudo' to install conda"

(continues on next page)

16

Chapter 2. AWS EC2 F1 Getting Started Guide

FireSim Documentation, Release 1.17.0

(continued from previous page)

ensure files are read-execute for everyone
umask 022
fi

if [[-n "$SUDO" || "$(id -w)" == 0]]; then
INSTALL_TYPE=system

else
INSTALL_TYPE=user

fi

to enable use of sudo and avoid modifying 'secure_path' in /etc/sudoers,..
—we specify the full path to conda
CONDA_EXE="${CONDA_INSTALL_PREFIX}/bin/$CONDA_CMD"

if [[-x "$CONDA_EXE" && $REINSTALL_CONDA -eq O]1]; then
echo "::INFO:: '$CONDA_EXE' already exists, skipping conda install™
else
wget -0 install_conda.sh "$CONDA_INSTALLER" || curl -fsSLo install_
—conda.sh "$CONDA_INSTALLER"
if [[$REINSTALL_CONDA -eq 1]1]; then
conda_install_extra="-u"
echo "::INFO:: RE-installing conda to '$CONDA_INSTALL_PREFIX'"
else
conda_install_extra=
echo "::INFO:: installing conda to '$CONDA_INSTALL_PREFIX'"

fi

-b for non-interactive install

$SUDO bash ./install_conda.sh -b -p "$CONDA_INSTALL_PREFIX" $conda_
—install_extra

rm ./install_conda.sh

get most up-to-date conda version
"${DRY_RUN_ECHO[@]}" $SUDO "$CONDA_EXE" update $DRY_RUN_OPTION -y -n..
—base -c conda-forge conda

see https://conda-forge.org/docs/user/tipsandtricks.html#multiple-
—»channels

for more information on strict channel_priority

"${DRY_RUN_ECHO[@]}" $SUDO "$CONDA_EXE" config --system --set channel_
—priority flexible

by default, don't mess with people's PS1, I personally find it.
—,annoying

"${DRY_RUN_ECHO[@]}" $SUDO "$CONDA_EXE" config --system --set changepsl..
—.false

don't automatically activate the 'base' environment when initializing.
—»shells

"${DRY_RUN_ECHO[@]}" $SUDO "$CONDA_EXE" config --system --set auto_
—.activate_base false

automatically use the ucb-bar channel for specific packages https://
—.anaconda.org/ucb-bar/repo

"${DRY_RUN_ECHO[@]}" $SUDO "$CONDA_EXE" config --system --add channels,
—ucbh-bar

(continues on next page)

2.1. Initial Setup/Installation 17

FireSim Documentation, Release 1.17.0

(continued from previous page)

conda-build is a special case and must always be installed into the.
—base environment
$SUDO "$CONDA_EXE" install $DRY_RUN_OPTION -y -n base conda-build

conda-libmamba-solver is a special case and must always be installed.
—into the base environment

see https://www.anaconda.com/blog/a-faster-conda-for-a-growing-
—,community

$SUDO "$CONDA_EXE" install $DRY_RUN_OPTION -y -n base conda-libmamba-
—solver

Use the fast solver by default

"${DRY_RUN_ECHO[@]}" $SUDO "$CONDA_EXE" config --system --set solver.,
<, libmamba

conda_init_extra_args=()
if [["$INSTALL_TYPE" == system]]; then
if we're installing into a root-owned directory using sudo, or we
—'re already root
initialize conda in the system-wide rcfiles
conda_init_extra_args=(--no-user --system)
fi
run conda-init and look at its output to insert 'conda activate
-»$CONDA_ENV_NAME' into the
block that conda-init will update if ever conda is installed to a.
—.different prefix and
this is rerun.
$SUDO "${CONDA_EXE}" init $DRY_RUN_OPTION "${conda_init_extra_args[@]}"
<»$CONDA_SHELL_TYPE 2>&1 | \
tee >(grep '*modified' | grep -v "$CONDA_INSTALL_PREFIX" | awk '
—{print $NF}' | \
"${DRY_RUN_ECHO[@]}" $SUDO xargs -r sed -i -e "/<<< conda.
—initialize <<</iconda activate $CONDA_ENV_NAME")

if [[$REINSTALL_CONDA -eq 1]]; then
echo "::INFO:: Done reinstalling conda. Exiting"
exit 0
fi
fi

https://conda-forge.org/feedstock-outputs/

filterable list of all conda-forge packages

https://conda-forge.org/#contribute

instructions on adding a recipe

https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/pkg-
—.specs.html#package-match-specifications

documentation on package_spec syntax for constraining versions

CONDA_PACKAGE_SPECS=()

minimal specs to allow cloning of firesim repo and access to the manager
CONDA_PACKAGE_SPECS+=(
bash-completion \

(continues on next page)

18

Chapter 2. AWS EC2 F1 Getting Started Guide

FireSim Documentation, Release 1.17.0

(continued from previous page)

ca-certificates \

mosh \

vim \

git \

screen \

argcomplete \

"conda-lock=1.4" \

expect \

"python>=3.8" \

boto3 \

pytz \

mypy-boto3-s3 \

mypy_boto3_ec2 \

"azure-mgmt-resource>=18" \

azure-identity \

azure-mgmt-compute \

azure-mgmt-network \

fsspec \

"s3fs==0.4.2" \

"cryptography<41" \
)

if [["$CONDA_ENV_NAME" == "base"]]; then
NOTE: arg parsing disallows installing to base but this logic is.
—correct if we ever change
CONDA_SUBCOMMAND=install
CONDA_ENV_BIN="${CONDA_INSTALL_PREFIX}/bin"
else
CONDA_ENV_BIN="${CONDA_INSTALL_PREFIX}/envs/${CONDA_ENV_NAME}/bin"
if [[-d "${CONDA_INSTALL_PREFIX}/envs/${CONDA_ENV_NAME}"]]; then
'create' clobbers the existing environment and doesn't leave a.
—revision entry in
“conda list --revisions', so use install instead
CONDA_SUBCOMMAND=install
else
CONDA_SUBCOMMAND=create
fi
fi

to enable use of sudo and avoid modifying 'secure_path' in /etc/sudoers,..
—we specify the full path to conda

$SUDO "${CONDA_EXE}" "$CONDA_SUBCOMMAND" $DRY_RUN_OPTION -n "$CONDA_ENV_NAME
" -c conda-forge -y "${CONDA_PACKAGE_SPECS[@]}"

to enable use of sudo and avoid modifying 'secure_path' in /etc/sudoers,..
—we specify the full path to pip
CONDA_PIP_EXE="${CONDA_ENV_BIN}/pip"

Install python packages using pip that are not available from conda
#

Installing things with pip is possible. However, to get

the most complete solution to all dependencies, you should

(continues on next page)

2.1. Initial Setup/Installation 19

FireSim Documentation, Release 1.17.0

(continued from previous page)

prefer creating the environment with a single invocation of
conda
PIP_PKGS=(\
"fab-classic>=1.19.2" \
azure-mgmt-resourcegraph \
)
if [[-n "$PIP_PKGS[*]"]1]; then
"${DRY_RUN_ECHO[@]}" $SUDO "${CONDA_PIP_EXE}" install "${PIP_PKGS[@]}"
fi

argcomplete_extra_args=()

if [["$INSTALL_TYPE" == system]]; then
BASH_COMPLETION_COMPAT_DIR="${CONDA_ENV_BIN}/../etc/bash_completion.d"
"${DRY_RUN_ECHO[@]}" $SUDO mkdir -p "${BASH_COMPLETION_COMPAT_DIR}"
argcomplete_extra_args=(--dest "${BASH_COMPLETION_COMPAT_DIR}")

else
if we aren't installing into a system directory, then initialize.
—,argcomplete
with --user so that it goes into the home directory
argcomplete_extra_args=(--user)
fi
set +o pipefail
"${DRY_RUN_ECHO[@]}" yes | $SUDO "${CONDA_ENV_BIN}/activate-global-python-
—argcomplete" "${argcomplete_extra_args[@]}"
set -o pipefail

emergency fix for buildroot open files limit issue:
if [["$INSTALL_TYPE" == system]]; then
"${DRY_RUN_ECHO[@]}" echo "* hard nofile 16384" | $SUDO tee --append /
—etc/security/limits.conf
else
"${DRY_RUN_ECHO[@]}" echo "::WARN:: Unable to set open files limit.
—without sudo."
fi

final platform-specific setup
case "$0S_FLAVOR" in
ubuntu)
centos)
amzn)
echo "::INFO:: using 'sudo' to install NICE DCV"
wget https://raw.githubusercontent.com/aws-samples/amazon-ec2-nice-
—dcv-samples/5439e401d3aaf394588£1029e0ec7904d8cacc8f/scripts/AmazonLinux2-
—user-data.sh
chmod +x AmazonLinux2-user-data.sh
sudo ./AmazonLinux2-user-data.sh

echo "firesim" | sudo passwd ec2-user --stdin # default password is
—'firesim'

(continues on next page)

20

Chapter 2. AWS EC2 F1 Getting Started Guide

FireSim Documentation, Release 1.17.0

(continued from previous page)

debian)
7':)
echo "::ERROR:: Unknown OS flavor '$OS_FLAVOR'. Unable to do.
—platform-specific setup."
exit 1

esac

} 2>&1 | tee "$MACHINE_LAUNCH_DIR/machine-launchstatus.log"
chmod ugo+r "$MACHINE_LAUNCH_DIR/machine-launchstatus.log"

echo "machine launch script completed" >> "$MACHINE_LAUNCH_DIR/machine-
—launchstatus"

When your instance boots, this will install a compatible set of all the dependencies needed to run FireSim on
your instance using Conda.

9. Double check your configuration. The most common misconfigurations that may require repeating this process
include:

1. Not selecting the firesim vpc.

2. Not selecting the firesim security group.
3. Not selecting the firesim key pair.

4. Selecting the wrong AMI.

10. Click the orange Launch Instance button.

Warning: Recently, some AWS users been having issues with the launch process (after you click Launch
Instance) getting stuck trying to “Subscribe” to the AMI even when the account is already subscribed. We have
been able to bypass this issue by going to the FPGA Developer AMI page on AWS Marketplace, clicking subscribe
(even if already subscribed), then clicking “Continue to Configuration”, then verify the correct AMI version and
region are selected and click “Continue to Launch”. Finally, change the dropdown that says “Launch from Website”
to “Launch through EC2” and click “Launch”. At this point, you will be brought back to the usual launch instance
page, but the AMI will be pre-selected and you will be able to successfully launch at the end, after updating the rest
of the options as noted above.

Access your instance

We HIGHLY recommend using mosh instead of ssh or using ssh with a screen/tmux session running on your manager
instance to ensure that long-running jobs are not killed by a bad network connection to your manager instance. On this
instance, the mosh server is installed as part of the setup script we pasted before, so we need to first ssh into the instance
and make sure the setup is complete.

In either case, ssh into your instance (e.g. ssh -i firesim.pem centos@YOUR_INSTANCE_IP) and wait until the
/tmp/machine-launchstatus file contains all the following text:

$ cat /tmp/machine-launchstatus
machine launch script started
machine launch script completed

2.1. Initial Setup/Installation 21

https://mosh.org/

FireSim Documentation, Release 1.17.0

You can also view the live output of the installation process by running tail -f /tmp/machine-launchstatus.
log.

Once machine launch script completed appears in /tmp/machine-launchstatus, exit and re-ssh into the
system. If you want to use mosh, mosh back into the system.

Key Setup, Part 2

Now that our manager instance is started, copy the private key that you downloaded from AWS earlier (firesim.pem)
to ~/firesim.pem on your manager instance. This step is required to give the manager access to the instances it
launches for you.

Setting up the FireSim Repo

We’re finally ready to fetch FireSim’s sources. Run:

git clone https://github.com/firesim/firesim

cd firesim

checkout latest official firesim release

note: this may not be the latest release if the documentation version != "stable"
git checkout |overall_version]|

./build-setup.sh

The build-setup. sh script will validate that you are on a tagged branch, otherwise it will prompt for confirmation.
This will have initialized submodules and installed the RISC-V tools and other dependencies.

Next, run:

source sourceme-manager. sh

This will have initialized the AWS shell, added the RISC-V tools to your path, and started an ssh-agent that supplies
~/firesim.pem automatically when you use ssh to access other nodes. Sourcing this the first time will take some
time — however each time after that should be instantaneous. Also, if your firesim.pem key requires a passphrase,
you will be asked for it here and ssh-agent should cache it.

Every time you login to your manager instance to use FireSim, you should cd into your firesim directory and
source this file again.

Completing Setup Using the Manager

The FireSim manager contains a command that will interactively guide you through the rest of the FireSim setup
process. To run it, do the following:

firesim managerinit --platform f1

This will first prompt you to setup AWS credentials on the instance, which allows the manager to automatically manage
build/simulation nodes. You can use the same AWS access key you created when running setup commands on the
t2.nano instance earlier (in Run scripts from the t2.nano). When prompted, you should specify the same region that
you’ve been selecting thus far (one of us-east-1, us-west-2, or eu-west-1) and set the default output format to
json.

Next, it will prompt you for an email address, which is used to send email notifications upon FPGA build completion
and optionally for workload completion. You can leave this blank if you do not wish to receive any notifications, but
this is not recommended. Next, it will create initial configuration files, which we will edit in later sections.

22 Chapter 2. AWS EC2 F1 Getting Started Guide

FireSim Documentation, Release 1.17.0

Now you’re ready to launch FireSim simulations! Hit Next to learn how to run single-node simulations.

2.2 Running FireSim Simulations

These guides will walk you through running two kinds of simulations:
* First, we will simulate a single-node, non-networked target, using a pre-generated hardware image.
* Then, we will simulate an eight-node, networked cluster target, also using a pre-generated hardware image.

Hit next to get started!

2.2.1 Running a Single Node Simulation
Now that we’ve completed the setup of our manager instance, it’s time to run a simulation! In this section, we will
simulate 1 target node, for which we will need a single f1.2xlarge (1 FPGA) instance.

Make sure you are ssh or mosh’d into your manager instance and have sourced sourceme-manager . sh before running
any of these commands.

Building target software

In these instructions, we’ll assume that you want to boot Linux on your simulated node. To do so, we’ll need to build
our FireSim-compatible RISC-V Linux distro. For this guide, we will use a simple buildroot-based distribution. You
can do this like so:

cd firesim/sw/firesim-software
./init-submodules.sh
./marshal -v build br-base.json

This process will take about 10 to 15 minutes on a c5.4xlarge instance. Once this is completed, you’ll have the
following files:

e firesim/sw/firesim-software/images/firechip/br-base/br-base-bin - a bootloader + Linux ker-
nel image for the nodes we will simulate.

e firesim/sw/firesim-software/images/firechip/br-base/br-base.img - a disk image for each the
nodes we will simulate

These files will be used to form base images to either build more complicated workloads (see the Defining Custom
Workloads section) or to copy around for deploying.

Setting up the manager configuration

All runtime configuration options for the manager are set in a file called firesim/deploy/config_runtime.yaml.
In this guide, we will explain only the parts of this file necessary for our purposes. You can find full descriptions of all
of the parameters in the Manager Configuration Files section.

If you open up this file, you will see the following default config (assuming you have not modified it):

RUNTIME configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
—html for documentation of all of these params.

(continues on next page)

2.2. Running FireSim Simulations 23

FireSim Documentation, Release 1.17.0

(continued from previous page)

run_farm:

base_recipe: run-farm-recipes/aws_ec2.yaml
recipe_arg_overrides:

tag to apply to run farm hosts

run_farm_tag: mainrunfarm

enable expanding run farm by run_farm_hosts given

always_expand_run_farm: true

minutes to retry attempting to request instances
launch_instances_timeout_minutes: 60

run farm host market to use (ondemand, spot)

run_instance_market: ondemand

if using spot instances, determine the interrupt behavior (terminate, stop,.

—hibernate)

spot_interruption_behavior: terminate

1if using spot instances, determine the max price

spot_max_price: ondemand

default location of the simulation directory on the run farm host
default_simulation_dir: /home/centos

run farm hosts to spawn: a mapping from a spec below (which is an EC2
instance type) to the number of instances of the given type that you
want in your runfarm.
run_farm_hosts_to_use:

- fl.16xlarge: 0

- fl.4xlarge: ©

- fl.2xlarge: 1

- m4.16xlarge: 0

- zld.3xlarge: 0

- zld.6xlarge: 0

- zld.12xlarge: 0

metasimulation:
metasimulation_enabled: false

vcs or verilator. use vcs-debug or verilator-debug for waveform generation

metasimulation_host_simulator: verilator

plusargs passed to the simulator for all metasimulations

metasimulation_only_plusargs: "+fesvr-step-size=128 +max-cycles=100000000"

plusargs passed to the simulator ONLY FOR vcs metasimulations

metasimulation_only_vcs_plusargs: "+vcs+initreg+0 +vcs+initmem+0"

target_config:

topology: no_net_config
no_net_num_nodes: 1
link_latency: 6405
switching_latency: 10
net_bandwidth: 200
profile_interval: -1

This references a section from config_hwdb.yaml for fpga-accelerated simulation
or from config_build_recipes.yaml for metasimulation

In homogeneous configurations, use this to set the hardware config deployed

for all simulators

(continues on next page)

24

Chapter 2. AWS EC2 F1 Getting Started Guide

FireSim Documentation, Release 1.17.0

(continued from previous page)

default_hw_config: firesim_rocket_quadcore_no_nic_12_11c4mb_ddr3

Advanced: Specify any extra plusargs you would like to provide when

booting the simulator (in both FPGA-sim and metasim modes). This is

a string, with the contents formatted as if you were passing the plusargs
at command line, e.g. "+a=1 +b=2"

plusarg_passthrough: ""

tracing:
enable: no

Trace output formats. Only enabled if "enable" is set to "yes" above

0 = human readable; 1 = binary (compressed raw data); 2 = flamegraph (stack
unwinding -> Flame Graph)

output_format: 0

Trigger selector.

0 = no trigger; 1 = cycle count trigger; 2 = program counter trigger; 3 =
instruction trigger

selector: 1

start: 0

end: -1

autocounter:
read_rate: 0

workload:
workload_name: linux-uniform.json
terminate_on_completion: no
suffix_tag: null

host_debug:
When enabled (=yes), Zeros-out FPGA-attached DRAM before simulations
begin (takes 2-5 minutes).
In general, this is not required to produce deterministic simulations on
target machines running linux. Enable if you observe simulation non-determinism.
zero_out_dram: no
If disable_synth_asserts: no, simulation will print assertion message and
terminate simulation if synthesized assertion fires.
If disable_synth_asserts: yes, simulation ignores assertion firing and
continues simulation.
disable_synth_asserts: no

DOCREF START: Synthesized Prints
synth_print:

Start and end cycles for outputting synthesized prints.

They are given in terms of the base clock and will be converted

for each clock domain.

start: 0

end: -1

When enabled (=yes), prefix print output with the target cycle at which the print.
—was triggered

(continues on next page)

2.2. Running FireSim Simulations 25

FireSim Documentation, Release 1.17.0

(continued from previous page)

cycle_prefix: yes
DOCREF END: Synthesized Prints

We won’t have to modify any of the defaults for this single-node simulation guide, but let’s walk through several of the
key parts of the file.

First, let’s see how the correct numbers and types of instances are specified to the manager:

* You’ll notice first that in the run_farm mapping, the manager is configured to launch a Run Farm named
mainrunfarm (given by the run_farm_tag). The tag specified here allows the manager to differentiate amongst
many parallel run farms (each running some workload on some target design) that you may be operating. In this
case, the default is fine since we’re only running a single run farm.

* Notice that under run_farm_hosts_to_use, the only non-zero value is for £1.2xlarge, which should be set
to 1. This is exactly what we’ll need for this guide.

* Youll see other parameters in the run_farm mapping, like run_instance_market,
spot_interruption_behavior, and spot_max_price. If you're an experienced AWS user, you can
see what these do by looking at the Manager Configuration Files section. Otherwise, don’t change them.

Next, let’s look at how the target design is specified to the manager. This is located in the target_config section of
firesim/deploy/config_runtime.yaml, shown below (with comments removed):

target_config:
topology: no_net_config
no_net_num_nodes: 1
link_latency: 6405
switching_latency: 10
net_bandwidth: 200
profile_interval: -1

default_hw_config: firesim_rocket_quadcore_no_nic_12_1lc4mb_ddr3

plusarg_passthrough:

Here are some highlights of this section:
* topology is set to no_net_config, indicating that we do not want a network.
* no_net_num_nodes is set to 1, indicating that we only want to simulate one node.

e default_hw_config is firesim_rocket_quadcore_no_nic_12_llc4mb_ddr3. This references a pre-
built, publically-available AWS FPGA Image that is specified in firesim/deploy/config_hwdb.yaml. This
pre-built image models a Quad-core Rocket Chip with 4 MB of L2 cache and 16 GB of DDR3, and no network
interface card.

Attention: [Advanced users] Simulating BOOM instead of Rocket Chip: If you would like to simulate a single-
core BOOM as a target, set default_hw_configto firesim_boom_singlecore_no_nic_12_11c4mb_ddr3.

Finally, let’s take a look at the workload section, which defines the target software that we’d like to run on the simulated
target design. By default, it should look like this:

workload:
workload_name: linux-uniform.json

(continues on next page)

26 Chapter 2. AWS EC2 F1 Getting Started Guide

https://github.com/ucb-bar/riscv-boom

FireSim Documentation, Release 1.17.0

(continued from previous page)

terminate_on_completion: no
suffix_tag: null

We'll also leave the workload mapping unchanged here, since we want to run the specified buildroot-based Linux
(1inux-uniform. json) on our simulated system. The terminate_on_completion feature is an advanced feature
that you can learn more about in the Manager Configuration Files section.

Launching a Simulation!

Now that we’ve told the manager everything it needs to know in order to run our single-node simulation, let’s actually
launch an instance and run it!

Starting the Run Farm

First, we will tell the manager to launch our Run Farm, as we specified above. When you do this, you will start getting
charged for the running EC2 instances (in addition to your manager).

To do launch your run farm, run:

firesim launchrunfarm

You should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim.
—launchrunfarm

FireSim Manager. Docs: http://docs.fires.im

Running: launchrunfarm

Waiting for instance boots: f1.l16xlarges

Waiting for instance boots: fl.4xlarges

Waiting for instance boots: m4.l16xlarges

Waiting for instance boots: fl.2xlarges

i-0d6c29ac507139163 booted!

The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-19-43-1aunchrunfarm-B4Q2ROAK®INIEDE4.
—log

The output will rapidly progress to Waiting for instance boots: f1.2xlarges and then take a minute or two
while your £1.2x1large instance launches. Once the launches complete, you should see the instance id printed and the
instance will also be visible in your AWS EC2 Management console. The manager will tag the instances launched with
this operation with the value you specified above as the run_farm_tag parameter from the config_runtime.yaml
file, which we left set as mainrunfarm. This value allows the manager to tell multiple Run Farms apart —i.e., you can
have multiple independent Run Farms running different workloads/hardware configurations in parallel. This is detailed
in the Manager Configuration Files and the firesim launchrunfarm sections — you do not need to be familiar with it
here.

2.2. Running FireSim Simulations 27

FireSim Documentation, Release 1.17.0

Setting up the simulation infrastructure

The manager will also take care of building and deploying all software components necessary to run your simulation.
The manager will also handle programming FPGAs. To tell the manager to set up our simulation infrastructure, let’s
run:

firesim infrasetup

For a complete run, you should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim.
—infrasetup

FireSim Manager. Docs: http://docs.fires.im

Running: infrasetup

Building FPGA software driver for FireSim-FireSimQuadRocketConfig-BaseF1Config

[172.30.2.174] Executing task 'instance_liveness'

[172.30.2.174] Checking if host instance is up...

[172.30.2.174] Executing task 'infrasetup_node_wrapper'
[172.30.2.174] Copying FPGA simulation infrastructure for slot: 0.
[172.30.2.174] Installing AWS FPGA SDK on remote nodes.
[172.30.2.174] Unloading XDMA/EDMA/XOCL Driver Kernel Module.
[172.30.2.174] Copying AWS FPGA XDMA driver to remote node.
[172.30.2.174] Loading XDMA Driver Kernel Module.

[172.30.2.174] Clearing FPGA Slot 0.

[172.30.2.174] Flashing FPGA Slot: 0 with agfi: agfi-0eaa90f6bb893c0f7.
[172.30.2.174] Unloading XDMA/EDMA/XOCL Driver Kernel Module.
[172.30.2.174] Loading XDMA Driver Kernel Module.

The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-32-02-infrasetup-9DJJCX29PF4GAIVL.1log

Many of these tasks will take several minutes, especially on a clean copy of the repo. The console output here contains
the “user-friendly” version of the output. If you want to see detailed progress as it happens, tail -f the latest logfile
in firesim/deploy/logs/.

At this point, the £1.2x1arge instance in our Run Farm has all the infrastructure necessary to run a simulation.

So, let’s launch our simulation!

Running the simulation

Finally, let’s run our simulation! To do so, run:

firesim runworkload

This command boots up a simulation and prints out the live status of the simulated nodes every 10s. When you do this,
you will initially see output like:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim.
—runworkload

FireSim Manager. Docs: http://docs.fires.im

Running: runworkload

Creating the directory: /home/centos/firesim-new/deploy/results-workload/2018-05-19--00-

—38-52-1inux-uniform/ (continues on next page)

28 Chapter 2. AWS EC2 F1 Getting Started Guide

FireSim Documentation, Release 1.17.0

(continued from previous page)

[172.30.2.174] Executing task 'instance_liveness'
[172.30.2.174] Checking if host instance is up...
[172.30.2.174] Executing task 'boot_simulation_wrapper'
[172.30.2.174] Starting FPGA simulation for slot: 0.
[172.30.2.174] Executing task 'monitor_jobs_wrapper'

If you don’t look quickly, you might miss it, since it will get replaced with a live status page:

FireSim Simulation Status @ 2018-05-19 00:38:56.062737

This workload's output is located in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/
This run's log is located in:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.
—log

This status will update every 10s.

1/1 instances are still running.
1/1 simulations are still running.

This will only exit once all of the simulated nodes have shut down. So, let’s let it run and open another ssh connection
to the manager instance. From there, cd into your firesim directory again and source sourceme-manager.sh again
to get our ssh key set up. To access our simulated system, ssh into the IP address being printed by the status page,
from your manager instance. In our case, from the above output, we see that our simulated system is running on the
instance with IP 172.30.2.174. So, run:

[RUN THIS ON YOUR MANAGER INSTANCE!]
ssh 172.30.2.174

This will log you into the instance running the simulation. Then, to attach to the console of the simulated system, run:

screen -r fsim®

Voila! You should now see Linux booting on the simulated system and then be prompted with a Linux login prompt,
like so:

[truncated Linux boot output]
[0.020000] VFS: Mounted root (ext2 filesystem) on device 254:0.
[0.020000] devtmpfs: mounted

(continues on next page)

2.2. Running FireSim Simulations 29

FireSim Documentation, Release 1.17.0

(continued from previous page)

[0.020000] Freeing unused kernel memory: 140K

[0.020000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device

Starting logging: OK

Starting mdev...

mdev: /sys/dev: No such file or directory

modprobe: can't change directory to '/lib/modules': No such file or directory
Initializing random number generator... done.

Starting network: ip: SIOCGIFFLAGS: No such device

ip: can't find device 'eth®'

FATIL

Starting dropbear sshd: OK

Welcome to Buildroot
buildroot login:

You can ignore the messages about the network — that is expected because we are simulating a design without a NIC.

Now, you can login to the system! The username is root and there is no password. At this point, you should be
presented with a regular console, where you can type commands into the simulation and run programs. For example:

Welcome to Buildroot

buildroot login: root

Password:

uname -a

Linux buildroot 4.15.0-rc6-31580-9g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018.
—riscv64 GNU/Linux

#

At this point, you can run workloads as you’d like. To finish off this guide, let’s poweroff the simulated system and see
what the manager does. To do so, in the console of the simulated system, run poweroff -f:

Welcome to Buildroot

buildroot login: root

Password:

uname -a

Linux buildroot 4.15.0-rc6-31580-9g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018.
—riscvb64 GNU/Linux

poweroff -f

You should see output like the following from the simulation console:

poweroff -f

[12.456000] reboot: Power down

Power off

time elapsed: 468.8 s, simulation speed = 88.50 MHz
w%% PASSED *** after 41492621244 cycles

Runs 41492621244 cycles

[PASS] FireSim Test

SEED: 1526690334

Script done, file is uartlog

[screen is terminating]

30 Chapter 2. AWS EC2 F1 Getting Started Guide

FireSim Documentation, Release 1.17.0

You’ll also notice that the manager polling loop exited! You’ll see output like this from the manager:

FireSim Simulation Status @ 2018-05-19 00:46:50.075885

This workload's output is located in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/
This run's log is located in:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.
—log

This status will update every 10s.

1/1 instances are still running.

0/1 simulations are still running.

FireSim Simulation Exited Successfully. See results in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.
—log

If you take a look at the workload output directory given in the manager output (in this case, /home/centos/
firesim-new/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/), you’ll see the follow-
ing:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/results-workload/
,2018-05-19--00-38-52-1inux-uniform$ 1ls -la */*

-rw-rw-r-- 1 centos centos 797 May 19 00:46 linux-uniform@/memory_stats.csv

-rw-rw-r-- 1 centos centos 125 May 19 00:46 linux-uniform®/os-release

-rw-rw-r-- 1 centos centos 7316 May 19 00:46 linux-uniform®/uartlog

What are these files? They are specified to the manager in a configuration file (deploy/workloads/linux-uniform.json)
as files that we want automatically copied back to our manager after we run a simulation, which is useful for running
benchmarks automatically. The Defining Custom Workloads section describes this process in detail.

For now, let’s wrap-up our guide by terminating the £1.2xlarge instance that we launched. To do so, run:

firesim terminaterunfarm

Which should present you with the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim.
—terminaterunfarm

(continues on next page)

2.2. Running FireSim Simulations 31

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/linux-uniform.json

FireSim Documentation, Release 1.17.0

(continued from previous page)

FireSim Manager. Docs: http://docs.fires.im
Running: terminaterunfarm

IMPORTANT!: This will terminate the following instances:

f1.16xlarges

[]

fl.4xlarges

[]

m4.1l6xlarges

[]

f1l.2xlarges

['1-0d6c29ac507139163"']

Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.

You must type yes then hit enter here to have your instances terminated. Once you do so, you will see:

[truncated output from above]

Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.
yes

Instances terminated. Please confirm in your AWS Management Console.

The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-51-54-terminaterunfarm-
—T9ZAED3LJUQQ3KON. log

At this point, you should always confirm in your AWS management console that the instance is in the shutting-
down or terminated states. You are ultimately responsible for ensuring that your instances are terminated
appropriately.

Congratulations on running your first FireSim simulation! At this point, you can check-out some of the advanced
features of FireSim in the sidebar to the left (for example, we expect that many people will be interested in the ability
to automatically run the SPEC17 benchmarks: SPEC 2017), or you can continue on with the cluster simulation guide.

2.2.2 Running a Cluster Simulation
Now, let’s move on to simulating a cluster of eight nodes, interconnected by a network with one 8-port Top-of-Rack
(ToR) switch and 200 Gbps, 2s links. This will require one £1.16x1large (8 FPGA) instance.

Make sure you are ssh or mosh’d into your manager instance and have sourced sourceme-manager . sh before running
any of these commands.

Building target software

If you already built target software during the single-node getting started guide, you can skip to the next part (Setting
up the manager configuration). If you haven’t followed the single-node getting started guide, continue with this section.

In these instructions, we’ll assume that you want to boot the buildroot-based Linux distribution on each of the nodes
in your simulated cluster. To do so, we’ll need to build our FireSim-compatible RISC-V Linux distro. You can do this
like so:

cd firesim/sw/firesim-software
./init-submodules.sh
./marshal -v build br-base.json

32 Chapter 2. AWS EC2 F1 Getting Started Guide

FireSim Documentation, Release 1.17.0

This process will take about 10 to 15 minutes on a c5.4xlarge instance. Once this is completed, you’ll have the
following files:

e firesim/sw/firesim-software/images/firechip/br-base/br-base-bin - a bootloader + Linux ker-
nel image for the nodes we will simulate.

e firesim/sw/firesim-software/images/firechip/br-base/br-base.img - a disk image for each the
nodes we will simulate

These files will be used to form base images to either build more complicated workloads (see the Defining Custom
Workloads section) or to copy around for deploying.

Setting up the manager configuration

All runtime configuration options for the manager are set in a file called firesim/deploy/config_runtime.yaml.
In this guide, we will explain only the parts of this file necessary for our purposes. You can find full descriptions of all
of the parameters in the Manager Configuration Files section.

If you open up this file, you will see the following default config (assuming you have not modified it):

RUNTIME configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
—html for documentation of all of these params.

run_farm:
base_recipe: run-farm-recipes/aws_ec2.yaml
recipe_arg_overrides:
tag to apply to run farm hosts
run_farm_tag: mainrunfarm
enable expanding run farm by run_farm _hosts given
always_expand_run_farm: true
minutes to retry attempting to request instances
launch_instances_timeout_minutes: 60
run farm host market to use (ondemand, spot)
run_instance_market: ondemand
if using spot instances, determine the interrupt behavior (terminate, stop,.
—hibernate)
spot_interruption_behavior: terminate
if using spot instances, determine the max price
spot_max_price: ondemand
default location of the simulation directory on the run farm host
default_simulation_dir: /home/centos

run farm hosts to spawn: a mapping from a spec below (which is an EC2
instance type) to the number of instances of the given type that you
want in your runfarm.
run_farm_hosts_to_use:

- fl.16xlarge: 0

- fl.4xlarge: ©

- fl.2xlarge: 1

- m4.16xlarge: 0

- z1d.3xlarge: 0

- zld.6xlarge: 0

- z1d.12xlarge: 0

(continues on next page)

2.2. Running FireSim Simulations 33

FireSim Documentation, Release 1.17.0

(continued from previous page)

metasimulation:
metasimulation_enabled: false
vcs or verilator. use vcs-debug or verilator-debug for waveform generation
metasimulation_host_simulator: verilator
plusargs passed to the simulator for all metasimulations
metasimulation_only_plusargs: "+fesvr-step-size=128 +max-cycles=100000000"
plusargs passed to the simulator ONLY FOR vcs metasimulations
metasimulation_only_vcs_plusargs: "+vcs+initreg+0 +vcs+initmem+0"

target_config:
topology: no_net_config
no_net_num_nodes: 1
link_latency: 6405
switching_latency: 10
net_bandwidth: 200
profile_interval: -1

This references a section from config_hwdb.yaml for fpga-accelerated simulation
or from config_build recipes.yaml for metasimulation

In homogeneous configurations, use this to set the hardware config deployed

for all simulators

default_hw_config: firesim_rocket_quadcore_no_nic_12_11c4mb_ddr3

Advanced: Specify any extra plusargs you would like to provide when

booting the simulator (in both FPGA-sim and metasim modes). This is

a string, with the contents formatted as if you were passing the plusargs
at command line, e.g. "+a=1 +b=2"

plusarg_passthrough: ""

tracing:
enable: no

Trace output formats. Only enabled if "enable" is set to "yes" above

0 = human readable; 1 = binary (compressed raw data); 2 = flamegraph (stack
unwinding -> Flame Graph)

output_format: 0

Trigger selector.

0 = no trigger; 1 = cycle count trigger; 2 = program counter trigger; 3 =
instruction trigger

selector: 1

start: 0

end: -1

autocounter:
read_rate: 0O

workload:
workload_name: linux-uniform.json
terminate_on_completion: no
suffix_tag: null

(continues on next page)

34 Chapter 2. AWS EC2 F1 Getting Started Guide

FireSim Documentation, Release 1.17.0

(continued from previous page)

host_debug:
When enabled (=yes), Zeros-out FPGA-attached DRAM before simulations
begin (takes 2-5 minutes).
In general, this is not required to produce deterministic simulations on
target machines running linux. Enable if you observe simulation non-determinism.
zero_out_dram: no
If disable_synth_asserts: no, simulation will print assertion message and
terminate simulation if synthesized assertion fires.
If disable_synth_asserts: yes, simulation ignores assertion firing and
continues simulation.
disable_synth_asserts: no

DOCREF START: Synthesized Prints
synth_print:
Start and end cycles for outputting synthesized prints.
They are given in terms of the base clock and will be converted
for each clock domain.
start: 0
end: -1
When enabled (=yes), prefix print output with the target cycle at which the print.
—was triggered
cycle_prefix: yes
DOCREF END: Synthesized Prints

For the 8-node cluster simulation, the defaults in this file are close to what we want but require slight modification.
Let’s outline the important parameters we need to change:

e fl.16xlarges:: Change this parameter to 1. This tells the manager that we want to launch one £1. 16xlarge
when we call the launchrunfarm command.

e fl.2xlarges:: Change this parameter to 0. This tells the manager to not launch any f1.2xlarge machines
when we call the launchrunfarm command.

e topology:: Change this parameter to example_8config. This tells the manager to use the topology named
example_8config which is defined in deploy/runtools/user_topology.py. This topology simulates an
8-node cluster with one ToR switch.

e default_hw_config: Change this parameter to firesim_rocket_quadcore_nic_12_11c4mb_ddr3. This
tells the manager that we want to simulate a quad-core Rocket Chip configuration with 512 KB of L2, 4 MB of
L3 (LLC), 16 GB of DDR3, and a NIC, for each of the simulated nodes in the topology.

Attention: [Advanced users] Simulating BOOM instead of Rocket Chip: If you would like to simulate a single-
core BOOM as a target, set default_hw_configto firesim_boom_singlecore_nic_12_11lc4mb_ddr3.

There are also some parameters that we won’t need to change, but are worth highlighting:

e link_latency: 6405: This models a network with 6405 cycles of link latency. Since we are modeling pro-
cessors running at 3.2 Ghz, 1 cycle = 1/3.2 ns, so 6405 cycles is roughly 2 microseconds.

e switching_latency: 10: This models switches with a minimum port-to-port latency of 10 cycles.

* net_bandwidth: 200: This sets the bandwidth of the NICs to 200 Gbit/s. Currently you can set any integer
value less than this without making hardware modifications.

You'll see other parameters here, like run_instance_market, spot_interruption_behavior, and

2.2. Running FireSim Simulations 35

https://github.com/ucb-bar/riscv-boom

FireSim Documentation, Release 1.17.0

spot_max_price. If you're an experienced AWS user, you can see what these do by looking at the Manager
Configuration Files section. Otherwise, don’t change them.

As in the single-node getting started guide, we will leave the workload: mapping unchanged here, since we want
to run the default buildroot-based Linux on our simulated system. The terminate_on_completion feature is an
advanced feature that you can learn more about in the Manager Configuration Files section.

Launching a Simulation!

Now that we’ve told the manager everything it needs to know in order to run our single-node simulation, let’s actually
launch an instance and run it!

Starting the Run Farm

First, we will tell the manager to launch our Run Farm, as we specified above. When you do this, you will start getting
charged for the running EC2 instances (in addition to your manager).

To do launch your run farm, run:

firesim launchrunfarm

You should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim.
—launchrunfarm

FireSim Manager. Docs: http://docs.fires.im

Running: launchrunfarm

Waiting for instance boots: fl.1l6xlarges

i-09e5491cced4d5f92d booted!

Waiting for instance boots: fl.4xlarges

Waiting for instance boots: m4.l6xlarges

Waiting for instance boots: fl.2xlarges

The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-05-53-1aunchrunfarm-ZGVP753DSU1Y9Q6R.
—log

The output will rapidly progress toWaiting for instance boots: f£f1.16xlarges and then take a minute or two
while your f1.16xlarge instance launches. Once the launches complete, you should see the instance id printed and
the instance will also be visible in your AWS EC2 Management console. The manager will tag the instances launched
with this operation with the value you specified above as the run_farm_tag parameter from the config_runtime.
yaml file, which we left set as mainrunfarm. This value allows the manager to tell multiple Run Farms apart —i.e.,
you can have multiple independent Run Farms running different workloads/hardware configurations in parallel. This
is detailed in the Manager Configuration Files and the firesim launchrunfarm sections — you do not need to be familiar
with it here.

36 Chapter 2. AWS EC2 F1 Getting Started Guide

FireSim Documentation, Release 1.17.0

Setting up the simulation infrastructure

The manager will also take care of building and deploying all software components necessary to run your simulation
(including switches for the networked case). The manager will also handle programming FPGAs. To tell the manager
to set up our simulation infrastructure, let’s run:

firesim infrasetup

For a complete run, you should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim.
—infrasetup

FireSim Manager. Docs: http://docs.fires.im

Running: infrasetup

Building FPGA software driver for FireSim-FireSimQuadRocketConfig-BaseF1Config
Building switch model binary for switch switch®

[172.30.2.178] Executing task 'instance_liveness'
[172.30.2.178] Checking if host instance is up...
[172.30.2.178] Executing task 'infrasetup_node_wrapper'
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 0.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 1.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 2.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 3.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 4.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 5.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 6.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 7.
[172.30.2.178] Installing AWS FPGA SDK on remote nodes.
[172.30.2.178] Unloading XDMA/EDMA/XOCL Driver Kernel Module.
[172.30.2.178] Copying AWS FPGA XDMA driver to remote node.
[172.30.2.178] Loading XDMA Driver Kernel Module.
[172.30.2.178] Clearing FPGA Slot 0.
[172.30.2.178] Clearing FPGA Slot 1.
[172.30.2.178] Clearing FPGA Slot 2.
[172.30.2.178] Clearing FPGA Slot 3.
[172.30.2.178] Clearing FPGA Slot 4.
[172.30.2.178] Clearing FPGA Slot 5.
[172.30.2.178] Clearing FPGA Slot 6.
[172.30.2.178] Clearing FPGA Slot 7.
[172.30.2.178] Flashing FPGA Slot: 0 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 1 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 2 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 3 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 4 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 5 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 6 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 7 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Unloading XDMA/EDMA/XOCL Driver Kernel Module.
[172.30.2.178] Loading XDMA Driver Kernel Module.

2

[172.30.2.178] Copying switch simulation infrastructure for switch slot: 0.
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-07-33-infrasetup-2Z7EBCBIF2TSI66Q.1og

2.2. Running FireSim Simulations 37

FireSim Documentation, Release 1.17.0

Many of these tasks will take several minutes, especially on a clean copy of the repo (in particular, £1.16xlarges
usually take a couple of minutes to start, so don’t be alarmed if you're stuck at Checking if host instance is
up. . .). The console output here contains the “user-friendly” version of the output. If you want to see detailed progress
as it happens, tail -f the latest logfile in firesim/deploy/logs/.

At this point, the £1.16x1arge instance in our Run Farm has all the infrastructure necessary to run everything in our
simulation.

So, let’s launch our simulation!

Running the simulation

Finally, let’s run our simulation! To do so, run:

firesim runworkload

This command boots up the 8-port switch simulation and then starts 8 Rocket Chip FPGA Simulations, then prints out
the live status of the simulated nodes and switch every 10s. When you do this, you will initially see output like:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim.
—runworkload

FireSim Manager. Docs: http://docs.fires.im

Running: runworkload

Creating the directory: /home/centos/firesim-new/deploy/results-workload/2018-05-19--06-
—»28-43-1inux-uniform/
[172.30.2.178] Executing task 'instance_liveness'

[172.30.2.178] Checking if host instance is up...
[172.30.2.178] Executing task 'boot_switch_wrapper'
[172.30.2.178] Starting switch simulation for switch slot: 0.
[172.30.2.178] Executing task 'boot_simulation_wrapper'
[172.30.2.178] Starting FPGA simulation for slot: 0.
[172.30.2.178] Starting FPGA simulation for slot: 1.
[172.30.2.178] Starting FPGA simulation for slot: 2.
[172.30.2.178] Starting FPGA simulation for slot: 3.
[172.30.2.178] Starting FPGA simulation for slot: 4.
[172.30.2.178] Starting FPGA simulation for slot: 5.
[172.30.2.178] Starting FPGA simulation for slot: 6.
[172.30.2.178] Starting FPGA simulation for slot: 7.
[172.30.2.178] Executing task 'monitor_jobs_wrapper'

If you don’t look quickly, you might miss it, because it will be replaced with a live status page once simulations are
kicked-oft:

FireSim Simulation Status @ 2018-05-19 06:28:56.087472

This workload's output is located in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--06-28-43-1inux-uniform/
This run's log is located in:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-28-43-runworkload-ZHZEJED9MDWNSCV7.
—1log

This status will update every 10s.

Instances

(continues on next page)

38 Chapter 2. AWS EC2 F1 Getting Started Guide

FireSim Documentation, Release 1.17.0

(continued from previous page)

Hostname/IP: 172.30.
Hostname/IP: 172.30.
Hostname/IP: 172.30. Job: linux-uniform3 Sim running: True
Hostname/IP: 172.30. Job: linux-uniform2 | Sim running: True

2 | Job: linux-uniforml |
2 I I
2 | |
2 I I
Hostname/IP: 172.30.2.178 | Job: linux-uniform5 | Sim running: True
2 I I
2 I I
2 | I

Job: linux-uniform®

Sim running: True
Sim running: True

Hostname/IP: 172.30. Job: linux-uniform4 Sim running: True
Hostname/IP: 172.30. Job: linux-uniform? Sim running: True
Hostname/IP: 172.30. Job: linux-uniform6 Sim running: True

1/1 instances are still running.
8/8 simulations are still running.

In cycle-accurate networked mode, this will exit when any ONE of the simulated nodes shuts down. So, let’s let it run
and open another ssh connection to the manager instance. From there, cd into your firesim directory again and source
sourceme-manager . sh again to get our ssh key setup. To access our simulated system, ssh into the IP address being
printed by the status page, from your manager instance. In our case, from the above output, we see that our simulated
system is running on the instance with IP 172.30.2.178. So, run:

[RUN THIS ON YOUR MANAGER INSTANCE!]
ssh 172.30.2.178

This will log you into the instance running the simulation. On this machine, run screen -1s to get the list of all
running simulation components. Attaching to the screens £sim@ to £sim7 will let you attach to the consoles of any of
the 8 simulated nodes. You’ll also notice an additional screen for the switch, however by default there is no interesting
output printed here for performance reasons.

For example, if we want to enter commands into node zero, we can attach to its console like so:

screen -r fsim®

Voila! You should now see Linux booting on the simulated node and then be prompted with a Linux login prompt, like
so:

[truncated Linux boot output]

[0.020000] Registered IceNet NIC 00:12:6d:00:00:02

[0.020000] VFS: Mounted root (ext2 filesystem) on device 254:0.

[0.020000] devtmpfs: mounted

[0.020000] Freeing unused kernel memory: 140K

[0.020000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device

Starting logging: OK

(continues on next page)

2.2. Running FireSim Simulations 39

FireSim Documentation, Release 1.17.0

(continued from previous page)

Starting mdev...

mdev: /sys/dev: No such file or directory

modprobe: can't change directory to '/lib/modules': No such file or directory
Initializing random number generator... done.

Starting network: OK

Starting dropbear sshd: OK

Welcome to Buildroot
buildroot login:

If you also ran the single-node no-nic simulation you’ll notice a difference in this boot output — here, Linux sees the
NIC and its assigned MAC address and automatically brings up the eth@® interface at boot.

Now, you can login to the system! The username is root and there is no password. At this point, you should be
presented with a regular console, where you can type commands into the simulation and run programs. For example:

Welcome to Buildroot

buildroot login: root

Password:

uname -a

Linux buildroot 4.15.0-rc6-31580-9g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018.
—riscv64 GNU/Linux

#

At this point, you can run workloads as you’d like. To finish off this getting started guide, let’s poweroff the simulated
system and see what the manager does. To do so, in the console of the simulated system, run poweroff -f:

Welcome to Buildroot

buildroot login: root

Password:

uname -a

Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018.
—riscv64 GNU/Linux

poweroff -f

You should see output like the following from the simulation console:

poweroff -f

[3.748000] reboot: Power down

Power off

time elapsed: 360.5 s, simulation speed = 37.82 MHz
w#% PASSED *** after 13634406804 cycles

Runs 13634406804 cycles

[PASS] FireSim Test

SEED: 1526711978

Script done, file is uartlog

[screen is terminating]

You’ll also notice that the manager polling loop exited! You’ll see output like this from the manager:

Instances

(continues on next page)

40 Chapter 2. AWS EC2 F1 Getting Started Guide

FireSim Documentation, Release 1.17.0

(continued from previous page)

Instance IP: 172.30. |
Instance IP: 172.30. | Job: linux-uniform® | Sim running: False
Instance IP: 172.30. | Job: linux-uniform3 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform2 | Sim running: True
I I
I I
| I
| I

2 Job: linux-uniforml

2

2

2
Instance IP: 172.30.2.178 Job: linux-uniform5 Sim running: True

2

2

2

Sim running: True

Instance IP: 172.30. Job: linux-uniform4 | Sim running: True
Instance IP: 172.30. Job: linux-uniform7 Sim running: True
Instance IP: 172.30. Job: linux-uniform6 | Sim running: True

1/1 instances are still running.
7/8 simulations are still running.

Teardown required, manually tearing down...

[172.30.2.178] Executing task 'kill_switch_wrapper'
[172.30.2.178] Killing switch simulation for switchslot: 0.
[172.30.2.178] Executing task 'kill_simulation_wrapper'
[172.30.2.178] Killing FPGA simulation for slot: 0.
[172.30.2.178] Killing FPGA simulation for slot: 1.
[172.30.2.178] Killing FPGA simulation for slot: 2.
[172.30.2.178] Killing FPGA simulation for slot: 3.
[172.30.2.178] Killing FPGA simulation for slot: 4.
[172.30.2.178] Killing FPGA simulation for slot: 5.
[172.30.2.178] Killing FPGA simulation for slot: 6.
[172.30.2.178] Killing FPGA simulation for slot: 7.

[172.30.2.178] Executing task 'screens'
Confirming exit...
[172.30.2.178] Executing task 'monitor_jobs_wrapper'

[172.30.2.178] Slot O completed! copying results.
[172.30.2.178] Slot 1 completed! copying results.
[172.30.2.178] Slot 2 completed! copying results.
[172.30.2.178] Slot 3 completed! copying results.
[172.30.2.178] Slot 4 completed! copying results.
[172.30.2.178] Slot 5 completed! copying results.
[172.30.2.178] Slot 6 completed! copying results.
[172.30.2.178] Slot 7 completed! copying results.
[172.30.2.178] Killing switch simulation for switchslot: 0.

FireSim Simulation Exited Successfully. See results in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--06-39-35-1inux-uniform/
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-39-35-runworkload-4CDB78E3A4TIA9IYQ.
—1log

2.2. Running FireSim Simulations 41

FireSim Documentation, Release 1.17.0

In the cluster case, you’ll notice that shutting down ONE simulator causes the whole simulation to be torn down — this
is because we currently do not implement any kind of “disconnect” mechanism to remove one node from a globally-
cycle-accurate simulation.

If you take a look at the workload output directory given in the manager output (in this case, /home/centos/
firesim-new/deploy/results-workload/2018-05-19--06-39-35-1inux-uniform/), you’ll see the follow-
ing:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/results-workload/
—2018-05-19--06-39-35-1inux-uniform$ 1ls -la */*

-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform®/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform®@/os-release
-IW-IW-I-- centos centos 7476 May 19 06:45 linux-uniform®/uartlog
-IW-IW-I-- centos centos 797 May 19 06:45 linux-uniforml/memory_stats.csv
-rW-rw-r-- centos centos 125 May 19 06:45 linux-uniforml/os-release
-rW-I'W-I-- centos centos 8157 May 19 06:45 linux-uniforml/uartlog
-I'W-Yw-r-- centos centos 797 May 19 06:45 linux-uniform2/memory_stats.csv
centos centos 125 May 19 06:45 linux-uniform2/os-release
centos centos 8157 May 19 06:45 linux-uniform2/uartlog

centos centos 797 May 19 06:45 linux-uniform3/memory_stats.csv
centos centos 125 May 19 06:45 linux-uniform3/os-release
-rw-rw-r-- centos centos 8157 May 19 06:45 linux-uniform3/uartlog
-I'W-YwW-I-- centos centos 797 May 19 06:45 linux-uniform4/memory_stats.csv

1
1
1
1
1
-rw-rw-r-- 1
1

1

1

1

1

-rw-rwWw-r-- 1 centos centos 125 May 19 06:45 linux-uniform4/os-release

1

1

1

1

1

1

1

1

1

1

1

“-YW-Irw-r--
“-YW-Iw-r--
“-YW-Iw-r--

-rW-IW-I-- centos centos 8157 May 19 06:45 linux-uniform4/uartlog
-rW-I'W-I-- centos centos 797 May 19 06:45 linux-uniform5/memory_stats.csv
-rW-rw-r-- centos centos 125 May 19 06:45 linux-uniform5/os-release
-I'W-Yw-r-- centos centos 8157 May 19 06:45 linux-uniform5/uartlog

centos centos 797 May 19 06:45 linux-uniform6/memory_stats.csv
centos centos 125 May 19 06:45 linux-uniform6/os-release
centos centos 8157 May 19 06:45 linux-uniform6/uartlog

centos centos 797 May 19 06:45 linux-uniform7/memory_stats.csv
centos centos 125 May 19 06:45 linux-uniform7/os-release
centos centos 8157 May 19 06:45 linux-uniform7/uartlog

centos centos 153 May 19 06:45 switch®/switchlog

“-I'Ww-I'w-I--
“-YW-Irw-r--
“YW-Iw-r--
“rW-Iw-r--
“-r'w-Iw-Ir--
“-I'W-I'w-I--
“-YWw-Irw-r--

What are these files? They are specified to the manager in a configuration file (deploy/workloads/linux-uniform.json)
as files that we want automatically copied back to our manager after we run a simulation, which is useful for running
benchmarks automatically. Note that there is a directory for each simulated node and each simulated switch in the
cluster. The Defining Custom Workloads section describes this process in detail.

For now, let’s wrap-up our guide by terminating the £1. 16x1large instance that we launched. To do so, run:

firesim terminaterunfarm

Which should present you with the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim.
—terminaterunfarm

FireSim Manager. Docs: http://docs.fires.im

Running: terminaterunfarm

IMPORTANT!: This will terminate the following instances:
fl.16xlarges
['i-09e5491cce4d5£92d']

(continues on next page)

42 Chapter 2. AWS EC2 F1 Getting Started Guide

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/linux-uniform.json

FireSim Documentation, Release 1.17.0

(continued from previous page)

fl.4xlarges

[]
m4.16xlarges

[]
f1.2xlarges

[l

Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.

You must type yes then hit enter here to have your instances terminated. Once you do so, you will see:

[truncated output from above]

Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.
yes

Instances terminated. Please confirm in your AWS Management Console.

The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-50-37-terminaterunfarm-
—3VFOZ2KCAKKDYOZU. log

At this point, you should always confirm in your AWS management console that the instance is in the shutting-
down or terminated states. You are ultimately responsible for ensuring that your instances are terminated
appropriately.

Congratulations on running a cluster FireSim simulation! At this point, you can check-out some of the advanced features
of FireSim in the sidebar to the left. Or, hit next to continue to a guide that shows you how to build your own custom
FPGA images.

2.3 Building Your Own Hardware Designs (FireSim Amazon FPGA Im-
ages)

This section will guide you through building an Amazon FPGA Image (AFI) image for a FireSim simulation.

2.3.1 Amazon S3 Setup

During the build process, the build system will need to upload a tar file to Amazon S3 in order to complete the build
process using Amazon’s backend scripts (which convert the Vivado-generated tar into an AFI). The manager will create
this bucket for you automatically.

Bucket names must be globally unique, so the default bucket name used by the manager will be
firesim- (YOUR_AWS_USERNAME) - (REGION). If the bucket name that the manager tries to use is inaccessible
to you (because someone else has taken the same name), the manager will notice and complain when you tell it to
build an AFI.

In the unlikely event that you need to change the bucket name from the aforementioned default, you can edit the
s3_bucket_name value in deploy/bit-builder-recipes/f1.yaml and set append_userid_region to false.

2.3. Building Your Own Hardware Designs (FireSim Amazon FPGA Images) 43

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/bit-builder-recipes/f1.yaml

FireSim Documentation, Release 1.17.0

2.3.2 Build Recipes

In the deploy/config_build.yaml file, you will notice that the builds_to_run section currently contains sev-
eral lines, which indicates to the build system that you want to run all of the listed builds in parallel, with the pa-
rameters for each listed in the relevant section of the deploy/config_build_recipes.yaml file. In deploy/
config_build_recipes.yaml, you can set parameters of the simulated system.

To start out, let’s build a simple design, firesim_rocket_quadcore_no_nic_12_11c4mb_ddr3, which is the same
design we used a pre-built version of to run simulations in the earlier single-node simulation guide. This is a design
that has four cores, no nic, and uses the 4MB LLC + DDR3 memory model.

To do so, delete (or comment out) all of the other build recipe names listed in the builds_to_run section of deploy/
config_build.yaml, besides the one we want. So, you should end up with something like this (a line beginning with
a # is a comment):

builds_to_run:
this section references builds defined in config_build_recipes.yaml
1f you add a build here, it will be built when you run buildbitstream
- firesim_rocket_quadcore_no_nic_12_11lc4mb_ddr3

2.3.3 Build Farm Instance Types
FireSim will run Vivado for each build on its own z1d.2xlarge instance. You can change the instance type used by
modifying the instance_type value in deploy/build-farm-recipes/aws_ec2.yaml. From our experimentation, there

are diminishing returns using anything larger than a z1d.2xlarge. If you do wish to use a different build instance
type, keep in mind that Vivado will consume in excess of 32 GiB of DRAM for large designs.

2.3.4 Running a Build

Now, we can run a build like so:

firesim buildbitstream

This will run through the entire build process, taking the Chisel (or Verilog) RTL and producing an AFI/AGFI that
runs on the FPGA. This whole process will usually take a few hours. When the build completes, you will see a di-
rectory in deploy/results-build/, named after your build parameter settings, that contains AGFI information (the
AGFI_INFO file) and all of the outputs of the Vivado build process (in the c1_firesim subdirectory). Additionally,
the manager will print out a path to a log file that describes everything that happened, in-detail, during this run (this is
a good file to send us if you encounter problems). If you provided the manager with your email address, you will also
receive an email upon build completion, that should look something like this:

In addition to being included in the email, the manager will also print the entry that can be added to config_hwdb.
yaml so that the generated AGFI can be used to run simulations. Note that on AWS, you will not have access to a
physical bitstream file. The final bitstream is stored in a backend managed by AWS and the only piece of information
we need to program the bitstream onto AWS F1 FPGAs is the value of the agfi: key in the config_hwdb.yaml entry.

Now that you know how to generate your own FPGA image, you can modify the target-design to add your own features,
then build a FireSim-compatible FPGA image automatically! To learn more advanced FireSim features, you can choose
a link under the “Advanced Docs” section to the left.

44 Chapter 2. AWS EC2 F1 Getting Started Guide

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/build-farm-recipes/aws_ec2.yaml

FireSim Documentation, Release 1.17.0

AWS Notifications <no-reply@sns.amazonaws.com> 10:08 AM (0 minutes ago) ¢ € :
tome v

Your AGFI has been created!
Add

firesim_rocket_singlecore_no_nic_I2_lbp:
agfi: agfi-0e27eb94672e2f5a9
deploy_triplet_override: null
custom_runtime_config: null

to your config_hwdb.yaml to use this hardware configuration.

If you wish to stop receiving notifications from this topic, please click or visit the link below to unsubscribe:
https://sns.us-east-1.amazonaws.com/unsubscribe.html?SubscriptionArn=arn:aws:sns:us-east-1:39653187 1538:Fire Sim:8c630dfa-bd6a-4e 1e-8156-
71eecf1b6aal&Endpoint=abe.gonzalez@berkeley.edu

Please do not reply directly to this email. If you have any questions or comments regarding this email, please contact us at
https://aws.amazon.com/support

Fig. 2: Build Completion Email

2.3. Building Your Own Hardware Designs (FireSim Amazon FPGA Images) 45

FireSim Documentation, Release 1.17.0

46

Chapter 2. AWS EC2 F1 Getting Started Guide

CHAPTER
THREE

XILINX ALVEO U250 XDMA-BASED GETTING STARTED GUIDE

The getting started guides that follow this page will walk you through the complete (XDMA-based) flow for getting an
example FireSim simulation up and running using an on-premises Xilinx Alveo U250 FPGA, from scratch.

First, we’ll set up your environment, then run a simulation of a single RISC-V Rocket-based SoC booting Linux, using
a pre-built bitstream. Next, we’ll show you how to build your own FPGA bitstreams for a custom hardware design.
After you complete these guides, you can look at the “Advanced Docs” in the sidebar to the left.

Here’s a high-level outline of what we’ll be doing in this guide:

3.1 Initial Setup/Installation

3.1.1 Background/Terminology

Before we jump into setting up FireSim, it is important to clarify several terms that we will use throughout the rest of
this documentation.

First, to disambiguate between the hardware being simulated and the computers doing the simulating, we define:

Target The design and environment being simulated. Commonly, a group of one or more RISC-V SoCs with or
without a network between them.

Host The computers/FPGAs executing the FireSim simulation — the Run Farm below.

We frequently prefix words with these terms. For example, software can run on the simulated RISC-V system (target-
software) or on a host x86 machine (host-software).

FireSim Manager (firesim) This program (available on your path as firesim once we source necessary scripts)
automates the work required to launch FPGA builds and run simulations. Most users will only have to interact
with the manager most of the time. If you’re familiar with tools like Vagrant or Docker, the firesim command
is just like the vagrant and docker commands, but for FPGA simulators instead of VMs/containers.

Machines used to build and run FireSim simulations are broadly classified into three groups:

Manager Machine This is the main host machine (e.g., your local desktop or server) that you will “do work™ on. This
is where you’ll clone your copy of FireSim and use the FireSim Manager to deploy builds/simulations from.

Build Farm Machines These are a collection of local machines (“build farm machines”) that are used by the FireSim
manager to run FPGA bitstream builds. The manager will automatically ship all sources necessary to run builds
to these machines and will run the Verilog to FPGA bitstream build process on them.

Run Farm Machines These are a collection of local machines (“run farm machines”) with FPGAs attached that the
manager manages and deploys simulations onto. You can use multiple Run Farms in parallel to run multiple
separate simulations in parallel.

47

https://www.xilinx.com/products/boards-and-kits/alveo/u250.html

FireSim Documentation, Release 1.17.0

Fig. 1: FireSim Infrastructure Diagram

48

Chapter 3. Xilinx Alveo U250 XDMA-based Getting Started Guide

FireSim Documentation, Release 1.17.0

In the simplest setup, a single host machine (e.g. your desktop) can serve the function of all three of these: as the
manager machine, the build farm machine (assuming Vivado is installed), and the run farm machine (assuming an
FPGA is attached).

One final piece of terminology will also be referenced throughout these docs:

Golden Gate The FIRRTL compiler in FireSim that converts target RTL into a decoupled simulator. Formerly named
MIDAS.

3.1.2 System Setup

The below sections outline what you need to install to run FireSim on each machine type in a FireSim cluster. Note
that the below three machine types can all map to a single machine in your setup; in this case, you should follow all the
installation instructions on your single machine, without duplication (i.e., don’t re-run a step on the same machine if it
is required on multiple machine types).

Warning: We highly recommend using Ubuntu 20.04 LTS as the host operating system for all machine types
in an on-premises setup, as this is the OS recommended by Xilinx.

1. Fix default .bashrc

Machines: Manager Machine, Run Farm Machines, Build Farm Machines.

We need various parts of the ~/.bashrc file to execute even in non-interactive mode. To do so, edit your ~/.bashrc
file so that the following section is removed:

If not running interactively, don't do anything

case $- in
*1%) 55
*) return;;
esac

2. Enable password-less sudo

Machines: Manager Machine and Run Farm Machines.

Enable passwordless sudo by running sudo visudo, then adding the following line at the end of the file, replacing
YOUR_USERNAME_HERE with your actual username on the machine:

YOUR_USERNAME_HERE ALL=(ALL) NOPASSWD:ALL

Once you have done so, reboot the machines and confirm that you are able to run sudo true without being prompted
for a password.

3.1. Initial Setup/Installation 49

FireSim Documentation, Release 1.17.0

3. Install Vivado Lab and Cable Drivers

Machines: Run Farm Machines.
Go to the Xilinx Downloads Website and download Vivado 2023.1: Lab Edition - Linux.

Extract the downloaded . tar.gz file, then:

cd [EXTRACTED VIVADO LAB DIRECTORY]

sudo ./installLibs.sh

sudo ./xsetup --batch Install --agree XilinxEULA, 3rdPartyEULA --edition "Vivado Lab.
—Edition (Standalone)"

This will have installed Vivado Lab to /tools/Xilinx/Vivado_Lab/2023.1/.

For ease of use, add the following to the end of your ~/.bashrc:

source /tools/Xilinx/Vivado_Lab/2023.1/settings64.sh

Then, open a new terminal or source your ~/.bashrc.

Next, install the cable drivers like so:

cd /tools/Xilinx/Vivado_Lab/2023.1/data/xicom/cable_drivers/lin64/install_script/install_
—drivers/
sudo ./install_drivers

4. Install the Xilinx XDMA and XVSEC drivers

Machines: Run Farm Machines.

First, run the following to clone the XDMA kernel module source:

cd ~/ # or any directory you would like to work from
git clone https://github.com/Xilinx/dma_ip_drivers

cd dma_ip_drivers

git checkout 0e8d321

cd XDMA/linux-kernel/xdma

The directory you are now in contains the XDMA kernel module. Now, let’s build and install it:

sudo make install

Now, test that the module can be inserted:

sudo insmod /lib/modules/$(uname -r)/extra/xdma.ko poll_mode=1
lsmod | grep -i xdma

The second command above should have produced output indicating that the XDMA driver is loaded.

Next, we will do the same for the XVSEC driver, which is pulled from a separate repository due to kernel version
incompatibility:

cd ~/ # or any directory you would like to work from
git clone https://github.com/paulmnt/dma_ip_drivers dma_ip_drivers_xvsec
cd dma_ip_drivers_xvsec

(continues on next page)

50 Chapter 3. Xilinx Alveo U250 XDMA-based Getting Started Guide

https://www.xilinx.com/support/download.html

FireSim Documentation, Release 1.17.0

(continued from previous page)

git checkout 302856a
cd XVSEC/linux-kernel/

make clean all
sudo make install

Now, test that the module can be inserted:

sudo modprobe xvsec
lsmod | grep -i xvsec

The second command above should have produced output indicating that the XVSEC driver is loaded.

Also, make sure you get output for the following (usually, /usr/local/sbin/xvsecctl):

which xvsecctl

5. Install your FPGA(s)

Machines: Run Farm Machines.
Now, let’s attach your Xilinx Alveo U250 FPGA(s) to your Run Farm Machines:
1. Poweroff your machine.
2. Insert your Xilinx Alveo U250 FPGA into an open PCle slot in the machine.

3. Attach any additional power cables between the FPGA and the host machine. For the U250, this is usually PCle
power coming directly from the system’s PSU.

4. Attach the USB cable between the FPGA and the host machine for JTAG.
5. Boot the machine.

6. Obtain an existing bitstream tar file for your FPGA by opening the bitstream_tar URL listed un-
der alveo_u250_firesim_rocket_singlecore_no_nic in the following file: deploy/sample-backup-
configs/sample_config_hwdb.yaml.

7. Extract the . tar.gz file to a known location. Inside, you will find three files; the one we are currently interested
in will be called firesim.mcs. Note the full path of this firesim.mcs file for the next step.

8. Open Vivado Lab and click “Open Hardware Manager”. Then click “Open Target” and “Auto connect”.

9. Right-click on your FPGA and click “Add Configuration Memory Device”. For a Xilinx Alveo U250, choose
mt25qul@lg-spi-x1_x2_x4 as the Configuration Memory Part. Click “OK” when prompted to program the
configuration memory device.

10. For Configuration file, choose the firesim.mcs file from step 7.
11. Uncheck “Verify” and click OK.

12. When programming the configuration memory device is completed, power off your machine fully (i.e., the FPGA
should completely lose power).

13. Cold-boot the machine. A cold boot is required for the FPGA to be successfully re-programmed from its flash.

14. Once the machine has booted, run the following to ensure that your FPGA is set up properly:

lspci -vvv -d 10ee:903f

3.1. Initial Setup/Installation 51

https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/sample-backup-configs/sample_config_hwdb.yaml
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/sample-backup-configs/sample_config_hwdb.yaml
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html

FireSim Documentation, Release 1.17.0

If successful, this should show an entry with Xilinx as the manufacturer and two memory regions. There should be one
entry for each FPGA you’ve added to the Run Farm Machine.

6. Install sshd

Machines: Manager Machine, Run Farm Machines, and Build Farm Machines

On Ubuntu, install openssh-server like so:

sudo apt install openssh-server

7. Set up SSH Keys

Machines: Manager Machine.

On the manager machine, generate a keypair that you will use to ssh from the manager machine into the manager
machine (ssh localhost), run farm machines, and build farm machines:

cd ~/.ssh
ssh-keygen -t ed25519 -C "firesim.pem" -f firesim.pem
[create passphrase]

Next, add this key to the authorized_keys file on the manager machine:

cd ~/.ssh
cat firesim.pem.pub >> authorized_keys
chmod 0600 authorized_keys

You should also copy this public key into the ~/.ssh/authorized_keys files on all of your Run Farm and Build
Farm Machines.

Returning to the Manager Machine, let’s set up an ssh-agent:

cd ~/.ssh

ssh-agent -s > AGENT_VARS
source AGENT_VARS

ssh-add firesim.pem

If you reboot your machine (or otherwise kill the ssh-agent), you will need to re-run the above four commands
before using FireSim. If you open a new terminal (and ssh-agent is already running), you can simply run source
~/ .ssh/AGENT_VARS.

Finally, confirm that you can now ssh localhost and ssh into your Run Farm and Build Farm Machines without
being prompted for a passphrase.

52 Chapter 3. Xilinx Alveo U250 XDMA-based Getting Started Guide

FireSim Documentation, Release 1.17.0

8. Install Guestmount

Machines: Manager Machine and Run Farm Machines

Next, install the guestmount program:

sudo chmod +r /boot/vmlinuz-*
sudo apt install libguestfs-tools
sudo chmod +r /boot/vmlinuz-*

This is needed by a variety of FireSim steps that mount disk images in order to copy in/out results of simulations out of
the images. Using guestmount instead of the standard mount commands allows for users to perform these operations
without requiring sudo (after this initial installation).

Let’s double check that guestmount is functioning correctly on your system. To do so, we’ll generate a dummy
filesystem image:

cd ~/ # or any scratch area

mkdir sysroot-testing

cd sysroot-testing

mkdir sysroot

dd if=/dev/urandom of=sysroot/myfile bs=1024 count=1024
virt-make-fs --format=qcow2 --type=ext2 sysroot sysroot.gcow2

Ensure that this command completed without producing an error and that the output file sysroot.qcow2 exists.

Assuming all of this completed successfully (i.e., no error from virt-make-f£s), you can delete the sysroot-testing
directory, since we will not need it any longer.

Warning: Due to prior issues we’ve seen with guestmount, ensure that your FireSim repository does not reside
on an NFS mount.

9. Check Hard File Limit

Machine: Manager Machine

Check the output of the following command:

ulimit -Hn

If the result is greater than or equal to 16384, you can continue on to “Setting up the FireSim Repo”. Otherwise, run:

echo "* hard nofile 16384" | sudo tee --append /etc/security/limits.conf

Then, reboot your machine.

3.1. Initial Setup/Installation 53

FireSim Documentation, Release 1.17.0

10. Verify Run Farm Machine environment

Machines: Manager Machine and Run Farm Machines

Finally, let’s ensure that the Xilinx Vivado Lab tools are properly sourced in your shell setup (i.e. .bashrc) so that any
shell on your Run Farm Machines can use the corresponding programs. The environment variables should be visible
to any non-interactive shells that are spawned.

You can check this by running the following on the Manager Machine, replacing RUN_FARM_IP with localhost if
your Run Farm machine and Manager machine are the same machine, or replacing it with the Run Farm machine’s 1P
address if they are different machines.

ssh RUN_FARM_IP printenv

Ensure that the output of the command shows that the Xilinx Vivado Lab tools are present in the printed environment
variables (i.e., PATH).

If you have multiple Run Farm machines, you should repeat this process for each Run Farm machine, replacing
RUN_FARM_TP with a different Run Farm Machine’s IP address.

Congratulations! We’ve now set up your machine/cluster to run simulations. Click Next to continue with the guide.

3.2 FireSim Repo Setup

Next, we’ll clone FireSim on your Manager Machine and run a few final setup steps using scripts in the repo.

3.2.1 Setting up the FireSim Repo

Machine: From this point forward, run everything on your Manager Machine, unless otherwise instructed.

We’re finally ready to fetch FireSim’s sources. This should be done on your Manager Machine. Run:

git clone https://github.com/firesim/firesim

cd firesim

checkout latest official firesim release

note: this may not be the latest release if the documentation version != "stable"
git checkout 1.17.0

Next, we will bootstrap the machine by installing Miniforge Conda, our software package manager, and set up a default
software environment using Conda.

You should select a location where you want Conda to be installed. This can be an existing Miniforge Conda install, or
a directory (that does not exist) where you would like Conda to be installed.

Replace REPLACE_ME_USER_CONDA_LOCATION in the command below with your chosen path and run it:

./scripts/machine-launch-script.sh --prefix REPLACE_ME_USER_CONDA_LOCATION

Among other setup steps, the script will install Miniforge Conda (https://github.com/conda-forge/miniforge) and create
a default environment called firesim.

When prompted, you should allow the Conda installer to modify your ~/.bashrc to automatically place you in the
Conda environment when opening a new shell.

54 Chapter 3. Xilinx Alveo U250 XDMA-based Getting Started Guide

https://github.com/conda-forge/miniforge

FireSim Documentation, Release 1.17.0

Warning: Once the machine-launch-script.sh completes, ensure that you log out of the machine / exit
out of the terminal so that the .bashrc modifications can apply.

After re-logging back into the machine, you should be in the firesim Conda environment.

Verify this by running:

conda env list

If you are not in the firesim environment and the environment exists, you can run the following to “activate” or enter
the environment:

conda activate firesim

Next, return to your clone of the FireSim repo and run:

./build-setup.sh

The build-setup.sh script will validate that you are on a tagged branch, otherwise it will prompt for confirmation.
Then, it will automatically initialize submodules and install the RISC-V tools and other dependencies.

Once build-setup.sh completes, run:

source sourceme-manager.sh --skip-ssh-setup

This will perform various environment setup steps, such as adding the RISC-V tools to your path. Sourcing this the
first time will take some time — however each subsequent sourcing should be instantaneous.

Warning: Every time you want to use FireSim, you should cd into your FireSim directory and source
sourceme-manager . sh again with the arguments shown above.

3.2.2 Initializing FireSim Config Files

The FireSim manager contains a command that will automatically provide a fresh set of configuration files for a given
platform.

To run it, do the following:

firesim managerinit --platform xilinx_alveo_u250

This will produce several initial configuration files, which we will edit in the next section.

3.2.3 Configuring the FireSim manager to understand your Run Farm Machine
setup

As our final setup step, we will edit FireSim’s configuration files so that the manager understands our Run Farm machine
setup and the set of FPGAs attached to each Run Farm machine.

Inside the cloned FireSim repo, open up the deploy/config_runtime.yaml file and set the following keys to the
indicated values:

e default_simulation_dir should point to a temporary simulation directory of your choice on your Run Farm
Machines. This is the directory that simulations will run out of.

3.2. FireSim Repo Setup 55

FireSim Documentation, Release 1.17.0

e run_farm_hosts_to_use should be a list of - IP-address: machine_spec pairs, one pair for each
of your Run Farm Machines. IP-address should be the IP address or hostname of the system (that the
Manager Machine can use to ssh into the Run Farm Machine) and the machine_spec should be a value
from run_farm_host_specs in deploy/run-farm-recipes/externally_provisioned.yaml. Each spec describes the
number of FPGAs attached to a system and other properties about the system.

Here are two examples of how this could be configured:

Example 1: Your Run Farm has a single machine with one FPGA attached and this machine is also your Manager
Machine:

run_farm_hosts_to_use:
- localhost: one_fpgas_spec

Example 2: You have two Run Farm Machines (separate from your Manager Machine). The Run Farm Ma-
chines are accessible from your manager machine with the hostnames firesim-runnerl.berkeley.edu and
firesim-runner2.berkeley.edu, each with eight FPGAs attached.

run_farm_hosts_to_use:
- firesim-runnerl.berkeley.edu: eight_fpgas_spec
- firesim-runner2.berkeley.edu: eight_fpgas_spec

e default_hw_config should be alveo_u250_firesim_rocket_singlecore_no_nic

Then, run the following command so that FireSim can generate a mapping from the FPGA ID used for JTAG program-
ming to the PCle ID used to run simulations. If you ever change the physical layout of the machine (e.g., which PCle
slot the FPGAs are attached to), you will need to re-run this command.

firesim enumeratefpgas

This will generate a database file in /opt/firesim-db. json on each Run Farm Machine that has this mapping.

Now you’re ready to run your first FireSim simulation! Hit Next to continue with the guide.

56 Chapter 3. Xilinx Alveo U250 XDMA-based Getting Started Guide

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/run-farm-recipes/externally_provisioned.yaml

FireSim Documentation, Release 1.17.0

3.3 Running a Single Node Simulation

Now that we’ve completed all the basic setup steps, it’s time to run a simulation! In this section, we will simulate a
single target node, for which we will use a single Xilinx Alveo U250.

Make sure you have sourced sourceme-manager.sh --skip-ssh-setup before running any of these com-
mands.

3.3.1 Building target software

In this guide, we’ll boot Linux on our simulated node. To do so, we’ll need to build our RISC-V SoC-compatible Linux
distro. For this guide, we will use a simple buildroot-based distribution. We can build the Linux distribution like so:

assumes you already cd'd into your firesim repo
and sourced sourceme-manager.sh

#

then:

cd sw/firesim-software

./init-submodules.sh

./marshal -v build br-base.json

Once this is completed, you’ll have the following files:

e YOUR_FIRESIM_REPO/sw/firesim-software/images/firechip/br-base/br-base-bin - a bootloader
+ Linux kernel image for the RISC-V SoC we will simulate.

* YOUR_FIRESIM_REPO/sw/firesim-software/images/firechip/br-base/br-base.img - a disk image
for the RISC-V SoC we will simulate

These files will be used to form base images to either build more complicated workloads (see the Defining Custom
Workloads section) or directly as a basic, interactive Linux distribution.

3.3.2 Setting up the manager configuration

All runtime configuration options for the manager are located in YOUR_FIRESIM_REPO/deploy/config_runtime.
yaml. In this guide, we will explain only the parts of this file necessary for our purposes. You can find full descriptions
of all of the parameters in the Manager Configuration Files section.

Based on the changes we made earlier, this file will already have everything set correctly to run a simulation.
Below we’ll highlight a few of these lines to explain what is happening:

¢ At the top, you’ll notice the run_farm mapping, which describes and specifies the machines to run simulations
on.

— By default, we’ll be using a base_recipe of run-farm-recipes/externally_provisioned.yaml,
which means that our Run Farm machines are pre-configured, and do not require the manager to dynamically
launch/terminate them (e.g., as we would do for cloud instances).

— The default_platform has automatically been set for our FPGA board, to
XilinxAlveoU250InstanceDeployManager.

— The default_simulation_dir is the directory on the Run Farm Machines where simulations will run
out of. The default is likely fine, but you can change it to any directory you have access to on the Run Farm
machines.

3.3. Running a Single Node Simulation 57

FireSim Documentation, Release 1.17.0

— run_farm_hosts_to_use should be a list of - IP-address: machine_spec pairs, one pair for each
of your Run Farm Machines. IP-address should be the IP address or hostname of the system (that the
Manager Machine can use to ssh into the Run Farm Machine) and the machine_spec should be a value from
run_farm_host_specs in deploy/run-farm-recipes/externally_provisioned.yaml. Each spec describes the
number of FPGAs attached to a system and other properties about the system. We configured this already
in the previous step.

* The target_config section describes the system that we’d like to simulate.
— topology: mno_net_config indicates that we’re running simulations with no network between them.
— no_net_num_nodes: 1 indicates that we’ll be a simulation of a single SoC

— The default_hw_config will be set to a pre-built design (for our FPGA,
alveo_u250_firesim_rocket_singlecore_no_nic) with a single RISC-V Rocket core. This is usually
not set by default, but we already set it in the previous step.

* The workload section describes the workload that we’d like to run on our simulated systems. In this case, we
will leave it as the default, which will boot Linux on all SoCs in the simulation.

3.3.3 Building and Deploying simulation infrastructure to the Run Farm Machines

The manager automates the process of building and deploying all components necessary to run your simulation on the
Run Farm, including programming FPGAs. To tell the manager to setup all of our simulation infrastructure, run the
following:

firesim infrasetup

For a complete run, you should expect output like the following:

$ firesim infrasetup
FireSim Manager. Docs: https://docs.fires.im
Running: infrasetup

Building FPGA software driver.

[localhost] Checking if host instance is up...

[localhost] Copying FPGA simulation infrastructure for slot: 0.

[localhost] Clearing all FPGA Slots.

The full log of this run is:
.../firesim/deploy/logs/2023-03-06--01-22-46-infrasetup-35ZP4WUOX8KUYBF3.1log

Many of these tasks will take several minutes, especially on a clean copy of the repo. The console output here contains
the “user-friendly” version of the output. If you want to see detailed progress as it happens, tail -f the latest logfile
in firesim/deploy/logs/.

At this point, our single Run Farm machine has all the infrastructure necessary to run a simulation, so let’s launch our
simulation!

58 Chapter 3. Xilinx Alveo U250 XDMA-based Getting Started Guide

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/run-farm-recipes/externally_provisioned.yaml

FireSim Documentation, Release 1.17.0

3.3.4 Running the simulation

Finally, let’s run our simulation! To do so, run:

firesim runworkload

This command boots up a simulation and prints out the live status of the simulated nodes every 10s. When you do this,
you will initially see output like:

$ firesim runworkload
FireSim Manager. Docs: https://docs.fires.im
Running: runworkload

Creating the directory: .../firesim/deploy/results-workload/2023-03-06--01-25-34-1inux-
—uniform/

[localhost] Checking if host instance is up...

[localhost] Starting FPGA simulation for slot: 0.

If you don’t look quickly, you might miss it, since it will get replaced with a live status page:

FireSim Simulation Status @ 2018-05-19 00:38:56.062737

This workload's output is located in:
.../firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/

This run's log is located in:
.../firesim/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.1og
This status will update every 10s.

1/1 instances are still running.
1/1 simulations are still running.

This will only exit once all of the simulated nodes have powered off. So, let’s let it run and open another terminal
on the manager machine. From there, cd into your FireSim directory again and source sourceme-manager.sh
--skip-ssh-setup.

Next, let’s ssh into the Run Farm machine. If your Run Farm and Manager Machines are the same, replace
RUN_FARM_IP_OR_HOSTNAME with 1localhost, otherwise replace it with your Run Farm Machine’s IP or hostname.

source ~/.ssh/AGENT_VARS
ssh RUN_FARM_IP_OR_HOSTNAME

3.3. Running a Single Node Simulation 59

FireSim Documentation, Release 1.17.0

Next, we can directly attach to the console of the simulated system using screen, run:

screen -r fsim®

Voila! You should now see Linux booting on the simulated system and then be prompted with a Linux login prompt,
like so:

[truncated Linux boot output]

[0.020000] VFS: Mounted root (ext2 filesystem) on device 254:0.

[0.020000] devtmpfs: mounted

[0.020000] Freeing unused kernel memory: 140K

[0.020000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device

Starting logging: OK

Starting mdev...

mdev: /sys/dev: No such file or directory

modprobe: can't change directory to '/lib/modules': No such file or directory
Initializing random number generator... done.

Starting network: ip: SIOCGIFFLAGS: No such device

ip: can't find device 'eth0'

FAIL

Starting dropbear sshd: OK

Welcome to Buildroot
buildroot login:

You can ignore the messages about the network — that is expected because we are simulating a design without a NIC.

Now, you can login to the system! The username is root and there is no password. At this point, you should be
presented with a regular console, where you can type commands into the simulation and run programs. For example:

Welcome to Buildroot

buildroot login: root

Password:

uname -a

Linux buildroot 4.15.0-rc6-31580-9g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018.
—riscv64 GNU/Linux

#

At this point, you can run workloads as you’d like. To finish off this guide, let’s power off the simulated system and see
what the manager does. To do so, in the console of the simulated system, run poweroff -f:

Welcome to Buildroot

buildroot login: root

Password:

uname -a

Linux buildroot 4.15.0-rc6-31580-9g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018.
—riscv64 GNU/Linux

poweroff -f

You should see output like the following from the simulation console:

poweroff -f
[12.456000] reboot: Power down
Power off

(continues on next page)

60 Chapter 3. Xilinx Alveo U250 XDMA-based Getting Started Guide

FireSim Documentation, Release 1.17.0

(continued from previous page)

time elapsed: 468.8 s, simulation speed = 88.50 MHz
#%% PASSED *** after 41492621244 cycles

Runs 41492621244 cycles

[PASS] FireSim Test

SEED: 1526690334

Script done, file is uartlog

[screen is terminating]

You’ll also notice that the manager polling loop exited! You’ll see output like this from the manager:

FireSim Simulation Status @ 2018-05-19 00:46:50.075885

This workload's output is located in:
.../firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/

This run's log is located in:
.../firesim/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.1log
This status will update every 10s.

1/1 instances are still running.

0/1 simulations are still running.

FireSim Simulation Exited Successfully. See results in:
.../firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/

The full log of this run is:
.../firesim/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ. log

If you take a look at the workload output directory given in the manager output (in this case, . ../firesim/deploy/
results-workload/2018-05-19--00-38-52-1inux-uniform/), you'll see the following:

$ 1s -la firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/*/*
-rw-rw-r-- 1 centos centos 797 May 19 00:46 linux-uniform®/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 00:46 linux-uniform®@/os-release
-rw-rw-r-- 1 centos centos 7316 May 19 00:46 linux-uniform®@/uartlog

What are these files? They are specified to the manager in a configuration file (deploy/workloads/linux-uniform.json)
as files that we want automatically copied back from the Run Farm Machine into the results-workload directory on
our manager machine, which is useful for running benchmarks automatically. The Defining Custom Workloads section
describes this process in detail.

Congratulations on running your first FireSim simulation! At this point, you can check-out some of the advanced

3.3. Running a Single Node Simulation 61

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/linux-uniform.json

FireSim Documentation, Release 1.17.0

features of FireSim in the sidebar to the left. For example, we expect that many people will be interested in the ability
to automatically run the SPEC17 benchmarks: SPEC 2017.

Click Next if you’d like to continue on to building your own bitstreams.

3.4 Building Your Own Hardware Designs

This section will guide you through building a Xilinx Alveo U250 FPGA bitstream to run FireSim simulations.

3.4.1 System Setup

Here, we’ll do some final one-time setup for your Build Farm Machines so that we can build bitstreams for FireSim
simulations automatically.

These steps assume that you have already followed the earlier setup steps required to run simulations.

As noted earlier, it is highly recommended that you use Ubuntu 20.04 LTS as the host operating system for all machine
types in an on-premises setup, as this is the OS recommended by Xilinx.

Also recall that we make a distinction between the Manager Machine, the Build Farm Machine(s), and the Run Farm
Machine(s). In a simple setup, these can all be a single machine, in which case you should run the Build Farm Machine
setup steps below on your single machine.

1. Install Vivado for Builds

Machines: Build Farm Machines.

Running builds for Xilinx Alveo U250 in FireSim requires Vivado 2021.1. Other versions are unlikely to work out-of-
the-box.

On each Build Farm machine, do the following:

1. Install Vivado 2021.1 from the Xilinx Downloads Website. By default, Vivado will be installed to /tools/
Xilinx/Vivado/2021.1. We recommend keeping this default. If you change it to something else, you will
need to adjust the path in the rest of the setup steps.

2. Add the following to ~/ .bashrc so that vivado is available when ssh-ing into the machine:

source /tools/Xilinx/Vivado/2021.1/settings64.sh

3. Download the au250 board support package directory from https://github.com/Xilinx/open-nic-shell/tree/
main/board_files/Xilinx and place the directory in /tools/Xilinx/Vivado/2021.1/data/xhub/boards/
XilinxBoardStore/boards/Xilinx/.

If you have multiple Build Farm Machines, you should repeat this process for each.

62 Chapter 3. Xilinx Alveo U250 XDMA-based Getting Started Guide

https://www.xilinx.com/support/download.html
https://github.com/Xilinx/open-nic-shell/tree/main/board_files/Xilinx
https://github.com/Xilinx/open-nic-shell/tree/main/board_files/Xilinx

FireSim Documentation, Release 1.17.0

2. Verify Build Farm Machine environment

Machines: Manager Machine and Run Farm Machines

Finally, let’s ensure that Vivado 2021.1 is properly sourced in your shell setup (i.e. .bashrc) so that any shell on
your Build Farm Machines can use the corresponding programs. The environment variables should be visible to any
non-interactive shells that are spawned.

You can check this by running the following on the Manager Machine, replacing BUILD_FARM_IP with localhost if
your Build Farm machine and Manager machine are the same machine, or replacing it with the Build Farm machine’s
IP address if they are different machines.

ssh BUILD_FARM_IP printenv

Ensure that the output of the command shows that the Vivado 2021.1 tools are present in the printed environment
variables (i.e., PATH and XILINX_VIVADO).

If you have multiple Build Farm machines, you should repeat this process for each Build Farm machine, replacing
BUILD_FARM_IP with a different Build Farm Machine’s IP address.

3.4.2 Configuring a Build in the Manager

In the deploy/config_build.yaml file, you will notice that the builds_to_run section currently contains several
lines, which indicates to the build system that you want to run all of these “build recipes” in parallel, with the parameters
for each “build recipe” listed in the relevant section of the deploy/config_build_recipes.yaml file.

In this guide, we’ll build the default FireSim design for the Xilinx Alveo U250, which is specified by the
alveo_u250_firesim_rocket_singlecore_no_nic section in deploy/config_build_recipes.yaml. This
was the same configuration used to build the pre-built bitstream that you used to run simulations in the guide to running
a simulation.

Looking at the alveo_u250_firesim_rocket_singlecore_no_nic section in deploy/
config_build_recipes.yaml, there are a few notable items:

e TARGET_CONFIG specifies that this configuration is a simple singlecore RISC-V Rocket with a single DRAM
channel.

e bit_builder_recipe points to bit-builder-recipes/xilinx_alveo_u250.yaml, which is found in the
deploy directory and tells the FireSim build system how to build bitstreams for this FPGA.

Having looked at this entry, let’s now set up the build in deploy/config_build.yaml. First, we’ll set up the
build_farm mapping, which specifies the Build Farm Machines that are available to build FPGA bitstreams.

* base_recipe will map to build-farm-recipes/externally_provisioned.yaml. This indicates to the
FireSim manager that the machines used to run builds are existing machines that have been set up by the user,
instead of cloud instances that are automatically provisioned.

e default_build_dir is the directory in which builds will run out of on your Build Farm Machines. Change the
default null to a path where you would like temporary build data to be stored on your Build Farm Machines.

e build_farm_hosts is a section that contains a list of IP addresses or hostnames of machines in your Build
Farm. By default, localhost is specified. If you are using a separate Build Farm Machine, you should replace
this with the IP address or hostname of the Build Farm Machine on which you would like to run the build.

Having configured our Build Farm, let’s specify the design we’d like to build. To do this, edit the builds_to_run
section in deploy/config_build.yaml so that it looks like the following:

builds_to_run:
- alveo_u250_firesim_rocket_singlecore_no_nic

3.4. Building Your Own Hardware Designs 63

https://www.github.com/firesim/firesim/blob/1.17.0/deploy

FireSim Documentation, Release 1.17.0

In essence, you should delete or comment out all the other items in the builds_to_run section besides
alveo_u250_firesim_rocket_singlecore_no_nic.

3.4.3 Running the Build

Now, we can run a build like so:

firesim buildbitstream

This will run through the entire build process, taking the Chisel (or Verilog) RTL and producing a bitstream that runs
on the Xilinx Alveo U250 FPGA. This whole process will usually take a few hours. When the build completes, you
will see a directory in deploy/results-build/, named after your build parameter settings, that contains all of the
outputs of the Xilinx Vivado build process. Additionally, the manager will print out a path to a log file that describes
everything that happened, in-detail, during this run (this is a good file to send us if you encounter problems).

The manager will also print an entry that can be added to config_hwdb.yaml so that the bitstream can be used to run
simulations. This entry will contain a bitstream_tar key whose value is the path to the final generated bitstream file.
You can share generated bitstreams with others by sharing the file listed in bitstream_tar and the config_hwdb.
yaml entry for it.

Now that you know how to generate your own FPGA image, you can modify the target-design to add your own features,
then build a FireSim-compatible FPGA image automatically!

This is the end of the Getting Started Guide. To learn more advanced FireSim features, you can choose a link under
the “Advanced Docs” section to the left.

64 Chapter 3. Xilinx Alveo U250 XDMA-based Getting Started Guide

CHAPTER
FOUR

XILINX ALVEO U280 XDMA-BASED GETTING STARTED GUIDE

The getting started guides that follow this page will walk you through the complete (XDMA-based) flow for getting an
example FireSim simulation up and running using an on-premises Xilinx Alveo U280 FPGA, from scratch.

First, we’ll set up your environment, then run a simulation of a single RISC-V Rocket-based SoC booting Linux, using
a pre-built bitstream. Next, we’ll show you how to build your own FPGA bitstreams for a custom hardware design.
After you complete these guides, you can look at the “Advanced Docs” in the sidebar to the left.

Here’s a high-level outline of what we’ll be doing in this guide:

4.1 Initial Setup/Installation

4.1.1 Background/Terminology

Before we jump into setting up FireSim, it is important to clarify several terms that we will use throughout the rest of
this documentation.

First, to disambiguate between the hardware being simulated and the computers doing the simulating, we define:

Target The design and environment being simulated. Commonly, a group of one or more RISC-V SoCs with or
without a network between them.

Host The computers/FPGAs executing the FireSim simulation — the Run Farm below.

We frequently prefix words with these terms. For example, software can run on the simulated RISC-V system (target-
software) or on a host x86 machine (host-software).

FireSim Manager (firesim) This program (available on your path as firesim once we source necessary scripts)
automates the work required to launch FPGA builds and run simulations. Most users will only have to interact
with the manager most of the time. If you’re familiar with tools like Vagrant or Docker, the firesim command
is just like the vagrant and docker commands, but for FPGA simulators instead of VMs/containers.

Machines used to build and run FireSim simulations are broadly classified into three groups:

Manager Machine This is the main host machine (e.g., your local desktop or server) that you will “do work™ on. This
is where you’ll clone your copy of FireSim and use the FireSim Manager to deploy builds/simulations from.

Build Farm Machines These are a collection of local machines (“build farm machines”) that are used by the FireSim
manager to run FPGA bitstream builds. The manager will automatically ship all sources necessary to run builds
to these machines and will run the Verilog to FPGA bitstream build process on them.

Run Farm Machines These are a collection of local machines (“run farm machines”) with FPGAs attached that the
manager manages and deploys simulations onto. You can use multiple Run Farms in parallel to run multiple
separate simulations in parallel.

65

https://www.xilinx.com/products/boards-and-kits/alveo/u280.html

FireSim Documentation, Release 1.17.0

Fig. 1: FireSim Infrastructure Diagram

66

Chapter 4. Xilinx Alveo U280 XDMA-based Getting Started Guide

FireSim Documentation, Release 1.17.0

In the simplest setup, a single host machine (e.g. your desktop) can serve the function of all three of these: as the
manager machine, the build farm machine (assuming Vivado is installed), and the run farm machine (assuming an
FPGA is attached).

One final piece of terminology will also be referenced throughout these docs:

Golden Gate The FIRRTL compiler in FireSim that converts target RTL into a decoupled simulator. Formerly named
MIDAS.

4.1.2 System Setup

The below sections outline what you need to install to run FireSim on each machine type in a FireSim cluster. Note
that the below three machine types can all map to a single machine in your setup; in this case, you should follow all the
installation instructions on your single machine, without duplication (i.e., don’t re-run a step on the same machine if it
is required on multiple machine types).

Warning: We highly recommend using Ubuntu 20.04 LTS as the host operating system for all machine types
in an on-premises setup, as this is the OS recommended by Xilinx.

1. Fix default .bashrc

Machines: Manager Machine, Run Farm Machines, Build Farm Machines.

We need various parts of the ~/.bashrc file to execute even in non-interactive mode. To do so, edit your ~/.bashrc
file so that the following section is removed:

If not running interactively, don't do anything

case $- in
*1%) 55
*) return;;
esac

2. Enable password-less sudo

Machines: Manager Machine and Run Farm Machines.

Enable passwordless sudo by running sudo visudo, then adding the following line at the end of the file, replacing
YOUR_USERNAME_HERE with your actual username on the machine:

YOUR_USERNAME_HERE ALL=(ALL) NOPASSWD:ALL

Once you have done so, reboot the machines and confirm that you are able to run sudo true without being prompted
for a password.

4.1. Initial Setup/Installation 67

FireSim Documentation, Release 1.17.0

3. Install Vivado Lab and Cable Drivers

Machines: Run Farm Machines.
Go to the Xilinx Downloads Website and download Vivado 2023.1: Lab Edition - Linux.

Extract the downloaded . tar.gz file, then:

cd [EXTRACTED VIVADO LAB DIRECTORY]

sudo ./installLibs.sh

sudo ./xsetup --batch Install --agree XilinxEULA, 3rdPartyEULA --edition "Vivado Lab.
—Edition (Standalone)"

This will have installed Vivado Lab to /tools/Xilinx/Vivado_Lab/2023.1/.

For ease of use, add the following to the end of your ~/.bashrc:

source /tools/Xilinx/Vivado_Lab/2023.1/settings64.sh

Then, open a new terminal or source your ~/.bashrc.

Next, install the cable drivers like so:

cd /tools/Xilinx/Vivado_Lab/2023.1/data/xicom/cable_drivers/lin64/install_script/install_
—drivers/
sudo ./install_drivers

4. Install the Xilinx XDMA and XVSEC drivers

Machines: Run Farm Machines.

First, run the following to clone the XDMA kernel module source:

cd ~/ # or any directory you would like to work from
git clone https://github.com/Xilinx/dma_ip_drivers

cd dma_ip_drivers

git checkout 0e8d321

cd XDMA/linux-kernel/xdma

The directory you are now in contains the XDMA kernel module. Now, let’s build and install it:

sudo make install

Now, test that the module can be inserted:

sudo insmod /lib/modules/$(uname -r)/extra/xdma.ko poll_mode=1
lsmod | grep -i xdma

The second command above should have produced output indicating that the XDMA driver is loaded.

Next, we will do the same for the XVSEC driver, which is pulled from a separate repository due to kernel version
incompatibility:

cd ~/ # or any directory you would like to work from
git clone https://github.com/paulmnt/dma_ip_drivers dma_ip_drivers_xvsec
cd dma_ip_drivers_xvsec

(continues on next page)

68 Chapter 4. Xilinx Alveo U280 XDMA-based Getting Started Guide

https://www.xilinx.com/support/download.html

FireSim Documentation, Release 1.17.0

(continued from previous page)

git checkout 302856a
cd XVSEC/linux-kernel/

make clean all
sudo make install

Now, test that the module can be inserted:

sudo modprobe xvsec
lsmod | grep -i xvsec

The second command above should have produced output indicating that the XVSEC driver is loaded.

Also, make sure you get output for the following (usually, /usr/local/sbin/xvsecctl):

which xvsecctl

5. Install your FPGA(s)

Machines: Run Farm Machines.
Now, let’s attach your Xilinx Alveo U280 FPGAC(s) to your Run Farm Machines:
1. Poweroff your machine.
2. Insert your Xilinx Alveo U280 FPGA into an open PCle slot in the machine.

3. Attach any additional power cables between the FPGA and the host machine. For the U280, this is usually PCle
power coming directly from the system’s PSU.

4. Attach the USB cable between the FPGA and the host machine for JTAG.
5. Boot the machine.

6. Obtain an existing bitstream tar file for your FPGA by opening the bitstream_tar URL listed un-
der alveo_u280_firesim_rocket_singlecore_no_nic in the following file: deploy/sample-backup-
configs/sample_config_hwdb.yaml.

7. Extract the . tar.gz file to a known location. Inside, you will find three files; the one we are currently interested
in will be called firesim.mcs. Note the full path of this firesim.mcs file for the next step.

8. Open Vivado Lab and click “Open Hardware Manager”. Then click “Open Target” and “Auto connect”.

9. Right-click on your FPGA and click “Add Configuration Memory Device”. For a Xilinx Alveo U280, choose
mt25qul@lg-spi-x1_x2_x4 as the Configuration Memory Part. Click “OK” when prompted to program the
configuration memory device.

10. For Configuration file, choose the firesim.mcs file from step 7.
11. Uncheck “Verify” and click OK.

12. When programming the configuration memory device is completed, power off your machine fully (i.e., the FPGA
should completely lose power).

13. Cold-boot the machine. A cold boot is required for the FPGA to be successfully re-programmed from its flash.

14. Once the machine has booted, run the following to ensure that your FPGA is set up properly:

lspci -vvv -d 10ee:903f

4.1. Initial Setup/Installation 69

https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/sample-backup-configs/sample_config_hwdb.yaml
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/sample-backup-configs/sample_config_hwdb.yaml
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html

FireSim Documentation, Release 1.17.0

If successful, this should show an entry with Xilinx as the manufacturer and two memory regions. There should be one
entry for each FPGA you’ve added to the Run Farm Machine.

6. Install sshd

Machines: Manager Machine, Run Farm Machines, and Build Farm Machines

On Ubuntu, install openssh-server like so:

sudo apt install openssh-server

7. Set up SSH Keys

Machines: Manager Machine.

On the manager machine, generate a keypair that you will use to ssh from the manager machine into the manager
machine (ssh localhost), run farm machines, and build farm machines:

cd ~/.ssh
ssh-keygen -t ed25519 -C "firesim.pem" -f firesim.pem
[create passphrase]

Next, add this key to the authorized_keys file on the manager machine:

cd ~/.ssh
cat firesim.pem.pub >> authorized_keys
chmod 0600 authorized_keys

You should also copy this public key into the ~/.ssh/authorized_keys files on all of your Run Farm and Build
Farm Machines.

Returning to the Manager Machine, let’s set up an ssh-agent:

cd ~/.ssh

ssh-agent -s > AGENT_VARS
source AGENT_VARS

ssh-add firesim.pem

If you reboot your machine (or otherwise kill the ssh-agent), you will need to re-run the above four commands
before using FireSim. If you open a new terminal (and ssh-agent is already running), you can simply run source
~/ .ssh/AGENT_VARS.

Finally, confirm that you can now ssh localhost and ssh into your Run Farm and Build Farm Machines without
being prompted for a passphrase.

70 Chapter 4. Xilinx Alveo U280 XDMA-based Getting Started Guide

FireSim Documentation, Release 1.17.0

8. Install Guestmount

Machines: Manager Machine and Run Farm Machines

Next, install the guestmount program:

sudo chmod +r /boot/vmlinuz-*
sudo apt install libguestfs-tools
sudo chmod +r /boot/vmlinuz-*

This is needed by a variety of FireSim steps that mount disk images in order to copy in/out results of simulations out of
the images. Using guestmount instead of the standard mount commands allows for users to perform these operations
without requiring sudo (after this initial installation).

Let’s double check that guestmount is functioning correctly on your system. To do so, we’ll generate a dummy
filesystem image:

cd ~/ # or any scratch area

mkdir sysroot-testing

cd sysroot-testing

mkdir sysroot

dd if=/dev/urandom of=sysroot/myfile bs=1024 count=1024
virt-make-fs --format=qcow2 --type=ext2 sysroot sysroot.gcow2

Ensure that this command completed without producing an error and that the output file sysroot.qcow2 exists.

Assuming all of this completed successfully (i.e., no error from virt-make-f£s), you can delete the sysroot-testing
directory, since we will not need it any longer.

Warning: Due to prior issues we’ve seen with guestmount, ensure that your FireSim repository does not reside
on an NFS mount.

9. Check Hard File Limit

Machine: Manager Machine

Check the output of the following command:

ulimit -Hn

If the result is greater than or equal to 16384, you can continue on to “Setting up the FireSim Repo”. Otherwise, run:

echo "* hard nofile 16384" | sudo tee --append /etc/security/limits.conf

Then, reboot your machine.

4.1. Initial Setup/Installation 71

FireSim Documentation, Release 1.17.0

10. Verify Run Farm Machine environment

Machines: Manager Machine and Run Farm Machines

Finally, let’s ensure that the Xilinx Vivado Lab tools are properly sourced in your shell setup (i.e. .bashrc) so that any
shell on your Run Farm Machines can use the corresponding programs. The environment variables should be visible
to any non-interactive shells that are spawned.

You can check this by running the following on the Manager Machine, replacing RUN_FARM_IP with localhost if
your Run Farm machine and Manager machine are the same machine, or replacing it with the Run Farm machine’s 1P
address if they are different machines.

ssh RUN_FARM_IP printenv

Ensure that the output of the command shows that the Xilinx Vivado Lab tools are present in the printed environment
variables (i.e., PATH).

If you have multiple Run Farm machines, you should repeat this process for each Run Farm machine, replacing
RUN_FARM_TP with a different Run Farm Machine’s IP address.

Congratulations! We’ve now set up your machine/cluster to run simulations. Click Next to continue with the guide.

4.2 FireSim Repo Setup

Next, we’ll clone FireSim on your Manager Machine and run a few final setup steps using scripts in the repo.

4.2.1 Setting up the FireSim Repo

Machine: From this point forward, run everything on your Manager Machine, unless otherwise instructed.

We’re finally ready to fetch FireSim’s sources. This should be done on your Manager Machine. Run:

git clone https://github.com/firesim/firesim

cd firesim

checkout latest official firesim release

note: this may not be the latest release if the documentation version != "stable"
git checkout 1.17.0

Next, we will bootstrap the machine by installing Miniforge Conda, our software package manager, and set up a default
software environment using Conda.

You should select a location where you want Conda to be installed. This can be an existing Miniforge Conda install, or
a directory (that does not exist) where you would like Conda to be installed.

Replace REPLACE_ME_USER_CONDA_LOCATION in the command below with your chosen path and run it:

./scripts/machine-launch-script.sh --prefix REPLACE_ME_USER_CONDA_LOCATION

Among other setup steps, the script will install Miniforge Conda (https://github.com/conda-forge/miniforge) and create
a default environment called firesim.

When prompted, you should allow the Conda installer to modify your ~/.bashrc to automatically place you in the
Conda environment when opening a new shell.

72 Chapter 4. Xilinx Alveo U280 XDMA-based Getting Started Guide

https://github.com/conda-forge/miniforge

FireSim Documentation, Release 1.17.0

Warning: Once the machine-launch-script.sh completes, ensure that you log out of the machine / exit
out of the terminal so that the .bashrc modifications can apply.

After re-logging back into the machine, you should be in the firesim Conda environment.

Verify this by running:

conda env list

If you are not in the firesim environment and the environment exists, you can run the following to “activate” or enter
the environment:

conda activate firesim

Next, return to your clone of the FireSim repo and run:

./build-setup.sh

The build-setup.sh script will validate that you are on a tagged branch, otherwise it will prompt for confirmation.
Then, it will automatically initialize submodules and install the RISC-V tools and other dependencies.

Once build-setup.sh completes, run:

source sourceme-manager.sh --skip-ssh-setup

This will perform various environment setup steps, such as adding the RISC-V tools to your path. Sourcing this the
first time will take some time — however each subsequent sourcing should be instantaneous.

Warning: Every time you want to use FireSim, you should cd into your FireSim directory and source
sourceme-manager . sh again with the arguments shown above.

4.2.2 Initializing FireSim Config Files

The FireSim manager contains a command that will automatically provide a fresh set of configuration files for a given
platform.

To run it, do the following:

firesim managerinit --platform xilinx_alveo_u280

This will produce several initial configuration files, which we will edit in the next section.

4.2.3 Configuring the FireSim manager to understand your Run Farm Machine
setup

As our final setup step, we will edit FireSim’s configuration files so that the manager understands our Run Farm machine
setup and the set of FPGAs attached to each Run Farm machine.

Inside the cloned FireSim repo, open up the deploy/config_runtime.yaml file and set the following keys to the
indicated values:

e default_simulation_dir should point to a temporary simulation directory of your choice on your Run Farm
Machines. This is the directory that simulations will run out of.

4.2. FireSim Repo Setup 73

FireSim Documentation, Release 1.17.0

e run_farm_hosts_to_use should be a list of - IP-address: machine_spec pairs, one pair for each
of your Run Farm Machines. IP-address should be the IP address or hostname of the system (that the
Manager Machine can use to ssh into the Run Farm Machine) and the machine_spec should be a value
from run_farm_host_specs in deploy/run-farm-recipes/externally_provisioned.yaml. Each spec describes the
number of FPGAs attached to a system and other properties about the system.

Here are two examples of how this could be configured:

Example 1: Your Run Farm has a single machine with one FPGA attached and this machine is also your Manager
Machine:

run_farm_hosts_to_use:
- localhost: one_fpgas_spec

Example 2: You have two Run Farm Machines (separate from your Manager Machine). The Run Farm Ma-
chines are accessible from your manager machine with the hostnames firesim-runnerl.berkeley.edu and
firesim-runner2.berkeley.edu, each with eight FPGAs attached.

run_farm_hosts_to_use:
- firesim-runnerl.berkeley.edu: eight_fpgas_spec
- firesim-runner2.berkeley.edu: eight_fpgas_spec

e default_hw_config should be alveo_u280_firesim_rocket_singlecore_no_nic

Then, run the following command so that FireSim can generate a mapping from the FPGA ID used for JTAG program-
ming to the PCle ID used to run simulations. If you ever change the physical layout of the machine (e.g., which PCle
slot the FPGAs are attached to), you will need to re-run this command.

firesim enumeratefpgas

This will generate a database file in /opt/firesim-db. json on each Run Farm Machine that has this mapping.

Now you’re ready to run your first FireSim simulation! Hit Next to continue with the guide.

74 Chapter 4. Xilinx Alveo U280 XDMA-based Getting Started Guide

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/run-farm-recipes/externally_provisioned.yaml

FireSim Documentation, Release 1.17.0

4.3 Running a Single Node Simulation

Now that we’ve completed all the basic setup steps, it’s time to run a simulation! In this section, we will simulate a
single target node, for which we will use a single Xilinx Alveo U280.

Make sure you have sourced sourceme-manager.sh --skip-ssh-setup before running any of these com-
mands.

4.3.1 Building target software

In this guide, we’ll boot Linux on our simulated node. To do so, we’ll need to build our RISC-V SoC-compatible Linux
distro. For this guide, we will use a simple buildroot-based distribution. We can build the Linux distribution like so:

assumes you already cd'd into your firesim repo
and sourced sourceme-manager.sh

#

then:

cd sw/firesim-software

./init-submodules.sh

./marshal -v build br-base.json

Once this is completed, you’ll have the following files:

e YOUR_FIRESIM_REPO/sw/firesim-software/images/firechip/br-base/br-base-bin - a bootloader
+ Linux kernel image for the RISC-V SoC we will simulate.

* YOUR_FIRESIM_REPO/sw/firesim-software/images/firechip/br-base/br-base.img - a disk image
for the RISC-V SoC we will simulate

These files will be used to form base images to either build more complicated workloads (see the Defining Custom
Workloads section) or directly as a basic, interactive Linux distribution.

4.3.2 Setting up the manager configuration

All runtime configuration options for the manager are located in YOUR_FIRESIM_REPO/deploy/config_runtime.
yaml. In this guide, we will explain only the parts of this file necessary for our purposes. You can find full descriptions
of all of the parameters in the Manager Configuration Files section.

Based on the changes we made earlier, this file will already have everything set correctly to run a simulation.
Below we’ll highlight a few of these lines to explain what is happening:

¢ At the top, you’ll notice the run_farm mapping, which describes and specifies the machines to run simulations
on.

— By default, we’ll be using a base_recipe of run-farm-recipes/externally_provisioned.yaml,
which means that our Run Farm machines are pre-configured, and do not require the manager to dynamically
launch/terminate them (e.g., as we would do for cloud instances).

— The default_platform has automatically been set for our FPGA board, to
XilinxAlveoU280InstanceDeployManager.

— The default_simulation_dir is the directory on the Run Farm Machines where simulations will run
out of. The default is likely fine, but you can change it to any directory you have access to on the Run Farm
machines.

4.3. Running a Single Node Simulation 75

FireSim Documentation, Release 1.17.0

— run_farm_hosts_to_use should be a list of - IP-address: machine_spec pairs, one pair for each
of your Run Farm Machines. IP-address should be the IP address or hostname of the system (that the
Manager Machine can use to ssh into the Run Farm Machine) and the machine_spec should be a value from
run_farm_host_specs in deploy/run-farm-recipes/externally_provisioned.yaml. Each spec describes the
number of FPGAs attached to a system and other properties about the system. We configured this already
in the previous step.

* The target_config section describes the system that we’d like to simulate.
— topology: mno_net_config indicates that we’re running simulations with no network between them.
— no_net_num_nodes: 1 indicates that we’ll be a simulation of a single SoC

— The default_hw_config will be set to a pre-built design (for our FPGA,
alveo_u280_firesim_rocket_singlecore_no_nic) with a single RISC-V Rocket core. This is usually
not set by default, but we already set it in the previous step.

* The workload section describes the workload that we’d like to run on our simulated systems. In this case, we
will leave it as the default, which will boot Linux on all SoCs in the simulation.

4.3.3 Building and Deploying simulation infrastructure to the Run Farm Machines

The manager automates the process of building and deploying all components necessary to run your simulation on the
Run Farm, including programming FPGAs. To tell the manager to setup all of our simulation infrastructure, run the
following:

firesim infrasetup

For a complete run, you should expect output like the following:

$ firesim infrasetup
FireSim Manager. Docs: https://docs.fires.im
Running: infrasetup

Building FPGA software driver.

[localhost] Checking if host instance is up...

[localhost] Copying FPGA simulation infrastructure for slot: 0.

[localhost] Clearing all FPGA Slots.

The full log of this run is:
.../firesim/deploy/logs/2023-03-06--01-22-46-infrasetup-35ZP4WUOX8KUYBF3.1log

Many of these tasks will take several minutes, especially on a clean copy of the repo. The console output here contains
the “user-friendly” version of the output. If you want to see detailed progress as it happens, tail -f the latest logfile
in firesim/deploy/logs/.

At this point, our single Run Farm machine has all the infrastructure necessary to run a simulation, so let’s launch our
simulation!

76 Chapter 4. Xilinx Alveo U280 XDMA-based Getting Started Guide

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/run-farm-recipes/externally_provisioned.yaml

FireSim Documentation, Release 1.17.0

4.3.4 Running the simulation

Finally, let’s run our simulation! To do so, run:

firesim runworkload

This command boots up a simulation and prints out the live status of the simulated nodes every 10s. When you do this,
you will initially see output like:

$ firesim runworkload
FireSim Manager. Docs: https://docs.fires.im
Running: runworkload

Creating the directory: .../firesim/deploy/results-workload/2023-03-06--01-25-34-1inux-
—uniform/

[localhost] Checking if host instance is up...

[localhost] Starting FPGA simulation for slot: 0.

If you don’t look quickly, you might miss it, since it will get replaced with a live status page:

FireSim Simulation Status @ 2018-05-19 00:38:56.062737

This workload's output is located in:
.../firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/

This run's log is located in:
.../firesim/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.1og
This status will update every 10s.

1/1 instances are still running.
1/1 simulations are still running.

This will only exit once all of the simulated nodes have powered off. So, let’s let it run and open another terminal
on the manager machine. From there, cd into your FireSim directory again and source sourceme-manager.sh
--skip-ssh-setup.

Next, let’s ssh into the Run Farm machine. If your Run Farm and Manager Machines are the same, replace
RUN_FARM_IP_OR_HOSTNAME with 1localhost, otherwise replace it with your Run Farm Machine’s IP or hostname.

source ~/.ssh/AGENT_VARS
ssh RUN_FARM_IP_OR_HOSTNAME

4.3. Running a Single Node Simulation 77

FireSim Documentation, Release 1.17.0

Next, we can directly attach to the console of the simulated system using screen, run:

screen -r fsim®

Voila! You should now see Linux booting on the simulated system and then be prompted with a Linux login prompt,
like so:

[truncated Linux boot output]

[0.020000] VFS: Mounted root (ext2 filesystem) on device 254:0.

[0.020000] devtmpfs: mounted

[0.020000] Freeing unused kernel memory: 140K

[0.020000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device

Starting logging: OK

Starting mdev...

mdev: /sys/dev: No such file or directory

modprobe: can't change directory to '/lib/modules': No such file or directory
Initializing random number generator... done.

Starting network: ip: SIOCGIFFLAGS: No such device

ip: can't find device 'eth0'

FAIL

Starting dropbear sshd: OK

Welcome to Buildroot
buildroot login:

You can ignore the messages about the network — that is expected because we are simulating a design without a NIC.

Now, you can login to the system! The username is root and there is no password. At this point, you should be
presented with a regular console, where you can type commands into the simulation and run programs. For example:

Welcome to Buildroot

buildroot login: root

Password:

uname -a

Linux buildroot 4.15.0-rc6-31580-9g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018.
—riscv64 GNU/Linux

#

At this point, you can run workloads as you’d like. To finish off this guide, let’s power off the simulated system and see
what the manager does. To do so, in the console of the simulated system, run poweroff -f:

Welcome to Buildroot

buildroot login: root

Password:

uname -a

Linux buildroot 4.15.0-rc6-31580-9g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018.
—riscv64 GNU/Linux

poweroff -f

You should see output like the following from the simulation console:

poweroff -f
[12.456000] reboot: Power down
Power off

(continues on next page)

78 Chapter 4. Xilinx Alveo U280 XDMA-based Getting Started Guide

FireSim Documentation, Release 1.17.0

(continued from previous page)

time elapsed: 468.8 s, simulation speed = 88.50 MHz
#%% PASSED *** after 41492621244 cycles

Runs 41492621244 cycles

[PASS] FireSim Test

SEED: 1526690334

Script done, file is uartlog

[screen is terminating]

You’ll also notice that the manager polling loop exited! You’ll see output like this from the manager:

FireSim Simulation Status @ 2018-05-19 00:46:50.075885

This workload's output is located in:
.../firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/

This run's log is located in:
.../firesim/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.1log
This status will update every 10s.

1/1 instances are still running.

0/1 simulations are still running.

FireSim Simulation Exited Successfully. See results in:
.../firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/

The full log of this run is:
.../firesim/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ. log

If you take a look at the workload output directory given in the manager output (in this case, . ../firesim/deploy/
results-workload/2018-05-19--00-38-52-1inux-uniform/), you'll see the following:

$ 1s -la firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/*/*
-rw-rw-r-- 1 centos centos 797 May 19 00:46 linux-uniform®/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 00:46 linux-uniform®@/os-release
-rw-rw-r-- 1 centos centos 7316 May 19 00:46 linux-uniform®@/uartlog

What are these files? They are specified to the manager in a configuration file (deploy/workloads/linux-uniform.json)
as files that we want automatically copied back from the Run Farm Machine into the results-workload directory on
our manager machine, which is useful for running benchmarks automatically. The Defining Custom Workloads section
describes this process in detail.

Congratulations on running your first FireSim simulation! At this point, you can check-out some of the advanced

4.3. Running a Single Node Simulation 79

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/linux-uniform.json

FireSim Documentation, Release 1.17.0

features of FireSim in the sidebar to the left. For example, we expect that many people will be interested in the ability
to automatically run the SPEC17 benchmarks: SPEC 2017.

Click Next if you’d like to continue on to building your own bitstreams.

4.4 Building Your Own Hardware Designs

This section will guide you through building a Xilinx Alveo U280 FPGA bitstream to run FireSim simulations.

4.4.1 System Setup

Here, we’ll do some final one-time setup for your Build Farm Machines so that we can build bitstreams for FireSim
simulations automatically.

These steps assume that you have already followed the earlier setup steps required to run simulations.

As noted earlier, it is highly recommended that you use Ubuntu 20.04 LTS as the host operating system for all machine
types in an on-premises setup, as this is the OS recommended by Xilinx.

Also recall that we make a distinction between the Manager Machine, the Build Farm Machine(s), and the Run Farm
Machine(s). In a simple setup, these can all be a single machine, in which case you should run the Build Farm Machine
setup steps below on your single machine.

1. Install Vivado for Builds

Machines: Build Farm Machines.

Running builds for Xilinx Alveo U280 in FireSim requires Vivado 2021.1. Other versions are unlikely to work out-of-
the-box.

On each Build Farm machine, do the following:

1. Install Vivado 2021.1 from the Xilinx Downloads Website. By default, Vivado will be installed to /tools/
Xilinx/Vivado/2021.1. We recommend keeping this default. If you change it to something else, you will
need to adjust the path in the rest of the setup steps.

2. Add the following to ~/ .bashrc so that vivado is available when ssh-ing into the machine:

source /tools/Xilinx/Vivado/2021.1/settings64.sh

3. Download the au280® board support package directory from https://github.com/Xilinx/open-nic-shell/tree/
main/board_files/Xilinx and place the directory in /tools/Xilinx/Vivado/2021.1/data/xhub/boards/
XilinxBoardStore/boards/Xilinx/.

If you have multiple Build Farm Machines, you should repeat this process for each.

80 Chapter 4. Xilinx Alveo U280 XDMA-based Getting Started Guide

https://www.xilinx.com/support/download.html
https://github.com/Xilinx/open-nic-shell/tree/main/board_files/Xilinx
https://github.com/Xilinx/open-nic-shell/tree/main/board_files/Xilinx

FireSim Documentation, Release 1.17.0

2. Verify Build Farm Machine environment

Machines: Manager Machine and Run Farm Machines

Finally, let’s ensure that Vivado 2021.1 is properly sourced in your shell setup (i.e. .bashrc) so that any shell on
your Build Farm Machines can use the corresponding programs. The environment variables should be visible to any
non-interactive shells that are spawned.

You can check this by running the following on the Manager Machine, replacing BUILD_FARM_IP with localhost if
your Build Farm machine and Manager machine are the same machine, or replacing it with the Build Farm machine’s
IP address if they are different machines.

ssh BUILD_FARM_IP printenv

Ensure that the output of the command shows that the Vivado 2021.1 tools are present in the printed environment
variables (i.e., PATH and XILINX_VIVADO).

If you have multiple Build Farm machines, you should repeat this process for each Build Farm machine, replacing
BUILD_FARM_IP with a different Build Farm Machine’s IP address.

4.4.2 Configuring a Build in the Manager

In the deploy/config_build.yaml file, you will notice that the builds_to_run section currently contains several
lines, which indicates to the build system that you want to run all of these “build recipes” in parallel, with the parameters
for each “build recipe” listed in the relevant section of the deploy/config_build_recipes.yaml file.

In this guide, we’ll build the default FireSim design for the Xilinx Alveo U280, which is specified by the
alveo_u280_firesim_rocket_singlecore_no_nic section in deploy/config_build_recipes.yaml. This
was the same configuration used to build the pre-built bitstream that you used to run simulations in the guide to running
a simulation.

Looking at the alveo_u280_firesim_rocket_singlecore_no_nic section in deploy/
config_build_recipes.yaml, there are a few notable items:

e TARGET_CONFIG specifies that this configuration is a simple singlecore RISC-V Rocket with a single DRAM
channel.

e bit_builder_recipe points to bit-builder-recipes/xilinx_alveo_u280.yaml, which is found in the
deploy directory and tells the FireSim build system how to build bitstreams for this FPGA.

Having looked at this entry, let’s now set up the build in deploy/config_build.yaml. First, we’ll set up the
build_farm mapping, which specifies the Build Farm Machines that are available to build FPGA bitstreams.

* base_recipe will map to build-farm-recipes/externally_provisioned.yaml. This indicates to the
FireSim manager that the machines used to run builds are existing machines that have been set up by the user,
instead of cloud instances that are automatically provisioned.

e default_build_dir is the directory in which builds will run out of on your Build Farm Machines. Change the
default null to a path where you would like temporary build data to be stored on your Build Farm Machines.

e build_farm_hosts is a section that contains a list of IP addresses or hostnames of machines in your Build
Farm. By default, localhost is specified. If you are using a separate Build Farm Machine, you should replace
this with the IP address or hostname of the Build Farm Machine on which you would like to run the build.

Having configured our Build Farm, let’s specify the design we’d like to build. To do this, edit the builds_to_run
section in deploy/config_build.yaml so that it looks like the following:

builds_to_run:
- alveo_u280_firesim_rocket_singlecore_no_nic

4.4. Building Your Own Hardware Designs 81

https://www.github.com/firesim/firesim/blob/1.17.0/deploy

FireSim Documentation, Release 1.17.0

In essence, you should delete or comment out all the other items in the builds_to_run section besides
alveo_u280_firesim_rocket_singlecore_no_nic.

4.4.3 Running the Build

Now, we can run a build like so:

firesim buildbitstream

This will run through the entire build process, taking the Chisel (or Verilog) RTL and producing a bitstream that runs
on the Xilinx Alveo U280 FPGA. This whole process will usually take a few hours. When the build completes, you
will see a directory in deploy/results-build/, named after your build parameter settings, that contains all of the
outputs of the Xilinx Vivado build process. Additionally, the manager will print out a path to a log file that describes
everything that happened, in-detail, during this run (this is a good file to send us if you encounter problems).

The manager will also print an entry that can be added to config_hwdb.yaml so that the bitstream can be used to run
simulations. This entry will contain a bitstream_tar key whose value is the path to the final generated bitstream file.
You can share generated bitstreams with others by sharing the file listed in bitstream_tar and the config_hwdb.
yaml entry for it.

Now that you know how to generate your own FPGA image, you can modify the target-design to add your own features,
then build a FireSim-compatible FPGA image automatically!

This is the end of the Getting Started Guide. To learn more advanced FireSim features, you can choose a link under
the “Advanced Docs” section to the left.

82 Chapter 4. Xilinx Alveo U280 XDMA-based Getting Started Guide

CHAPTER
FIVE

XILINX VCU118 XDMA-BASED GETTING STARTED GUIDE

The getting started guides that follow this page will walk you through the complete (XDMA-based) flow for getting an
example FireSim simulation up and running using an on-premises Xilinx VCU118 FPGA, from scratch.

First, we’ll set up your environment, then run a simulation of a single RISC-V Rocket-based SoC booting Linux, using
a pre-built bitstream. Next, we’ll show you how to build your own FPGA bitstreams for a custom hardware design.
After you complete these guides, you can look at the “Advanced Docs” in the sidebar to the left.

Here’s a high-level outline of what we’ll be doing in this guide:

5.1 Initial Setup/Installation

5.1.1 Background/Terminology

Before we jump into setting up FireSim, it is important to clarify several terms that we will use throughout the rest of
this documentation.

First, to disambiguate between the hardware being simulated and the computers doing the simulating, we define:

Target The design and environment being simulated. Commonly, a group of one or more RISC-V SoCs with or
without a network between them.

Host The computers/FPGAs executing the FireSim simulation — the Run Farm below.

We frequently prefix words with these terms. For example, software can run on the simulated RISC-V system (target-
software) or on a host x86 machine (host-software).

FireSim Manager (firesim) This program (available on your path as firesim once we source necessary scripts)
automates the work required to launch FPGA builds and run simulations. Most users will only have to interact
with the manager most of the time. If you’re familiar with tools like Vagrant or Docker, the firesim command
is just like the vagrant and docker commands, but for FPGA simulators instead of VMs/containers.

Machines used to build and run FireSim simulations are broadly classified into three groups:

Manager Machine This is the main host machine (e.g., your local desktop or server) that you will “do work™ on. This
is where you’ll clone your copy of FireSim and use the FireSim Manager to deploy builds/simulations from.

Build Farm Machines These are a collection of local machines (“build farm machines”) that are used by the FireSim
manager to run FPGA bitstream builds. The manager will automatically ship all sources necessary to run builds
to these machines and will run the Verilog to FPGA bitstream build process on them.

Run Farm Machines These are a collection of local machines (“run farm machines”) with FPGAs attached that the
manager manages and deploys simulations onto. You can use multiple Run Farms in parallel to run multiple
separate simulations in parallel.

83

https://www.xilinx.com/products/boards-and-kits/vcu118.html

FireSim Documentation, Release 1.17.0

Fig. 1: FireSim Infrastructure Diagram

84

Chapter 5. Xilinx VCU118 XDMA-based Getting Started Guide

FireSim Documentation, Release 1.17.0

In the simplest setup, a single host machine (e.g. your desktop) can serve the function of all three of these: as the
manager machine, the build farm machine (assuming Vivado is installed), and the run farm machine (assuming an
FPGA is attached).

One final piece of terminology will also be referenced throughout these docs:

Golden Gate The FIRRTL compiler in FireSim that converts target RTL into a decoupled simulator. Formerly named
MIDAS.

5.1.2 System Setup

The below sections outline what you need to install to run FireSim on each machine type in a FireSim cluster. Note
that the below three machine types can all map to a single machine in your setup; in this case, you should follow all the
installation instructions on your single machine, without duplication (i.e., don’t re-run a step on the same machine if it
is required on multiple machine types).

Warning: We highly recommend using Ubuntu 20.04 LTS as the host operating system for all machine types
in an on-premises setup, as this is the OS recommended by Xilinx.

1. Fix default .bashrc

Machines: Manager Machine, Run Farm Machines, Build Farm Machines.

We need various parts of the ~/.bashrc file to execute even in non-interactive mode. To do so, edit your ~/.bashrc
file so that the following section is removed:

If not running interactively, don't do anything

case $- in
*1%) 55
*) return;;
esac

2. Enable password-less sudo

Machines: Manager Machine and Run Farm Machines.

Enable passwordless sudo by running sudo visudo, then adding the following line at the end of the file, replacing
YOUR_USERNAME_HERE with your actual username on the machine:

YOUR_USERNAME_HERE ALL=(ALL) NOPASSWD:ALL

Once you have done so, reboot the machines and confirm that you are able to run sudo true without being prompted
for a password.

5.1. Initial Setup/Installation 85

FireSim Documentation, Release 1.17.0

3. Install Vivado Lab and Cable Drivers

Machines: Run Farm Machines.
Go to the Xilinx Downloads Website and download Vivado 2023.1: Lab Edition - Linux.

Extract the downloaded . tar.gz file, then:

cd [EXTRACTED VIVADO LAB DIRECTORY]

sudo ./installLibs.sh

sudo ./xsetup --batch Install --agree XilinxEULA, 3rdPartyEULA --edition "Vivado Lab.
—Edition (Standalone)"

This will have installed Vivado Lab to /tools/Xilinx/Vivado_Lab/2023.1/.

For ease of use, add the following to the end of your ~/.bashrc:

source /tools/Xilinx/Vivado_Lab/2023.1/settings64.sh

Then, open a new terminal or source your ~/.bashrc.

Next, install the cable drivers like so:

cd /tools/Xilinx/Vivado_Lab/2023.1/data/xicom/cable_drivers/lin64/install_script/install_
—drivers/
sudo ./install_drivers

4. Install the Xilinx XDMA and XVSEC drivers

Machines: Run Farm Machines.

First, run the following to clone the XDMA kernel module source:

cd ~/ # or any directory you would like to work from
git clone https://github.com/Xilinx/dma_ip_drivers

cd dma_ip_drivers

git checkout 0e8d321

cd XDMA/linux-kernel/xdma

The directory you are now in contains the XDMA kernel module. Now, let’s build and install it:

sudo make install

Now, test that the module can be inserted:

sudo insmod /lib/modules/$(uname -r)/extra/xdma.ko poll_mode=1
lsmod | grep -i xdma

The second command above should have produced output indicating that the XDMA driver is loaded.

Next, we will do the same for the XVSEC driver, which is pulled from a separate repository due to kernel version
incompatibility:

cd ~/ # or any directory you would like to work from
git clone https://github.com/paulmnt/dma_ip_drivers dma_ip_drivers_xvsec
cd dma_ip_drivers_xvsec

(continues on next page)

86 Chapter 5. Xilinx VCU118 XDMA-based Getting Started Guide

https://www.xilinx.com/support/download.html

FireSim Documentation, Release 1.17.0

(continued from previous page)

git checkout 302856a
cd XVSEC/linux-kernel/

make clean all
sudo make install

Now, test that the module can be inserted:

sudo modprobe xvsec
lsmod | grep -i xvsec

The second command above should have produced output indicating that the XVSEC driver is loaded.

Also, make sure you get output for the following (usually, /usr/local/sbin/xvsecctl):

which xvsecctl

5. Install your FPGA(s)

Machines: Run Farm Machines.
Now, let’s attach your Xilinx VCU118 FPGA(s) to your Run Farm Machines:
1. Poweroff your machine.

2. Insert your Xilinx VCU118 FPGA into an open PCle slot in the machine. Also, ensure that the SW16 switches
on the FPGA are set to 101 to enable QSPI flashing over JTAG (i.e., position 1 = 0, position 2 = 1,
position 3 = 0, and position 4 = 1. Having the switch set to the side of the position label indicates 0.)

3. Attach any additional power cables between the FPGA and the host machine. For the VCU118, this is usually
ATX 4-pin peripheral power (NOT PCle power) from the system’s PSU, attached to the FPGA via the “ATX
Power Supply Adapter Cable” that comes with the VCU118.

4. Attach the USB cable between the FPGA and the host machine for JTAG.
5. Boot the machine.

6. Obtain an existing bitstream tar file for your FPGA by opening the bitstream_tar URL listed under
xilinx_vcull8_firesim_rocket_singlecore_4GB_no_nic in the following file: deploy/sample-backup-
configs/sample_config_hwdb.yaml.

7. Extract the .tar.gz file to a known location. Inside, you will find three files; the one we are currently interested
in will be called firesim.mcs. Note the full path of this firesim.mcs file for the next step.

8. Open Vivado Lab and click “Open Hardware Manager”. Then click “Open Target” and “Auto connect”.

9. Right-click on your FPGA and click “Add Configuration Memory Device”. For a Xilinx VCU118, choose
mt25qudlg-spi-x1_x2_x4 as the Configuration Memory Part. Click “OK” when prompted to program the
configuration memory device.

10. For Configuration file, choose the firesim.mcs file from step 7.
11. Uncheck “Verify” and click OK.

12. When programming the configuration memory device is completed, power off your machine fully (i.e., the FPGA
should completely lose power).

13. Cold-boot the machine. A cold boot is required for the FPGA to be successfully re-programmed from its flash.

14. Once the machine has booted, run the following to ensure that your FPGA is set up properly:

5.1. Initial Setup/Installation 87

https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/sample-backup-configs/sample_config_hwdb.yaml
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/sample-backup-configs/sample_config_hwdb.yaml
https://www.xilinx.com/products/boards-and-kits/vcu118.html

FireSim Documentation, Release 1.17.0

lspci -vvv -d 10ee:903f

If successful, this should show an entry with Xilinx as the manufacturer and two memory regions. There should be one
entry for each FPGA you’ve added to the Run Farm Machine.

6. Install sshd

Machines: Manager Machine, Run Farm Machines, and Build Farm Machines

On Ubuntu, install openssh-server like so:

sudo apt install openssh-server

7. Set up SSH Keys

Machines: Manager Machine.

On the manager machine, generate a keypair that you will use to ssh from the manager machine into the manager
machine (ssh localhost), run farm machines, and build farm machines:

cd ~/.ssh
ssh-keygen -t ed25519 -C "firesim.pem" -f firesim.pem
[create passphrase]

Next, add this key to the authorized_keys file on the manager machine:

cd ~/.ssh
cat firesim.pem.pub >> authorized_keys
chmod 0600 authorized_keys

You should also copy this public key into the ~/.ssh/authorized_keys files on all of your Run Farm and Build
Farm Machines.

Returning to the Manager Machine, let’s set up an ssh-agent:

cd ~/.ssh

ssh-agent -s > AGENT_VARS
source AGENT_VARS

ssh-add firesim.pem

If you reboot your machine (or otherwise kill the ssh-agent), you will need to re-run the above four commands
before using FireSim. If you open a new terminal (and ssh-agent is already running), you can simply run source
~/ .ssh/AGENT_VARS.

Finally, confirm that you can now ssh localhost and ssh into your Run Farm and Build Farm Machines without
being prompted for a passphrase.

88 Chapter 5. Xilinx VCU118 XDMA-based Getting Started Guide

FireSim Documentation, Release 1.17.0

8. Install Guestmount

Machines: Manager Machine and Run Farm Machines

Next, install the guestmount program:

sudo chmod +r /boot/vmlinuz-*
sudo apt install libguestfs-tools
sudo chmod +r /boot/vmlinuz-*

This is needed by a variety of FireSim steps that mount disk images in order to copy in/out results of simulations out of
the images. Using guestmount instead of the standard mount commands allows for users to perform these operations
without requiring sudo (after this initial installation).

Let’s double check that guestmount is functioning correctly on your system. To do so, we’ll generate a dummy
filesystem image:

cd ~/ # or any scratch area

mkdir sysroot-testing

cd sysroot-testing

mkdir sysroot

dd if=/dev/urandom of=sysroot/myfile bs=1024 count=1024
virt-make-fs --format=qcow2 --type=ext2 sysroot sysroot.gcow2

Ensure that this command completed without producing an error and that the output file sysroot.qcow2 exists.

Assuming all of this completed successfully (i.e., no error from virt-make-f£s), you can delete the sysroot-testing
directory, since we will not need it any longer.

Warning: Due to prior issues we’ve seen with guestmount, ensure that your FireSim repository does not reside
on an NFS mount.

9. Check Hard File Limit

Machine: Manager Machine

Check the output of the following command:

ulimit -Hn

If the result is greater than or equal to 16384, you can continue on to “Setting up the FireSim Repo”. Otherwise, run:

echo "* hard nofile 16384" | sudo tee --append /etc/security/limits.conf

Then, reboot your machine.

5.1. Initial Setup/Installation 89

FireSim Documentation, Release 1.17.0

10. Verify Run Farm Machine environment

Machines: Manager Machine and Run Farm Machines

Finally, let’s ensure that the Xilinx Vivado Lab tools are properly sourced in your shell setup (i.e. .bashrc) so that any
shell on your Run Farm Machines can use the corresponding programs. The environment variables should be visible
to any non-interactive shells that are spawned.

You can check this by running the following on the Manager Machine, replacing RUN_FARM_IP with localhost if
your Run Farm machine and Manager machine are the same machine, or replacing it with the Run Farm machine’s 1P
address if they are different machines.

ssh RUN_FARM_IP printenv

Ensure that the output of the command shows that the Xilinx Vivado Lab tools are present in the printed environment
variables (i.e., PATH).

If you have multiple Run Farm machines, you should repeat this process for each Run Farm machine, replacing
RUN_FARM_TP with a different Run Farm Machine’s IP address.

Congratulations! We’ve now set up your machine/cluster to run simulations. Click Next to continue with the guide.

5.2 FireSim Repo Setup

Next, we’ll clone FireSim on your Manager Machine and run a few final setup steps using scripts in the repo.

5.2.1 Setting up the FireSim Repo

Machine: From this point forward, run everything on your Manager Machine, unless otherwise instructed.

We’re finally ready to fetch FireSim’s sources. This should be done on your Manager Machine. Run:

git clone https://github.com/firesim/firesim

cd firesim

checkout latest official firesim release

note: this may not be the latest release if the documentation version != "stable"
git checkout 1.17.0

Next, we will bootstrap the machine by installing Miniforge Conda, our software package manager, and set up a default
software environment using Conda.

You should select a location where you want Conda to be installed. This can be an existing Miniforge Conda install, or
a directory (that does not exist) where you would like Conda to be installed.

Replace REPLACE_ME_USER_CONDA_LOCATION in the command below with your chosen path and run it:

./scripts/machine-launch-script.sh --prefix REPLACE_ME_USER_CONDA_LOCATION

Among other setup steps, the script will install Miniforge Conda (https://github.com/conda-forge/miniforge) and create
a default environment called firesim.

When prompted, you should allow the Conda installer to modify your ~/.bashrc to automatically place you in the
Conda environment when opening a new shell.

90 Chapter 5. Xilinx VCU118 XDMA-based Getting Started Guide

https://github.com/conda-forge/miniforge

FireSim Documentation, Release 1.17.0

Warning: Once the machine-launch-script.sh completes, ensure that you log out of the machine / exit
out of the terminal so that the .bashrc modifications can apply.

After re-logging back into the machine, you should be in the firesim Conda environment.

Verify this by running:

conda env list

If you are not in the firesim environment and the environment exists, you can run the following to “activate” or enter
the environment:

conda activate firesim

Next, return to your clone of the FireSim repo and run:

./build-setup.sh

The build-setup.sh script will validate that you are on a tagged branch, otherwise it will prompt for confirmation.
Then, it will automatically initialize submodules and install the RISC-V tools and other dependencies.

Once build-setup.sh completes, run:

source sourceme-manager.sh --skip-ssh-setup

This will perform various environment setup steps, such as adding the RISC-V tools to your path. Sourcing this the
first time will take some time — however each subsequent sourcing should be instantaneous.

Warning: Every time you want to use FireSim, you should cd into your FireSim directory and source
sourceme-manager . sh again with the arguments shown above.

5.2.2 Initializing FireSim Config Files

The FireSim manager contains a command that will automatically provide a fresh set of configuration files for a given
platform.

To run it, do the following:

firesim managerinit --platform xilinx_vcull8

This will produce several initial configuration files, which we will edit in the next section.

5.2.3 Configuring the FireSim manager to understand your Run Farm Machine
setup

As our final setup step, we will edit FireSim’s configuration files so that the manager understands our Run Farm machine
setup and the set of FPGAs attached to each Run Farm machine.

Inside the cloned FireSim repo, open up the deploy/config_runtime.yaml file and set the following keys to the
indicated values:

e default_simulation_dir should point to a temporary simulation directory of your choice on your Run Farm
Machines. This is the directory that simulations will run out of.

5.2. FireSim Repo Setup 91

FireSim Documentation, Release 1.17.0

e run_farm_hosts_to_use should be a list of - IP-address: machine_spec pairs, one pair for each
of your Run Farm Machines. IP-address should be the IP address or hostname of the system (that the
Manager Machine can use to ssh into the Run Farm Machine) and the machine_spec should be a value
from run_farm_host_specs in deploy/run-farm-recipes/externally_provisioned.yaml. Each spec describes the
number of FPGAs attached to a system and other properties about the system.

Here are two examples of how this could be configured:

Example 1: Your Run Farm has a single machine with one FPGA attached and this machine is also your Manager
Machine:

run_farm_hosts_to_use:
- localhost: one_fpgas_spec

Example 2: You have two Run Farm Machines (separate from your Manager Machine). The Run Farm Ma-
chines are accessible from your manager machine with the hostnames firesim-runnerl.berkeley.edu and
firesim-runner2.berkeley.edu, each with eight FPGAs attached.

run_farm_hosts_to_use:
- firesim-runnerl.berkeley.edu: eight_fpgas_spec
- firesim-runner2.berkeley.edu: eight_fpgas_spec

¢ default_hw_config should be xilinx_vcull8_firesim_rocket_singlecore_4GB_no_nic

Then, run the following command so that FireSim can generate a mapping from the FPGA ID used for JTAG program-
ming to the PCle ID used to run simulations. If you ever change the physical layout of the machine (e.g., which PCle
slot the FPGAs are attached to), you will need to re-run this command.

firesim enumeratefpgas

This will generate a database file in /opt/firesim-db. json on each Run Farm Machine that has this mapping.

Now you’re ready to run your first FireSim simulation! Hit Next to continue with the guide.

92 Chapter 5. Xilinx VCU118 XDMA-based Getting Started Guide

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/run-farm-recipes/externally_provisioned.yaml

FireSim Documentation, Release 1.17.0

5.3 Running a Single Node Simulation

Now that we’ve completed all the basic setup steps, it’s time to run a simulation! In this section, we will simulate a
single target node, for which we will use a single Xilinx VCU118.

Make sure you have sourced sourceme-manager.sh --skip-ssh-setup before running any of these com-
mands.

5.3.1 Building target software

In this guide, we’ll boot Linux on our simulated node. To do so, we’ll need to build our RISC-V SoC-compatible Linux
distro. For this guide, we will use a simple buildroot-based distribution. We can build the Linux distribution like so:

assumes you already cd'd into your firesim repo
and sourced sourceme-manager.sh

#

then:

cd sw/firesim-software

./init-submodules.sh

./marshal -v build br-base.json

Once this is completed, you’ll have the following files:

e YOUR_FIRESIM_REPO/sw/firesim-software/images/firechip/br-base/br-base-bin - a bootloader
+ Linux kernel image for the RISC-V SoC we will simulate.

* YOUR_FIRESIM_REPO/sw/firesim-software/images/firechip/br-base/br-base.img - a disk image
for the RISC-V SoC we will simulate

These files will be used to form base images to either build more complicated workloads (see the Defining Custom
Workloads section) or directly as a basic, interactive Linux distribution.

5.3.2 Setting up the manager configuration

All runtime configuration options for the manager are located in YOUR_FIRESIM_REPO/deploy/config_runtime.
yaml. In this guide, we will explain only the parts of this file necessary for our purposes. You can find full descriptions
of all of the parameters in the Manager Configuration Files section.

Based on the changes we made earlier, this file will already have everything set correctly to run a simulation.
Below we’ll highlight a few of these lines to explain what is happening:

¢ At the top, you’ll notice the run_farm mapping, which describes and specifies the machines to run simulations
on.

— By default, we’ll be using a base_recipe of run-farm-recipes/externally_provisioned.yaml,
which means that our Run Farm machines are pre-configured, and do not require the manager to dynamically
launch/terminate them (e.g., as we would do for cloud instances).

— The default_platform has automatically been set for our FPGA board, to
XilinxVCU118InstanceDeployManager.

— The default_simulation_dir is the directory on the Run Farm Machines where simulations will run
out of. The default is likely fine, but you can change it to any directory you have access to on the Run Farm
machines.

5.3. Running a Single Node Simulation 93

FireSim Documentation, Release 1.17.0

— run_farm_hosts_to_use should be a list of - IP-address: machine_spec pairs, one pair for each
of your Run Farm Machines. IP-address should be the IP address or hostname of the system (that the
Manager Machine can use to ssh into the Run Farm Machine) and the machine_spec should be a value from
run_farm_host_specs in deploy/run-farm-recipes/externally_provisioned.yaml. Each spec describes the
number of FPGAs attached to a system and other properties about the system. We configured this already
in the previous step.

* The target_config section describes the system that we’d like to simulate.
— topology: mno_net_config indicates that we’re running simulations with no network between them.
— no_net_num_nodes: 1 indicates that we’ll be a simulation of a single SoC

— The default_hw_config will be set to a pre-built design (for our FPGA,
xilinx_vcull8_firesim_rocket_singlecore_4GB_no_nic) with a single RISC-V Rocket core.
This is usually not set by default, but we already set it in the previous step.

* The workload section describes the workload that we’d like to run on our simulated systems. In this case, we
will leave it as the default, which will boot Linux on all SoCs in the simulation.

5.3.3 Building and Deploying simulation infrastructure to the Run Farm Machines

The manager automates the process of building and deploying all components necessary to run your simulation on the
Run Farm, including programming FPGAs. To tell the manager to setup all of our simulation infrastructure, run the
following:

firesim infrasetup

For a complete run, you should expect output like the following:

$ firesim infrasetup
FireSim Manager. Docs: https://docs.fires.im
Running: infrasetup

Building FPGA software driver.

[localhost] Checking if host instance is up...

[localhost] Copying FPGA simulation infrastructure for slot: 0.

[localhost] Clearing all FPGA Slots.

The full log of this run is:
.../firesim/deploy/logs/2023-03-06--01-22-46-infrasetup-35ZP4WUOX8KUYBF3.1log

Many of these tasks will take several minutes, especially on a clean copy of the repo. The console output here contains
the “user-friendly” version of the output. If you want to see detailed progress as it happens, tail -f the latest logfile
in firesim/deploy/logs/.

At this point, our single Run Farm machine has all the infrastructure necessary to run a simulation, so let’s launch our
simulation!

94 Chapter 5. Xilinx VCU118 XDMA-based Getting Started Guide

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/run-farm-recipes/externally_provisioned.yaml

FireSim Documentation, Release 1.17.0

5.3.4 Running the simulation

Finally, let’s run our simulation! To do so, run:

firesim runworkload

This command boots up a simulation and prints out the live status of the simulated nodes every 10s. When you do this,
you will initially see output like:

$ firesim runworkload
FireSim Manager. Docs: https://docs.fires.im
Running: runworkload

Creating the directory: .../firesim/deploy/results-workload/2023-03-06--01-25-34-1inux-
—uniform/

[localhost] Checking if host instance is up...

[localhost] Starting FPGA simulation for slot: 0.

If you don’t look quickly, you might miss it, since it will get replaced with a live status page:

FireSim Simulation Status @ 2018-05-19 00:38:56.062737

This workload's output is located in:
.../firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/

This run's log is located in:
.../firesim/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.1og
This status will update every 10s.

1/1 instances are still running.
1/1 simulations are still running.

This will only exit once all of the simulated nodes have powered off. So, let’s let it run and open another terminal
on the manager machine. From there, cd into your FireSim directory again and source sourceme-manager.sh
--skip-ssh-setup.

Next, let’s ssh into the Run Farm machine. If your Run Farm and Manager Machines are the same, replace
RUN_FARM_IP_OR_HOSTNAME with 1localhost, otherwise replace it with your Run Farm Machine’s IP or hostname.

source ~/.ssh/AGENT_VARS
ssh RUN_FARM_IP_OR_HOSTNAME

5.3. Running a Single Node Simulation 95

FireSim Documentation, Release 1.17.0

Next, we can directly attach to the console of the simulated system using screen, run:

screen -r fsim®

Voila! You should now see Linux booting on the simulated system and then be prompted with a Linux login prompt,
like so:

[truncated Linux boot output]

[0.020000] VFS: Mounted root (ext2 filesystem) on device 254:0.

[0.020000] devtmpfs: mounted

[0.020000] Freeing unused kernel memory: 140K

[0.020000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device

Starting logging: OK

Starting mdev...

mdev: /sys/dev: No such file or directory

modprobe: can't change directory to '/lib/modules': No such file or directory
Initializing random number generator... done.

Starting network: ip: SIOCGIFFLAGS: No such device

ip: can't find device 'eth0'

FAIL

Starting dropbear sshd: OK

Welcome to Buildroot
buildroot login:

You can ignore the messages about the network — that is expected because we are simulating a design without a NIC.

Now, you can login to the system! The username is root and there is no password. At this point, you should be
presented with a regular console, where you can type commands into the simulation and run programs. For example:

Welcome to Buildroot

buildroot login: root

Password:

uname -a

Linux buildroot 4.15.0-rc6-31580-9g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018.
—riscv64 GNU/Linux

#

At this point, you can run workloads as you’d like. To finish off this guide, let’s power off the simulated system and see
what the manager does. To do so, in the console of the simulated system, run poweroff -f:

Welcome to Buildroot

buildroot login: root

Password:

uname -a

Linux buildroot 4.15.0-rc6-31580-9g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018.
—riscv64 GNU/Linux

poweroff -f

You should see output like the following from the simulation console:

poweroff -f
[12.456000] reboot: Power down
Power off

(continues on next page)

96 Chapter 5. Xilinx VCU118 XDMA-based Getting Started Guide

FireSim Documentation, Release 1.17.0

(continued from previous page)

time elapsed: 468.8 s, simulation speed = 88.50 MHz
#%% PASSED *** after 41492621244 cycles

Runs 41492621244 cycles

[PASS] FireSim Test

SEED: 1526690334

Script done, file is uartlog

[screen is terminating]

You’ll also notice that the manager polling loop exited! You’ll see output like this from the manager:

FireSim Simulation Status @ 2018-05-19 00:46:50.075885

This workload's output is located in:
.../firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/

This run's log is located in:
.../firesim/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.1log
This status will update every 10s.

1/1 instances are still running.

0/1 simulations are still running.

FireSim Simulation Exited Successfully. See results in:
.../firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/

The full log of this run is:
.../firesim/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ. log

If you take a look at the workload output directory given in the manager output (in this case, . ../firesim/deploy/
results-workload/2018-05-19--00-38-52-1inux-uniform/), you'll see the following:

$ 1s -la firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/*/*
-rw-rw-r-- 1 centos centos 797 May 19 00:46 linux-uniform®/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 00:46 linux-uniform®@/os-release
-rw-rw-r-- 1 centos centos 7316 May 19 00:46 linux-uniform®@/uartlog

What are these files? They are specified to the manager in a configuration file (deploy/workloads/linux-uniform.json)
as files that we want automatically copied back from the Run Farm Machine into the results-workload directory on
our manager machine, which is useful for running benchmarks automatically. The Defining Custom Workloads section
describes this process in detail.

Congratulations on running your first FireSim simulation! At this point, you can check-out some of the advanced

5.3. Running a Single Node Simulation 97

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/linux-uniform.json

FireSim Documentation, Release 1.17.0

features of FireSim in the sidebar to the left. For example, we expect that many people will be interested in the ability
to automatically run the SPEC17 benchmarks: SPEC 2017.

Click Next if you’d like to continue on to building your own bitstreams.

5.4 Building Your Own Hardware Designs

This section will guide you through building a Xilinx VCU118 FPGA bitstream to run FireSim simulations.

5.4.1 System Setup

Here, we’ll do some final one-time setup for your Build Farm Machines so that we can build bitstreams for FireSim
simulations automatically.

These steps assume that you have already followed the earlier setup steps required to run simulations.

As noted earlier, it is highly recommended that you use Ubuntu 20.04 LTS as the host operating system for all machine
types in an on-premises setup, as this is the OS recommended by Xilinx.

Also recall that we make a distinction between the Manager Machine, the Build Farm Machine(s), and the Run Farm
Machine(s). In a simple setup, these can all be a single machine, in which case you should run the Build Farm Machine
setup steps below on your single machine.

1. Install Vivado for Builds

Machines: Build Farm Machines.

Running builds for Xilinx VCU118 in FireSim requires Vivado 2019.1. Other versions are unlikely to work out-of-the-
box.

On each Build Farm machine, do the following:

1. Install Vivado 2019.1 from the Xilinx Downloads Website. By default, Vivado will be installed to /tools/
Xilinx/Vivado/2019.1. We recommend keeping this default. If you change it to something else, you will
need to adjust the path in the rest of the setup steps.

2. Add the following to ~/ .bashrc so that vivado is available when ssh-ing into the machine:

source /tools/Xilinx/Vivado/2019.1/settings64.sh

3. No special board support package is required for the VCU118. Move on to the next step.

If you have multiple Build Farm Machines, you should repeat this process for each.

2. Verify Build Farm Machine environment

Machines: Manager Machine and Run Farm Machines

Finally, let’s ensure that Vivado 2019.1 is properly sourced in your shell setup (i.e. .bashrc) so that any shell on
your Build Farm Machines can use the corresponding programs. The environment variables should be visible to any
non-interactive shells that are spawned.

You can check this by running the following on the Manager Machine, replacing BUILD_FARM_IP with localhost if
your Build Farm machine and Manager machine are the same machine, or replacing it with the Build Farm machine’s
IP address if they are different machines.

98 Chapter 5. Xilinx VCU118 XDMA-based Getting Started Guide

https://www.xilinx.com/support/download.html

FireSim Documentation, Release 1.17.0

ssh BUILD_FARM_IP printenv

Ensure that the output of the command shows that the Vivado 2019.1 tools are present in the printed environment
variables (i.e., PATH and XILINX_VIVADO).

If you have multiple Build Farm machines, you should repeat this process for each Build Farm machine, replacing
BUILD_FARM_IP with a different Build Farm Machine’s IP address.

5.4.2 Configuring a Build in the Manager

In the deploy/config_build.yaml file, you will notice that the builds_to_run section currently contains several
lines, which indicates to the build system that you want to run all of these “build recipes” in parallel, with the parameters
for each “build recipe” listed in the relevant section of the deploy/config_build_recipes.yaml file.

In this guide, we’ll build the default FireSim design for the Xilinx VCUI118, which is specified by
the xilinx_vcull8_firesim_rocket_singlecore_4GB_no_nic section in deploy/config_build_recipes.
yaml. This was the same configuration used to build the pre-built bitstream that you used to run simulations in the
guide to running a simulation.

Looking at the xilinx vcull8_firesim_rocket_singlecore_4GB_no_nic section in deploy/
config_build_recipes.yaml, there are a few notable items:

* TARGET_CONFIG specifies that this configuration is a simple singlecore RISC-V Rocket with a single DRAM
channel.

* bit_builder_recipepointstobit-builder-recipes/xilinx_vcull8.yaml, which is found in the deploy
directory and tells the FireSim build system how to build bitstreams for this FPGA.

Having looked at this entry, let’s now set up the build in deploy/config_build.yaml. First, we’ll set up the
build_farm mapping, which specifies the Build Farm Machines that are available to build FPGA bitstreams.

* base_recipe will map to build-farm-recipes/externally_provisioned.yaml. This indicates to the
FireSim manager that the machines used to run builds are existing machines that have been set up by the user,
instead of cloud instances that are automatically provisioned.

e default_build_dir is the directory in which builds will run out of on your Build Farm Machines. Change the
default null to a path where you would like temporary build data to be stored on your Build Farm Machines.

* build_farm_hosts is a section that contains a list of IP addresses or hostnames of machines in your Build
Farm. By default, localhost is specified. If you are using a separate Build Farm Machine, you should replace
this with the IP address or hostname of the Build Farm Machine on which you would like to run the build.

Having configured our Build Farm, let’s specify the design we’d like to build. To do this, edit the builds_to_run
section in deploy/config_build.yaml so that it looks like the following:

builds_to_run:
- xilinx_vcull8_firesim_rocket_singlecore_4GB_no_nic

In essence, you should delete or comment out all the other items in the builds_to_run section besides
xilinx_vcull8_firesim_rocket_singlecore_4GB_no_nic.

5.4. Building Your Own Hardware Designs 99

https://www.github.com/firesim/firesim/blob/1.17.0/deploy

FireSim Documentation, Release 1.17.0

5.4.3 Running the Build

Now, we can run a build like so:

firesim buildbitstream

This will run through the entire build process, taking the Chisel (or Verilog) RTL and producing a bitstream that runs on
the Xilinx VCU118 FPGA. This whole process will usually take a few hours. When the build completes, you will see a
directory in deploy/results-build/, named after your build parameter settings, that contains all of the outputs of
the Xilinx Vivado build process. Additionally, the manager will print out a path to a log file that describes everything
that happened, in-detail, during this run (this is a good file to send us if you encounter problems).

The manager will also print an entry that can be added to config_hwdb.yaml so that the bitstream can be used to run
simulations. This entry will contain a bitstream_tar key whose value is the path to the final generated bitstream file.
You can share generated bitstreams with others by sharing the file listed in bitstream_tar and the config_hwdb.
yaml entry for it.

Now that you know how to generate your own FPGA image, you can modify the target-design to add your own features,
then build a FireSim-compatible FPGA image automatically!

This is the end of the Getting Started Guide. To learn more advanced FireSim features, you can choose a link under
the “Advanced Docs” section to the left.

100 Chapter 5. Xilinx VCU118 XDMA-based Getting Started Guide

CHAPTER
SIX

RHS RESEARCH NITEFURY Il XDMA-BASED GETTING STARTED
GUIDE

The getting started guides that follow this page will walk you through the complete (XDMA-based) flow for getting an
example FireSim simulation up and running using an on-premises RHS Research Nitefury II FPGA, from scratch.

First, we’ll set up your environment, then run a simulation of a single RISC-V Rocket-based SoC booting Linux, using
a pre-built bitstream. Next, we’ll show you how to build your own FPGA bitstreams for a custom hardware design.
After you complete these guides, you can look at the “Advanced Docs” in the sidebar to the left.

Here’s a high-level outline of what we’ll be doing in this guide:

6.1 Initial Setup/Installation

6.1.1 Background/Terminology

Before we jump into setting up FireSim, it is important to clarify several terms that we will use throughout the rest of
this documentation.

First, to disambiguate between the hardware being simulated and the computers doing the simulating, we define:

Target The design and environment being simulated. Commonly, a group of one or more RISC-V SoCs with or
without a network between them.

Host The computers/FPGAs executing the FireSim simulation — the Run Farm below.

We frequently prefix words with these terms. For example, software can run on the simulated RISC-V system (farget-
software) or on a host x86 machine (host-software).

FireSim Manager (firesim) This program (available on your path as firesim once we source necessary scripts)
automates the work required to launch FPGA builds and run simulations. Most users will only have to interact
with the manager most of the time. If you're familiar with tools like Vagrant or Docker, the firesim command
is just like the vagrant and docker commands, but for FPGA simulators instead of VMs/containers.

Machines used to build and run FireSim simulations are broadly classified into three groups:

Manager Machine This is the main host machine (e.g., your local desktop or server) that you will “do work™ on. This
is where you’ll clone your copy of FireSim and use the FireSim Manager to deploy builds/simulations from.

Build Farm Machines These are a collection of local machines (“build farm machines”) that are used by the FireSim
manager to run FPGA bitstream builds. The manager will automatically ship all sources necessary to run builds
to these machines and will run the Verilog to FPGA bitstream build process on them.

Run Farm Machines These are a collection of local machines (“run farm machines”) with FPGAs attached that the
manager manages and deploys simulations onto. You can use multiple Run Farms in parallel to run multiple
separate simulations in parallel.

101

https://rhsresearch.com/collections/rhs-public/products/nitefury-xilinx-artix-fpga-kit-in-nvme-ssd-form-factor-2280-key-m

FireSim Documentation, Release 1.17.0

Fig. 1: FireSim Infrastructure Diagram

102 Chapter 6. RHS Research Nitefury Il XDMA-based Getting Started Guide

FireSim Documentation, Release 1.17.0

In the simplest setup, a single host machine (e.g. your desktop) can serve the function of all three of these: as the
manager machine, the build farm machine (assuming Vivado is installed), and the run farm machine (assuming an
FPGA is attached).

One final piece of terminology will also be referenced throughout these docs:

Golden Gate The FIRRTL compiler in FireSim that converts target RTL into a decoupled simulator. Formerly named
MIDAS.

6.1.2 System Setup

The below sections outline what you need to install to run FireSim on each machine type in a FireSim cluster. Note
that the below three machine types can all map to a single machine in your setup; in this case, you should follow all the
installation instructions on your single machine, without duplication (i.e., don’t re-run a step on the same machine if it
is required on multiple machine types).

Warning: We highly recommend using Ubuntu 20.04 LTS as the host operating system for all machine types
in an on-premises setup, as this is the OS recommended by Xilinx.

1. Fix default .bashrc

Machines: Manager Machine, Run Farm Machines, Build Farm Machines.

We need various parts of the ~/.bashrc file to execute even in non-interactive mode. To do so, edit your ~/.bashrc
file so that the following section is removed:

If not running interactively, don't do anything

case $- in
*1%) 55
*) return;;
esac

2. Enable password-less sudo

Machines: Manager Machine and Run Farm Machines.

Enable passwordless sudo by running sudo visudo, then adding the following line at the end of the file, replacing
YOUR_USERNAME_HERE with your actual username on the machine:

YOUR_USERNAME_HERE ALL=(ALL) NOPASSWD:ALL

Once you have done so, reboot the machines and confirm that you are able to run sudo true without being prompted
for a password.

6.1. Initial Setup/Installation 103

FireSim Documentation, Release 1.17.0

3. Install Vivado Lab and Cable Drivers

Machines: Run Farm Machines.
Go to the Xilinx Downloads Website and download Vivado 2023.1: Lab Edition - Linux.

Extract the downloaded . tar.gz file, then:

cd [EXTRACTED VIVADO LAB DIRECTORY]

sudo ./installLibs.sh

sudo ./xsetup --batch Install --agree XilinxEULA, 3rdPartyEULA --edition "Vivado Lab.
—Edition (Standalone)"

This will have installed Vivado Lab to /tools/Xilinx/Vivado_Lab/2023.1/.

For ease of use, add the following to the end of your ~/.bashrc:

source /tools/Xilinx/Vivado_Lab/2023.1/settings64.sh

Then, open a new terminal or source your ~/.bashrc.

Next, install the cable drivers like so:

cd /tools/Xilinx/Vivado_Lab/2023.1/data/xicom/cable_drivers/lin64/install_script/install_
—drivers/
sudo ./install_drivers

4. Install the Xilinx XDMA and XVSEC drivers

Machines: Run Farm Machines.

First, run the following to clone the XDMA kernel module source:

cd ~/ # or any directory you would like to work from
git clone https://github.com/Xilinx/dma_ip_drivers

cd dma_ip_drivers

git checkout 0e8d321

cd XDMA/linux-kernel/xdma

The directory you are now in contains the XDMA kernel module. For the Nitefury to work, we will need to make one
modification to the driver. Find the line containing #define XDMA_ENGINE_XFER_MAX_DESC. Change the value on
this line from ®x800 to 16. Then, build and install the driver:

sudo make install

Now, test that the module can be inserted:

sudo insmod /lib/modules/$(uname -r)/extra/xdma.ko poll_mode=1
lsmod | grep -i xdma

The second command above should have produced output indicating that the XDMA driver is loaded.

Next, we will do the same for the XVSEC driver, which is pulled from a separate repository due to kernel version
incompatibility:

104 Chapter 6. RHS Research Nitefury Il XDMA-based Getting Started Guide

https://www.xilinx.com/support/download.html

FireSim Documentation, Release 1.17.0

cd ~/ # or any directory you would like to work from

git clone https://github.com/paulmnt/dma_ip_drivers dma_ip_drivers_xvsec
cd dma_ip_drivers_xvsec

git checkout 302856a

cd XVSEC/linux-kernel/

make clean all
sudo make install

Now, test that the module can be inserted:

sudo modprobe xvsec
lsmod | grep -i xvsec

The second command above should have produced output indicating that the XVSEC driver is loaded.

Also, make sure you get output for the following (usually, /usr/local/sbin/xvsecctl):

which xvsecctl

5. Install your FPGA(s)

Machines: Run Farm Machines.

Now, let’s attach your RHS Research Nitefury IT FPGA(s) to your Run Farm Machines:

1.
2.

10.
11.

Poweroff your machine.

Insert your RHS Research Nitefury II FPGA into either an open M.2. slot on your machine or into an M.2. to
Thunderbolt enclosure (then attach the enclosure to your system via a Thunderbolt cable). We have successfully
used this enclosure: https://www.amazon.com/ORICO-Enclosure-Compatible- Thunderbolt-Type-C-M2VO01/
dp/BOSRIDMEFFT. Before permanently installing your Nitefury into your M.2. slot or enclosure, ensure that
you have attached the ribbon cable that will be used for JTAG to the underside of the board (see step 4 below).

. Attach any additional power cables between the FPGA and the host machine. This step is not required for the

Nitefury, since all power is delivered via M.2. or Thunderbolt.

. Attach the USB cable between the FPGA and the host machine for JTAG. For the Nitefury, this requires attaching

the 14-pin JTAG adapter included with the board to the board using the included ribbon cable, then attaching a
USB to JTAG adapter such as the Digilent HS2: https://digilent.com/shop/jtag-hs2-programming-cable/.

. Boot the machine.

. Obtain an existing bitstream tar file for your FPGA by opening the bitstream_tar URL listed

under nitefury_firesim_rocket_singlecore_no_nic in the following file: deploy/sample-backup-
configs/sample_config_hwdb.yaml.

. Extract the . tar.gz file to a known location. Inside, you will find three files; the one we are currently interested

in will be called firesim.mcs. Note the full path of this firesim.mcs file for the next step.

. Open Vivado Lab and click “Open Hardware Manager”. Then click “Open Target” and “Auto connect”.
. Right-click on your FPGA and click “Add Configuration Memory Device”. For a RHS Research Nitefury II,

choose s25£1256xxxxxx0-spi-x1_x2_x4 as the Configuration Memory Part. Click “OK” when prompted to
program the configuration memory device.

For Configuration file, choose the firesim.mcs file from step 7.

Uncheck “Verify” and click OK.

6.1.

Initial Setup/Installation 105

https://rhsresearch.com/collections/rhs-public/products/nitefury-xilinx-artix-fpga-kit-in-nvme-ssd-form-factor-2280-key-m
https://rhsresearch.com/collections/rhs-public/products/nitefury-xilinx-artix-fpga-kit-in-nvme-ssd-form-factor-2280-key-m
https://www.amazon.com/ORICO-Enclosure-Compatible-Thunderbolt-Type-C-M2V01/dp/B08R9DMFFT
https://www.amazon.com/ORICO-Enclosure-Compatible-Thunderbolt-Type-C-M2V01/dp/B08R9DMFFT
https://digilent.com/shop/jtag-hs2-programming-cable/
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/sample-backup-configs/sample_config_hwdb.yaml
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/sample-backup-configs/sample_config_hwdb.yaml
https://rhsresearch.com/collections/rhs-public/products/nitefury-xilinx-artix-fpga-kit-in-nvme-ssd-form-factor-2280-key-m

FireSim Documentation, Release 1.17.0

12. When programming the configuration memory device is completed, power off your machine fully (i.e., the FPGA
should completely lose power).

13. Cold-boot the machine. A cold boot is required for the FPGA to be successfully re-programmed from its flash.

14. Once the machine has booted, run the following to ensure that your FPGA is set up properly:

lspci -vvv -d 10ee:903f

If successful, this should show an entry with Xilinx as the manufacturer and two memory regions. There should be one
entry for each FPGA you’ve added to the Run Farm Machine.

6. Install sshd

Machines: Manager Machine, Run Farm Machines, and Build Farm Machines

On Ubuntu, install openssh-server like so:

sudo apt install openssh-server

7. Set up SSH Keys

Machines: Manager Machine.

On the manager machine, generate a keypair that you will use to ssh from the manager machine into the manager
machine (ssh localhost), run farm machines, and build farm machines:

cd ~/.ssh
ssh-keygen -t ed25519 -C "firesim.pem" -f firesim.pem
[create passphrase]

Next, add this key to the authorized_keys file on the manager machine:

cd ~/.ssh
cat firesim.pem.pub >> authorized_keys
chmod 0600 authorized_keys

You should also copy this public key into the ~/.ssh/authorized_keys files on all of your Run Farm and Build
Farm Machines.

Returning to the Manager Machine, let’s set up an ssh-agent:

cd ~/.ssh

ssh-agent -s > AGENT_VARS
source AGENT_VARS

ssh-add firesim.pem

If you reboot your machine (or otherwise kill the ssh-agent), you will need to re-run the above four commands
before using FireSim. If you open a new terminal (and ssh-agent is already running), you can simply run source
~/ .ssh/AGENT_VARS.

Finally, confirm that you can now ssh localhost and ssh into your Run Farm and Build Farm Machines without
being prompted for a passphrase.

106 Chapter 6. RHS Research Nitefury Il XDMA-based Getting Started Guide

FireSim Documentation, Release 1.17.0

8. Install Guestmount

Machines: Manager Machine and Run Farm Machines

Next, install the guestmount program:

sudo chmod +r /boot/vmlinuz-*
sudo apt install libguestfs-tools
sudo chmod +r /boot/vmlinuz-*

This is needed by a variety of FireSim steps that mount disk images in order to copy in/out results of simulations out of
the images. Using guestmount instead of the standard mount commands allows for users to perform these operations
without requiring sudo (after this initial installation).

Let’s double check that guestmount is functioning correctly on your system. To do so, we’ll generate a dummy
filesystem image:

cd ~/ # or any scratch area

mkdir sysroot-testing

cd sysroot-testing

mkdir sysroot

dd if=/dev/urandom of=sysroot/myfile bs=1024 count=1024
virt-make-fs --format=qcow2 --type=ext2 sysroot sysroot.gcow2

Ensure that this command completed without producing an error and that the output file sysroot.qcow2 exists.

Assuming all of this completed successfully (i.e., no error from virt-make-f£s), you can delete the sysroot-testing
directory, since we will not need it any longer.

Warning: Due to prior issues we’ve seen with guestmount, ensure that your FireSim repository does not reside
on an NFS mount.

9. Check Hard File Limit

Machine: Manager Machine

Check the output of the following command:

ulimit -Hn

If the result is greater than or equal to 16384, you can continue on to “Setting up the FireSim Repo”. Otherwise, run:

echo "* hard nofile 16384" | sudo tee --append /etc/security/limits.conf

Then, reboot your machine.

6.1. Initial Setup/Installation 107

FireSim Documentation, Release 1.17.0

10. Verify Run Farm Machine environment

Machines: Manager Machine and Run Farm Machines

Finally, let’s ensure that the Xilinx Vivado Lab tools are properly sourced in your shell setup (i.e. .bashrc) so that any
shell on your Run Farm Machines can use the corresponding programs. The environment variables should be visible
to any non-interactive shells that are spawned.

You can check this by running the following on the Manager Machine, replacing RUN_FARM_IP with localhost if
your Run Farm machine and Manager machine are the same machine, or replacing it with the Run Farm machine’s 1P
address if they are different machines.

ssh RUN_FARM_IP printenv

Ensure that the output of the command shows that the Xilinx Vivado Lab tools are present in the printed environment
variables (i.e., PATH).

If you have multiple Run Farm machines, you should repeat this process for each Run Farm machine, replacing
RUN_FARM_TP with a different Run Farm Machine’s IP address.

Congratulations! We’ve now set up your machine/cluster to run simulations. Click Next to continue with the guide.

6.2 FireSim Repo Setup

Next, we’ll clone FireSim on your Manager Machine and run a few final setup steps using scripts in the repo.

6.2.1 Setting up the FireSim Repo

Machine: From this point forward, run everything on your Manager Machine, unless otherwise instructed.

We’re finally ready to fetch FireSim’s sources. This should be done on your Manager Machine. Run:

git clone https://github.com/firesim/firesim

cd firesim

checkout latest official firesim release

note: this may not be the latest release if the documentation version != "stable"
git checkout 1.17.0

Next, we will bootstrap the machine by installing Miniforge Conda, our software package manager, and set up a default
software environment using Conda.

You should select a location where you want Conda to be installed. This can be an existing Miniforge Conda install, or
a directory (that does not exist) where you would like Conda to be installed.

Replace REPLACE_ME_USER_CONDA_LOCATION in the command below with your chosen path and run it:

./scripts/machine-launch-script.sh --prefix REPLACE_ME_USER_CONDA_LOCATION

Among other setup steps, the script will install Miniforge Conda (https://github.com/conda-forge/miniforge) and create
a default environment called firesim.

When prompted, you should allow the Conda installer to modify your ~/.bashrc to automatically place you in the
Conda environment when opening a new shell.

108 Chapter 6. RHS Research Nitefury Il XDMA-based Getting Started Guide

https://github.com/conda-forge/miniforge

FireSim Documentation, Release 1.17.0

Warning: Once the machine-launch-script.sh completes, ensure that you log out of the machine / exit
out of the terminal so that the .bashrc modifications can apply.

After re-logging back into the machine, you should be in the firesim Conda environment.

Verify this by running:

conda env list

If you are not in the firesim environment and the environment exists, you can run the following to “activate” or enter
the environment:

conda activate firesim

Next, return to your clone of the FireSim repo and run:

./build-setup.sh

The build-setup.sh script will validate that you are on a tagged branch, otherwise it will prompt for confirmation.
Then, it will automatically initialize submodules and install the RISC-V tools and other dependencies.

Once build-setup.sh completes, run:

source sourceme-manager.sh --skip-ssh-setup

This will perform various environment setup steps, such as adding the RISC-V tools to your path. Sourcing this the
first time will take some time — however each subsequent sourcing should be instantaneous.

Warning: Every time you want to use FireSim, you should cd into your FireSim directory and source
sourceme-manager . sh again with the arguments shown above.

6.2.2 Initializing FireSim Config Files

The FireSim manager contains a command that will automatically provide a fresh set of configuration files for a given
platform.

To run it, do the following:

firesim managerinit --platform rhsresearch_nitefury_ii

This will produce several initial configuration files, which we will edit in the next section.

6.2.3 Configuring the FireSim manager to understand your Run Farm Machine
setup

As our final setup step, we will edit FireSim’s configuration files so that the manager understands our Run Farm machine
setup and the set of FPGAs attached to each Run Farm machine.

Inside the cloned FireSim repo, open up the deploy/config_runtime.yaml file and set the following keys to the
indicated values:

e default_simulation_dir should point to a temporary simulation directory of your choice on your Run Farm
Machines. This is the directory that simulations will run out of.

6.2. FireSim Repo Setup 109

FireSim Documentation, Release 1.17.0

e run_farm_hosts_to_use should be a list of - IP-address: machine_spec pairs, one pair for each
of your Run Farm Machines. IP-address should be the IP address or hostname of the system (that the
Manager Machine can use to ssh into the Run Farm Machine) and the machine_spec should be a value
from run_farm_host_specs in deploy/run-farm-recipes/externally_provisioned.yaml. Each spec describes the
number of FPGAs attached to a system and other properties about the system.

Here are two examples of how this could be configured:

Example 1: Your Run Farm has a single machine with one FPGA attached and this machine is also your Manager
Machine:

run_farm_hosts_to_use:
- localhost: one_fpgas_spec

Example 2: You have two Run Farm Machines (separate from your Manager Machine). The Run Farm Ma-
chines are accessible from your manager machine with the hostnames firesim-runnerl.berkeley.edu and
firesim-runner2.berkeley.edu, each with eight FPGAs attached.

run_farm_hosts_to_use:
- firesim-runnerl.berkeley.edu: eight_fpgas_spec
- firesim-runner2.berkeley.edu: eight_fpgas_spec

e default_hw_config should be nitefury_firesim_rocket_singlecore_no_nic

Then, run the following command so that FireSim can generate a mapping from the FPGA ID used for JTAG program-
ming to the PCle ID used to run simulations. If you ever change the physical layout of the machine (e.g., which PCle
slot the FPGAs are attached to), you will need to re-run this command.

firesim enumeratefpgas

This will generate a database file in /opt/firesim-db. json on each Run Farm Machine that has this mapping.

Now you’re ready to run your first FireSim simulation! Hit Next to continue with the guide.

110 Chapter 6. RHS Research Nitefury Il XDMA-based Getting Started Guide

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/run-farm-recipes/externally_provisioned.yaml

FireSim Documentation, Release 1.17.0

6.3 Running a Single Node Simulation

Now that we’ve completed all the basic setup steps, it’s time to run a simulation! In this section, we will simulate a
single target node, for which we will use a single RHS Research Nitefury II.

Make sure you have sourced sourceme-manager.sh --skip-ssh-setup before running any of these com-
mands.

6.3.1 Building target software

In this guide, we’ll boot Linux on our simulated node. To do so, we’ll need to build our RISC-V SoC-compatible Linux
distro. For this guide, we will use a simple buildroot-based distribution. We can build the Linux distribution like so:

assumes you already cd'd into your firesim repo
and sourced sourceme-manager.sh

#

then:

cd sw/firesim-software

./init-submodules.sh

./marshal -v build br-base.json

Once this is completed, you’ll have the following files:

e YOUR_FIRESIM_REPO/sw/firesim-software/images/firechip/br-base/br-base-bin - a bootloader
+ Linux kernel image for the RISC-V SoC we will simulate.

* YOUR_FIRESIM_REPO/sw/firesim-software/images/firechip/br-base/br-base.img - a disk image
for the RISC-V SoC we will simulate

These files will be used to form base images to either build more complicated workloads (see the Defining Custom
Workloads section) or directly as a basic, interactive Linux distribution.

6.3.2 Setting up the manager configuration

All runtime configuration options for the manager are located in YOUR_FIRESIM_REPO/deploy/config_runtime.
yaml. In this guide, we will explain only the parts of this file necessary for our purposes. You can find full descriptions
of all of the parameters in the Manager Configuration Files section.

Based on the changes we made earlier, this file will already have everything set correctly to run a simulation.
Below we’ll highlight a few of these lines to explain what is happening:

¢ At the top, you’ll notice the run_farm mapping, which describes and specifies the machines to run simulations
on.

— By default, we’ll be using a base_recipe of run-farm-recipes/externally_provisioned.yaml,
which means that our Run Farm machines are pre-configured, and do not require the manager to dynamically
launch/terminate them (e.g., as we would do for cloud instances).

— The default_platform has automatically been set for our FPGA board, to
RHSResearchNitefuryIIInstanceDeployManager.

— The default_simulation_dir is the directory on the Run Farm Machines where simulations will run
out of. The default is likely fine, but you can change it to any directory you have access to on the Run Farm
machines.

6.3. Running a Single Node Simulation 111

FireSim Documentation, Release 1.17.0

— run_farm_hosts_to_use should be a list of - IP-address: machine_spec pairs, one pair for each
of your Run Farm Machines. IP-address should be the IP address or hostname of the system (that the
Manager Machine can use to ssh into the Run Farm Machine) and the machine_spec should be a value from
run_farm_host_specs in deploy/run-farm-recipes/externally_provisioned.yaml. Each spec describes the
number of FPGAs attached to a system and other properties about the system. We configured this already
in the previous step.

* The target_config section describes the system that we’d like to simulate.
— topology: mno_net_config indicates that we’re running simulations with no network between them.
— no_net_num_nodes: 1 indicates that we’ll be a simulation of a single SoC

— The default_hw_config will be set to a pre-built design (for our FPGA,
nitefury_firesim_rocket_singlecore_no_nic) with a single RISC-V Rocket core. This is
usually not set by default, but we already set it in the previous step.

* The workload section describes the workload that we’d like to run on our simulated systems. In this case, we
will leave it as the default, which will boot Linux on all SoCs in the simulation.

6.3.3 Building and Deploying simulation infrastructure to the Run Farm Machines

The manager automates the process of building and deploying all components necessary to run your simulation on the
Run Farm, including programming FPGAs. To tell the manager to setup all of our simulation infrastructure, run the
following:

firesim infrasetup

For a complete run, you should expect output like the following:

$ firesim infrasetup
FireSim Manager. Docs: https://docs.fires.im
Running: infrasetup

Building FPGA software driver.

[localhost] Checking if host instance is up...

[localhost] Copying FPGA simulation infrastructure for slot: 0.

[localhost] Clearing all FPGA Slots.

The full log of this run is:
.../firesim/deploy/logs/2023-03-06--01-22-46-infrasetup-35ZP4WUOX8KUYBF3.1log

Many of these tasks will take several minutes, especially on a clean copy of the repo. The console output here contains
the “user-friendly” version of the output. If you want to see detailed progress as it happens, tail -f the latest logfile
in firesim/deploy/logs/.

At this point, our single Run Farm machine has all the infrastructure necessary to run a simulation, so let’s launch our
simulation!

112 Chapter 6. RHS Research Nitefury Il XDMA-based Getting Started Guide

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/run-farm-recipes/externally_provisioned.yaml

FireSim Documentation, Release 1.17.0

6.3.4 Running the simulation

Finally, let’s run our simulation! To do so, run:

firesim runworkload

This command boots up a simulation and prints out the live status of the simulated nodes every 10s. When you do this,
you will initially see output like:

$ firesim runworkload
FireSim Manager. Docs: https://docs.fires.im
Running: runworkload

Creating the directory: .../firesim/deploy/results-workload/2023-03-06--01-25-34-1inux-
—uniform/

[localhost] Checking if host instance is up...

[localhost] Starting FPGA simulation for slot: 0.

If you don’t look quickly, you might miss it, since it will get replaced with a live status page:

FireSim Simulation Status @ 2018-05-19 00:38:56.062737

This workload's output is located in:
.../firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/

This run's log is located in:
.../firesim/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.1og
This status will update every 10s.

1/1 instances are still running.
1/1 simulations are still running.

This will only exit once all of the simulated nodes have powered off. So, let’s let it run and open another terminal
on the manager machine. From there, cd into your FireSim directory again and source sourceme-manager.sh
--skip-ssh-setup.

Next, let’s ssh into the Run Farm machine. If your Run Farm and Manager Machines are the same, replace
RUN_FARM_IP_OR_HOSTNAME with 1localhost, otherwise replace it with your Run Farm Machine’s IP or hostname.

source ~/.ssh/AGENT_VARS
ssh RUN_FARM_IP_OR_HOSTNAME

6.3. Running a Single Node Simulation 113

FireSim Documentation, Release 1.17.0

Next, we can directly attach to the console of the simulated system using screen, run:

screen -r fsim®

Voila! You should now see Linux booting on the simulated system and then be prompted with a Linux login prompt,
like so:

[truncated Linux boot output]

[0.020000] VFS: Mounted root (ext2 filesystem) on device 254:0.

[0.020000] devtmpfs: mounted

[0.020000] Freeing unused kernel memory: 140K

[0.020000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device

Starting logging: OK

Starting mdev...

mdev: /sys/dev: No such file or directory

modprobe: can't change directory to '/lib/modules': No such file or directory
Initializing random number generator... done.

Starting network: ip: SIOCGIFFLAGS: No such device

ip: can't find device 'eth0'

FAIL

Starting dropbear sshd: OK

Welcome to Buildroot
buildroot login:

You can ignore the messages about the network — that is expected because we are simulating a design without a NIC.

Now, you can login to the system! The username is root and there is no password. At this point, you should be
presented with a regular console, where you can type commands into the simulation and run programs. For example:

Welcome to Buildroot

buildroot login: root

Password:

uname -a

Linux buildroot 4.15.0-rc6-31580-9g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018.
—riscv64 GNU/Linux

#

At this point, you can run workloads as you’d like. To finish off this guide, let’s power off the simulated system and see
what the manager does. To do so, in the console of the simulated system, run poweroff -f:

Welcome to Buildroot

buildroot login: root

Password:

uname -a

Linux buildroot 4.15.0-rc6-31580-9g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018.
—riscv64 GNU/Linux

poweroff -f

You should see output like the following from the simulation console:

poweroff -f
[12.456000] reboot: Power down
Power off

(continues on next page)

114 Chapter 6. RHS Research Nitefury Il XDMA-based Getting Started Guide

FireSim Documentation, Release 1.17.0

(continued from previous page)

time elapsed: 468.8 s, simulation speed = 88.50 MHz
#%% PASSED *** after 41492621244 cycles

Runs 41492621244 cycles

[PASS] FireSim Test

SEED: 1526690334

Script done, file is uartlog

[screen is terminating]

You’ll also notice that the manager polling loop exited! You’ll see output like this from the manager:

FireSim Simulation Status @ 2018-05-19 00:46:50.075885

This workload's output is located in:
.../firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/

This run's log is located in:
.../firesim/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.1log
This status will update every 10s.

1/1 instances are still running.

0/1 simulations are still running.

FireSim Simulation Exited Successfully. See results in:
.../firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/

The full log of this run is:
.../firesim/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ. log

If you take a look at the workload output directory given in the manager output (in this case, . ../firesim/deploy/
results-workload/2018-05-19--00-38-52-1inux-uniform/), you'll see the following:

$ 1s -la firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/*/*
-rw-rw-r-- 1 centos centos 797 May 19 00:46 linux-uniform®/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 00:46 linux-uniform®@/os-release
-rw-rw-r-- 1 centos centos 7316 May 19 00:46 linux-uniform®@/uartlog

What are these files? They are specified to the manager in a configuration file (deploy/workloads/linux-uniform.json)
as files that we want automatically copied back from the Run Farm Machine into the results-workload directory on
our manager machine, which is useful for running benchmarks automatically. The Defining Custom Workloads section
describes this process in detail.

Congratulations on running your first FireSim simulation! At this point, you can check-out some of the advanced

6.3. Running a Single Node Simulation 115

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/linux-uniform.json

FireSim Documentation, Release 1.17.0

features of FireSim in the sidebar to the left. For example, we expect that many people will be interested in the ability
to automatically run the SPEC17 benchmarks: SPEC 2017.

Click Next if you’d like to continue on to building your own bitstreams.

6.4 Building Your Own Hardware Designs

This section will guide you through building a RHS Research Nitefury II FPGA bitstream to run FireSim simulations.

6.4.1 System Setup

Here, we’ll do some final one-time setup for your Build Farm Machines so that we can build bitstreams for FireSim
simulations automatically.

These steps assume that you have already followed the earlier setup steps required to run simulations.

As noted earlier, it is highly recommended that you use Ubuntu 20.04 LTS as the host operating system for all machine
types in an on-premises setup, as this is the OS recommended by Xilinx.

Also recall that we make a distinction between the Manager Machine, the Build Farm Machine(s), and the Run Farm
Machine(s). In a simple setup, these can all be a single machine, in which case you should run the Build Farm Machine
setup steps below on your single machine.

1. Install Vivado for Builds

Machines: Build Farm Machines.

Running builds for RHS Research Nitefury II in FireSim requires Vivado 2022.1. Other versions are unlikely to work
out-of-the-box.

On each Build Farm machine, do the following:

1. Install Vivado 2022.1 from the Xilinx Downloads Website. By default, Vivado will be installed to /tools/
Xilinx/Vivado/2022.1. We recommend keeping this default. If you change it to something else, you will
need to adjust the path in the rest of the setup steps.

2. Add the following to ~/ .bashrc so that vivado is available when ssh-ing into the machine:

source /tools/Xilinx/Vivado/2022.1/settings64.sh

3. No special board support package is required for the Nitefury II. Move on to the next step.

If you have multiple Build Farm Machines, you should repeat this process for each.

2. Verify Build Farm Machine environment

Machines: Manager Machine and Run Farm Machines

Finally, let’s ensure that Vivado 2022.1 is properly sourced in your shell setup (i.e. .bashrc) so that any shell on
your Build Farm Machines can use the corresponding programs. The environment variables should be visible to any
non-interactive shells that are spawned.

You can check this by running the following on the Manager Machine, replacing BUILD_FARM_IP with localhost if
your Build Farm machine and Manager machine are the same machine, or replacing it with the Build Farm machine’s
IP address if they are different machines.

116 Chapter 6. RHS Research Nitefury Il XDMA-based Getting Started Guide

https://www.xilinx.com/support/download.html

FireSim Documentation, Release 1.17.0

ssh BUILD_FARM_IP printenv

Ensure that the output of the command shows that the Vivado 2022.1 tools are present in the printed environment
variables (i.e., PATH and XILINX_VIVADO).

If you have multiple Build Farm machines, you should repeat this process for each Build Farm machine, replacing
BUILD_FARM_IP with a different Build Farm Machine’s IP address.

6.4.2 Configuring a Build in the Manager

In the deploy/config_build.yaml file, you will notice that the builds_to_run section currently contains several
lines, which indicates to the build system that you want to run all of these “build recipes” in parallel, with the parameters
for each “build recipe” listed in the relevant section of the deploy/config_build_recipes.yaml file.

In this guide, we’ll build the default FireSim design for the RHS Research Nitefury II, which is specified by the
nitefury_firesim_rocket_singlecore_no_nic section in deploy/config_build_recipes.yaml. This was
the same configuration used to build the pre-built bitstream that you used to run simulations in the guide to running a
simulation.

Looking at the nitefury_firesim_rocket_singlecore_no_nic section in deploy/config_build_recipes.
yaml, there are a few notable items:

* TARGET_CONFIG specifies that this configuration is a simple singlecore RISC-V Rocket with a single DRAM
channel.

* bit_builder_recipe points to bit-builder-recipes/rhsresearch_nitefury_ii.yaml, which is
found in the deploy directory and tells the FireSim build system how to build bitstreams for this FPGA.

Having looked at this entry, let’s now set up the build in deploy/config_build.yaml. First, we’ll set up the
build_farm mapping, which specifies the Build Farm Machines that are available to build FPGA bitstreams.

* base_recipe will map to build-farm-recipes/externally_provisioned.yaml. This indicates to the
FireSim manager that the machines used to run builds are existing machines that have been set up by the user,
instead of cloud instances that are automatically provisioned.

e default_build_dir is the directory in which builds will run out of on your Build Farm Machines. Change the
default null to a path where you would like temporary build data to be stored on your Build Farm Machines.

* build_farm_hosts is a section that contains a list of IP addresses or hostnames of machines in your Build
Farm. By default, localhost is specified. If you are using a separate Build Farm Machine, you should replace
this with the IP address or hostname of the Build Farm Machine on which you would like to run the build.

Having configured our Build Farm, let’s specify the design we’d like to build. To do this, edit the builds_to_run
section in deploy/config_build.yaml so that it looks like the following:

builds_to_run:
- nitefury_firesim_rocket_singlecore_no_nic

In essence, you should delete or comment out all the other items in the builds_to_run section besides
nitefury_firesim_rocket_singlecore_no_nic.

6.4. Building Your Own Hardware Designs 117

https://www.github.com/firesim/firesim/blob/1.17.0/deploy

FireSim Documentation, Release 1.17.0

6.4.3 Running the Build

Now, we can run a build like so:

firesim buildbitstream

This will run through the entire build process, taking the Chisel (or Verilog) RTL and producing a bitstream that runs
on the RHS Research Nitefury Il FPGA. This whole process will usually take a few hours. When the build completes,
you will see a directory in deploy/results-build/, named after your build parameter settings, that contains all of
the outputs of the Xilinx Vivado build process. Additionally, the manager will print out a path to a log file that describes
everything that happened, in-detail, during this run (this is a good file to send us if you encounter problems).

The manager will also print an entry that can be added to config_hwdb.yaml so that the bitstream can be used to run
simulations. This entry will contain a bitstream_tar key whose value is the path to the final generated bitstream file.
You can share generated bitstreams with others by sharing the file listed in bitstream_tar and the config_hwdb.
yaml entry for it.

Now that you know how to generate your own FPGA image, you can modify the target-design to add your own features,
then build a FireSim-compatible FPGA image automatically!

This is the end of the Getting Started Guide. To learn more advanced FireSim features, you can choose a link under
the “Advanced Docs” section to the left.

Warning: We highly recommend using the XDMA-based U250 flow instead of this Vitis-based flow. You
can find the XDMA-based flow here: Xilinx Alveo U250 XDMA-based Getting Started Guide. The Vitis-based
flow does not support DMA-based FireSim bridges (e.g., TracerV, Synthesizable Printfs, etc.), while the XDMA-
based flows support all FireSim features. If you’re unsure, use the XDMA-based U250 flow instead: Xilinx Alveo
U250 XDMA-based Getting Started Guide

118 Chapter 6. RHS Research Nitefury Il XDMA-based Getting Started Guide

CHAPTER
SEVEN

(EXPERIMENTAL) XILINX ALVEO U250 VITIS-BASED GETTING
STARTED GUIDE

The getting started guides that follow this page will walk you through the complete (Vitis-based) flow for getting an
example FireSim simulation up and running using an on-premises Xilinx Alveo U250 FPGA, from scratch.

First, we’ll set up your environment, then run a simulation of a single RISC-V Rocket-based SoC booting Linux, using
a pre-built bitstream. Next, we’ll show you how to build your own FPGA bitstreams for a custom hardware design.
After you complete these guides, you can look at the “Advanced Docs” in the sidebar to the left.

Here’s a high-level outline of what we’ll be doing in this guide:
1. FPGA Setup: Installing the FPGA board and relevant software.
2. On-Premises Machine Setup

1. Setting up a “Manager Machine” from which you will coordinate building and deploying simulations lo-
cally.

3. Single-node simulation guide: This guide walks you through the process of running a simulation locally on a
single Xilinx Alveo U250, using a pre-built, public bitstream.

4. Building your own hardware designs guide (Chisel to FPGA Image): This guide walks you through the full
process of taking Rocket Chip RTL and any custom RTL plugged into Rocket Chip and producing a FireSim
bitstream to plug into your simulations. This automatically runs Chisel elaboration, FAME-1 Transformation,
and the Xilinx Vitis FPGA flow.

Generally speaking, you only need to follow Step 4 if you're modifying Chisel RTL or changing non-runtime config-
urable hardware parameters.

7.1 Initial Setup/Installation

Warning: We highly recommend using the XDMA-based U250 flow instead of this Vitis-based flow. You
can find the XDMA-based flow here: Xilinx Alveo U250 XDMA-based Getting Started Guide. The Vitis-based
flow does not support DMA-based FireSim bridges (e.g., TracerV, Synthesizable Printfs, etc.), while the XDMA-
based flows support all FireSim features. If you're unsure, use the XDMA-based U250 flow instead: Xilinx Alveo
U250 XDMA-based Getting Started Guide

7.1.1 Background/Terminology

Before we jump into setting up FireSim, it is important to clarify several terms that we will use throughout the rest of
this documentation.

119

https://www.xilinx.com/products/boards-and-kits/alveo/u250.html

FireSim Documentation, Release 1.17.0

First, to disambiguate between the hardware being simulated and the computers doing the simulating, we define:

Target The design and environment being simulated. Commonly, a group of one or more RISC-V SoCs with or
without a network between them.

Host The computers/FPGAs executing the FireSim simulation — the Run Farm below.

We frequently prefix words with these terms. For example, software can run on the simulated RISC-V system (target-
software) or on a host x86 machine (host-software).

Fig. 1: FireSim Infrastructure Diagram

FireSim Manager (firesim) This program (available on your path as firesim once we source necessary scripts)
automates the work required to launch FPGA builds and run simulations. Most users will only have to interact
with the manager most of the time. If you’re familiar with tools like Vagrant or Docker, the firesim command
is just like the vagrant and docker commands, but for FPGA simulators instead of VMs/containers.

Machines used to build and run FireSim simulations are broadly classified into three groups:

Manager Machine This is the main host machine (e.g., your local desktop or server) that you will “do work™ on. This
is where you’ll clone your copy of FireSim and use the FireSim Manager to deploy builds/simulations from.

Build Farm Machines These are a collection of local machines (“build farm machines”) that are used by the FireSim
manager to run FPGA bitstream builds. The manager will automatically ship all sources necessary to run builds
to these machines and will run the Verilog to FPGA bitstream build process on them.

Run Farm Machines These are a collection of local machines (“run farm machines”) with FPGAs attached that the
manager manages and deploys simulations onto. You can use multiple Run Farms in parallel to run multiple
separate simulations in parallel.

In the simplest setup, a single host machine (e.g. your desktop) can serve the function of all three of these: as the
manager machine, the build farm machine (assuming Vivado is installed), and the run farm machine (assuming an

120 Chapter 7. (Experimental) Xilinx Alveo U250 Vitis-based Getting Started Guide

FireSim Documentation, Release 1.17.0

FPGA is attached).
One final piece of terminology will also be referenced throughout these docs:

Golden Gate The FIRRTL compiler in FireSim that converts target RTL into a decoupled simulator. Formerly named
MIDAS.

7.1.2 FPGA and Tool Setup

Requirements and Installations

We require a base machine that is able to support a Xilinx Vitis-enabled U250 and running Xilinx Vi-
tis. For the purposes of this guide, we assume you are running with a Xilinx Vitis-enabled U250.
Please refer to the minimum system requirements given in the following link: https://docs.xilinx.com/r/en-US/
ug1301-getting-started-guide-alveo-accelerator-cards/Minimum-System-Requirements. sudo access is not needed for
the machine except for when the Xilinx Vitis-enabled U250 and corresponding software is installed.

Next, install the Xilinx Vitis-enabled U250 as indicated: https://docs.xilinx.com/r/en-US/
ug1301-getting-started- guide-alveo-accelerator-cards/Card- Installation- Procedures

We require the following programs/packages installed from the Xilinx website in addition to a physical Xilinx Vitis-
enabled U250 installation:

 Xilinx Vitis 2022.1
— Installation link: https://www.xilinx.com/products/design-tools/vitis/vitis-whats-new.html#20221
» Xilinx XRT and Xilinx Vitis-enabled U250 board package (corresponding with Vitis 2022.1)

— Ensure you complete the “Installing the Deployment Software” and “Card Bring-
Up and Validation” sections in the following link: https://docs.xilinx.com/r/en-US/
ug1301-getting-started-guide-alveo-accelerator-cards/Installing-the- Deployment-Software

Setup Validation

After installing the Xilinx Vitis-enabled U250 using the Xilinx instructions and installing the specific versions of
Vitis/XRT, let’s verify that the Xilinx Vitis-enabled U250 can be used for emulations. Ensure that you can run the
following XRT commands without errors:

xbutil examine # obtain the BDF associated with your installed Xilinx Vitis-enabled U250
xbutil validate --device <CARD_BDF_INSTALLED> --verbose

The xbutil validate command runs simple tests to ensure that the FPGA can be properly flashed with a bitstream
by using XRT.

Warning: Anytime the host computer is rebooted you may need to re-run parts of the setup process (i.e. re-
flash the shell). Before continuing to FireSim simulations after a host computer reboot, ensure that the previously
mentioned xbutil command is successful.

Now you’re ready to continue with other FireSim setup!

7.1. Initial Setup/Installation 121

https://docs.xilinx.com/r/en-US/ug1301-getting-started-guide-alveo-accelerator-cards/Minimum-System-Requirements
https://docs.xilinx.com/r/en-US/ug1301-getting-started-guide-alveo-accelerator-cards/Minimum-System-Requirements
https://docs.xilinx.com/r/en-US/ug1301-getting-started-guide-alveo-accelerator-cards/Card-Installation-Procedures
https://docs.xilinx.com/r/en-US/ug1301-getting-started-guide-alveo-accelerator-cards/Card-Installation-Procedures
https://www.xilinx.com/products/design-tools/vitis/vitis-whats-new.html#20221
https://docs.xilinx.com/r/en-US/ug1301-getting-started-guide-alveo-accelerator-cards/Installing-the-Deployment-Software
https://docs.xilinx.com/r/en-US/ug1301-getting-started-guide-alveo-accelerator-cards/Installing-the-Deployment-Software

FireSim Documentation, Release 1.17.0

7.1.3 Setting up your On-Premises Machine

This guide will walk you through setting up a single node cluster (i.e. running FPGA bitstream builds and simulations
on a single machine) for FireSim use. This single machine will serve as the “Manager Machine” that acts as a “head”
node that all work will be completed on.

Finally, ensure that the Xilinx XRT/Vitis tools are sourced in your shell setup (i.e. .bashrc and or .bash_profile)so
that any shell can use the corresponding programs. The environment variables should be visible to any non-interactive
shells that are spawned. You can check this by ensuring that the output of the following command shows that the Xilinx
XRT/Vitis tools are present in the environment variables (i.e. “XILINX_XRT”):

ssh localhost printenv

Other Miscellaneous Setup

Additionally, you should be able to run ssh localhost without needing a password. The FireSim manager program
runs all commands by ssh-ing into a BuildFarm/RunFarm machine given an IP address then running the command.
To do so non-interactively, it needs passwordless access to the machines (in our case, localhost) to build/run on. To
safely enable passwordless access, you can first create a unique SSH key and add it to the ~/. ssh/authorized_keys
file. For example, the following instructions will create a SSH key called id_rsa_local and add it to the authorized
keys:

cd ~/.ssh

create the new key with name ‘“id_rsa_local® and a comment
you can use a different name (and modify the comment)
ssh-keygen -f id_rsa_local -C "@localhost"

add the key to the “authorized_keys' file
cat id_rsa_local.pub >> authorized_keys
chmod 600 authorized_keys

Next, you should use that key to for localhost logins by modifying your ~/.ssh/config file so that the SSH agent
can use that SSH key. For example:

add the following lines
Host localhost
IdentityFile ~/.ssh/id_rsa_local

Finally, you should also install the guestmount program and ensure it runs properly. This is needed by a variety of
FireSim steps that mount disk images in order to copy in/out results of simulations out of the images. Most likely you
will need to follow the instructions here to ensure guestmount doesn’t error.

Warning: If using guestmount, verify that the command is able to work properly. Due to prior issues with
guestmount internally, ensure that your FireSim repository (and all temporary directories) does not reside on an
NFS mount.

122 Chapter 7. (Experimental) Xilinx Alveo U250 Vitis-based Getting Started Guide

https://askubuntu.com/questions/1046828/how-to-run-libguestfs-tools-tools-such-as-virt-make-fs-without-sudo

FireSim Documentation, Release 1.17.0

Setting up the FireSim Repo

We’re finally ready to fetch FireSim’s sources. Run:

git clone https://github.com/firesim/firesim

cd firesim

checkout latest official firesim release

note: this may not be the latest release if the documentation version != "stable"
git checkout 1.17.0

Next, we will bootstrap the machine by installing Miniforge Conda, our software package manager, and set up a default
software environment using Conda. First run the following to see the options to the bootstrap script:

./scripts/machine-launch-script.sh --help

Make sure you understand the options and appropriately run the command. For example, if you already installed Conda
you can use the --prefix flag to point to an existing installation. You can also use that same flag to setup Conda in a
non-sudo required location. Next run the machine-launch-script. sh, with the options your setup requires. Below
we will give a few examples on how to run the command (choose the command or modify it accordingly):

Warning: We recommend you re-install Conda in favor of Miniforge Conda (a minimal installation of Conda).

With sudo access (newly install Conda)

sudo ./scripts/machine-launch-script.sh

Without sudo access (install Conda to user-specified location)

./scripts/machine-launch-script.sh --prefix REPLACE_USER_SPECIFIED_LOCATION

Without sudo access (use existing Conda)

./scripts/machine-launch-script.sh --prefix REPLACE_PATH_TO_CONDA

If the option is selected, the script will install Miniforge Conda (https://github.com/conda-forge/miniforge) and create
a default environment called firesim that is used. Ensure that you log out of the machine / exit out of the terminal
after this step so that .bashrc modifications can apply.

After re-logging back into the machine, you should be in the firesim Conda environment (or whatever you decided
to name the environment in the machine-launch-script.sh). Verify this by running:

conda env list

If you are not in the firesim environment and the environment exists, you can run the following to “activate” or enter
the environment:

conda activate firesim # or whatever the environment is called

Next run:

./build-setup.sh

The build-setup.sh script will validate that you are on a tagged branch, otherwise it will prompt for confirmation.
This will have initialized submodules and installed the RISC-V tools and other dependencies.

7.1. Initial Setup/Installation 123

https://github.com/conda-forge/miniforge

FireSim Documentation, Release 1.17.0

Next, run:

source sourceme-manager.sh --skip-ssh-setup

This will perform various environment setup steps, such as adding the RISC-V tools to your path. Sourcing this the
first time will take some time — however each time after that should be instantaneous.

Every time you want to use FireSim, you should cd into your FireSim directory and source this file again with
the argument given.

Final Environment Check

Finally, let’s verify that the environment variables are correctly set up for the rest of this guide. Run:

echo $PATH

You should see that both the Xilinx XRT/Vitis tools are located in the PATH are are after the Conda environment path.
Next run:

echo $LD_LIBRARY_PATH

You should see that the Xilinx XRT/Vitis tools are located on your LD_LIBRARY_PATH and that there is no trailing :
(otherwise compilation will error later).

Finally verify that Xilinx XRT/Vitis tools are found when running locally through ssh. Run:

ssh localhost printenv

Inspect that both the PATH and LD_LIBRARY_PATH are setup similarly to running locally (without ssh localhost).

Completing Setup Using the Manager

The FireSim manager contains a command that will finish the rest of the FireSim setup process. To run it, do the
following:

firesim managerinit --platform vitis

It will create initial configuration files, which we will edit in later sections.

Hit Next to continue with the guide.

Warning: We highly recommend using the XDMA-based U250 flow instead of this Vitis-based flow. You
can find the XDMA-based flow here: Xilinx Alveo U250 XDMA-based Getting Started Guide. The Vitis-based
flow does not support DMA-based FireSim bridges (e.g., TracerV, Synthesizable Printfs, etc.), while the XDMA-
based flows support all FireSim features. If you're unsure, use the XDMA-based U250 flow instead: Xilinx Alveo
U250 XDMA-based Getting Started Guide

124 Chapter 7. (Experimental) Xilinx Alveo U250 Vitis-based Getting Started Guide

FireSim Documentation, Release 1.17.0

7.2 Running a Single Node Simulation

Now that we’ve completed all the basic setup steps, it’s time to run a simulation! In this section, we will simulate a
single target node, for which we will use a single Xilinx Vitis-enabled U250.

Make sure you have sourced sourceme-manager.sh --skip-ssh-setup before running any of these com-
mands.

7.2.1 Building target software

In this guide, we’ll boot Linux on our simulated node. To do so, we’ll need to build our RISC-V SoC-compatible Linux
distro. For this guide, we will use a simple buildroot-based distribution. We can build the Linux distribution like so:

assumes you already cd'd into your firesim repo
and sourced sourceme-manager.sh

#

then:

cd sw/firesim-software

./init-submodules.sh

./marshal -v build br-base.json

Once this is completed, you’ll have the following files:

¢ YOUR_FIRESIM_REPO/sw/firesim-software/images/firechip/br-base/br-base-bin - a bootloader
+ Linux kernel image for the RISC-V SoC we will simulate.

* YOUR_FIRESIM_REPO/sw/firesim-software/images/firechip/br-base/br-base.img - a disk image
for the RISC-V SoC we will simulate

These files will be used to form base images to either build more complicated workloads (see the Defining Custom
Workloads section) or directly as a basic, interactive Linux distribution.

7.2.2 Setting up the manager configuration

All runtime configuration options for the manager are set in a file called firesim/deploy/config_runtime.yaml.
In this guide, we will explain only the parts of this file necessary for our purposes. You can find full descriptions of all
of the parameters in the Manager Configuration Files section.

If you open up this file, you will see the following default config (assuming you have not modified it):

RUNTIME configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
—html for documentation of all of these params.

run_farm:
base_recipe: run-farm-recipes/externally_provisioned.yaml
recipe_arg_overrides:
REQUIRED: default platform used for run farm hosts. this is a class specifying
how to run simulations on a run farm host.
default_platform: VitisInstanceDeployManager

REQUIRED: default directory where simulations are run out of on the run farm hosts
default_simulation_dir: /vm/home/buildbot/FIRESIM_RUNS_DIR

(continues on next page)

7.2. Running a Single Node Simulation 125

FireSim Documentation, Release 1.17.0

(continued from previous page)

REQUIRED: List of unique hostnames/IP addresses, each with their
corresponding specification that describes the properties of the host.

#

EX:

run_farm_hosts_to_use:

use localhost which is described by "four_fpgas_spec" below.

- localhost: four_fpgas_spec

supply IP address, which points to a machine that is described
by '"four_fpgas_spec" below.

- "111.111.1.111": four_fpgas_spec

run_farm_hosts_to_use:
- localhost: one_fpgas_spec

metasimulation:
metasimulation_enabled: false
vcs or verilator. use vcs-debug or verilator-debug for waveform generation
metasimulation_host_simulator: verilator
plusargs passed to the simulator for all metasimulations
metasimulation_only_plusargs: "+fesvr-step-size=128 +max-cycles=100000000"
plusargs passed to the simulator ONLY FOR vcs metasimulations
metasimulation_only_vcs_plusargs: "+vcs+initreg+® +vcs+initmem+Q"

target_config:
topology: no_net_config
no_net_num_nodes: 1
link_latency: 6405
switching_latency: 10
net_bandwidth: 200
profile_interval: -1

This references a section from config_hwdb.yaml for fpga-accelerated simulation
or from config_build recipes.yaml for metasimulation

In homogeneous configurations, use this to set the hardware config deployed

for all simulators

default_hw_config: firesim_rocket_quadcore_no_nic_12_11lc4mb_ddr3

Advanced: Specify any extra plusargs you would like to provide when

booting the simulator (in both FPGA-sim and metasim modes). This is

a string, with the contents formatted as if you were passing the plusargs
at command line, e.g. "+a=1 +b=2"

plusarg_passthrough: ""

tracing:
enable: no

Trace output formats. Only enabled if "enable" is set to "yes" above

0 = human readable; 1 = binary (compressed raw data); 2 = flamegraph (stack
unwinding -> Flame Graph)

output_format: 0

Trigger selector.
0 = no trigger; 1 = cycle count trigger; 2 = program counter trigger; 3 =

(continues on next page)

126 Chapter 7. (Experimental) Xilinx Alveo U250 Vitis-based Getting Started Guide

FireSim Documentation, Release 1.17.0

(continued from previous page)

instruction trigger
selector: 1

start: 0

end: -1

autocounter:
read_rate: 0

workload:
workload_name: linux-uniform.json
terminate_on_completion: no
suffix_tag: null

host_debug:
When enabled (=yes), Zeros-out FPGA-attached DRAM before simulations
begin (takes 2-5 minutes).
In general, this is not required to produce deterministic simulations on
target machines running linux. Enable if you observe simulation non-determinism.
zero_out_dram: no
If disable_synth_asserts: no, simulation will print assertion message and
terminate simulation if synthesized assertion fires.
If disable_synth_asserts: yes, simulation ignores assertion firing and
continues simulation.
disable_synth_asserts: no

DOCREF START: Synthesized Prints
synth_print:
Start and end cycles for outputting synthesized prints.
They are given in terms of the base clock and will be converted
for each clock domain.
start: 0
end: -1
When enabled (=yes), prefix print output with the target cycle at which the print.,
—was triggered
cycle_prefix: yes
DOCREF END: Synthesized Prints

We’ll need to modify a couple of these lines.

First, let’s tell the manager to use the single Xilinx Vitis-enabled U250 FPGA. You’ll notice that in the run_farm
mapping which describes and specifies the machines to run simulations on. First notice that the base_recipe
maps to run-farm-recipes/externally_provisioned.yaml. This indicates to the FireSim manager that the
machines allocated to run simulations will be provided by the user through IP addresses instead of automatically
launched and allocated (e.g. launching instances on-demand in AWS). Let’s modify the default_platform to
be VitisInstanceDeployManager so that we can launch simulations using Xilinx XRT/Vitis. Next, modify the
default_simulation_dir to a directory that you want to store temporary simulation collateral to. When run-
ning simulations, this directory is used to store any temporary files that the simulator creates (e.g. a uartlog emit-
ted by a Linux simulation). Next, lets modify the run_farm_hosts_to_use mapping. This maps IP addresses (i.e.
localhost) to a description/specification of the simulation machine. In this case, we have only one Xilinx Vitis-
enabled U250 FPGA so we will change the description of localhost to one_£fpga_spec.

Now, let’s verify that the target_config mapping will model the correct target design. By default, it is set to model
a single-node with no network. It should look like the following:

7.2. Running a Single Node Simulation 127

FireSim Documentation, Release 1.17.0

target_config:
topology: no_net_config
no_net_num_nodes: 1
link_latency: 6405
switching_latency: 10
net_bandwidth: 200
profile_interval: -1

This references a section from config_hwdb.yaml

In homogeneous configurations, use this to set the hardware config deployed
for all simulators

default_hw_config: firesim_rocket_quadcore_no_nic_12_11c4mb_ddr3

Note topology is set to no_net_config, indicating that we do not want a network. Then, no_net_num_nodes
is set to 1, indicating that we only want to simulate one node. Lastly, the default_hw_config is
firesim_rocket_quadcore_no_nic_12_11c4mb_ddr3. Let’s modify the default_hw_config (the target design)
to “vitis_firesim_rocket_singlecore_no_nic”. This new hardware configuration does not have a NIC and is pre-built
for the Xilinx Vitis-enabled U250 FPGA. This hardware configuration models a Single-core Rocket Chip SoC and no
network interface card.

We will leave the workload mapping unchanged here, since we do want to run the buildroot-based Linux on our
simulated system. The terminate_on_completion feature is an advanced feature that you can learn more about in
the Manager Configuration Files section.

As a final sanity check, in the mappings we changed, the config_runtime.yaml file should now look like this (with
PATH_TO_SIMULATION_AREA replaced with your simulation collateral temporary directory):

run_farm:
base_recipe: run-farm-recipes/externally_provisioned.yaml
recipe_arg_overrides:
default_platform: VitisInstanceDeployManager
default_simulation_dir: <PATH_TO_SIMULATION_AREA>
run_farm_hosts_to_use:
- localhost: one_fpga_spec

target_config:
topology: no_net_config
no_net_num_nodes: 1
link_latency: 6405
switching_latency: 10
net_bandwidth: 200
profile_interval: -1
default_hw_config: vitis_firesim_rocket_singlecore_no_nic
plusarg_passthrough: ""

workload:
workload_name: linux-uniform.json
terminate_on_completion: no
suffix_tag: null

128 Chapter 7. (Experimental) Xilinx Alveo U250 Vitis-based Getting Started Guide

FireSim Documentation, Release 1.17.0

7.2.3 Building and Deploying simulation infrastructure to the Run Farm Machines

The manager automates the process of building and deploying all components necessary to run your simulation on the
Run Farm, including programming FPGAs. To tell the manager to setup all of our simulation infrastructure, run the
following:

firesim infrasetup

For a complete run, you should expect output like the following:

$ firesim infrasetup
FireSim Manager. Docs: https://docs.fires.im
Running: infrasetup

Building FPGA software driver.

[localhost] Checking if host instance is up...

[localhost] Copying FPGA simulation infrastructure for slot: 0.

[localhost] Clearing all FPGA Slots.

The full log of this run is:
.../firesim/deploy/logs/2023-03-06--01-22-46-infrasetup-35ZP4WUOX8KUYBF3.1log

Many of these tasks will take several minutes, especially on a clean copy of the repo. The console output here contains
the “user-friendly” version of the output. If you want to see detailed progress as it happens, tail -f the latest logfile
in firesim/deploy/logs/.

At this point, our single Run Farm machine has all the infrastructure necessary to run a simulation, so let’s launch our
simulation!

7.2.4 Running the simulation

Finally, let’s run our simulation! To do so, run:

firesim runworkload

This command boots up a simulation and prints out the live status of the simulated nodes every 10s. When you do this,
you will initially see output like:

$ firesim runworkload
FireSim Manager. Docs: https://docs.fires.im
Running: runworkload

Creating the directory: .../firesim/deploy/results-workload/2023-03-06--01-25-34-1inux-
—uniform/

[localhost] Checking if host instance is up...

[localhost] Starting FPGA simulation for slot: 0.

If you don’t look quickly, you might miss it, since it will get replaced with a live status page:

FireSim Simulation Status @ 2018-05-19 00:38:56.062737

This workload's output is located in:
.../firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/
This run's log is located in:

(continues on next page)

7.2. Running a Single Node Simulation 129

FireSim Documentation, Release 1.17.0

(continued from previous page)

.../firesim/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ. log
This status will update every 10s.

1/1 instances are still running.
1/1 simulations are still running.

This will only exit once all of the simulated nodes have powered off. So, let’s let it run and open another terminal
on the manager machine. From there, cd into your FireSim directory again and source sourceme-manager.sh
--skip-ssh-setup.

Next, let’s ssh into the Run Farm machine. If your Run Farm and Manager Machines are the same, replace
RUN_FARM_IP_OR_HOSTNAME with localhost, otherwise replace it with your Run Farm Machine’s IP or hostname.

source ~/.ssh/AGENT_VARS
ssh RUN_FARM_IP_OR_HOSTNAME

Next, we can directly attach to the console of the simulated system using screen, run:

screen -r fsim@®

Voila! You should now see Linux booting on the simulated system and then be prompted with a Linux login prompt,
like so:

[truncated Linux boot output]

[0.020000] VFS: Mounted root (ext2 filesystem) on device 254:0.

[0.020000] devtmpfs: mounted

[0.020000] Freeing unused kernel memory: 140K

[0.020000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device

Starting logging: OK

Starting mdev...

mdev: /sys/dev: No such file or directory

modprobe: can't change directory to '/lib/modules': No such file or directory
Initializing random number generator... done.

Starting network: ip: SIOCGIFFLAGS: No such device

ip: can't find device 'eth®'

FATIL

Starting dropbear sshd: OK

(continues on next page)

130 Chapter 7. (Experimental) Xilinx Alveo U250 Vitis-based Getting Started Guide

FireSim Documentation, Release 1.17.0

(continued from previous page)

Welcome to Buildroot
buildroot login:

You can ignore the messages about the network — that is expected because we are simulating a design without a NIC.

Now, you can login to the system! The username is root and there is no password. At this point, you should be
presented with a regular console, where you can type commands into the simulation and run programs. For example:

Welcome to Buildroot

buildroot login: root

Password:

uname -a

Linux buildroot 4.15.0-rc6-31580-9g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018.
—riscv64 GNU/Linux

#

At this point, you can run workloads as you’d like. To finish off this guide, let’s power off the simulated system and see
what the manager does. To do so, in the console of the simulated system, run poweroff -f:

Welcome to Buildroot

buildroot login: root

Password:

uname -a

Linux buildroot 4.15.0-rc6-31580-9g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018.
—riscv64 GNU/Linux

poweroff -f

You should see output like the following from the simulation console:

poweroff -f

[12.456000] reboot: Power down

Power off

time elapsed: 468.8 s, simulation speed = 88.50 MHz
#%% PASSED *** after 41492621244 cycles

Runs 41492621244 cycles

[PASS] FireSim Test

SEED: 1526690334

Script done, file is uartlog

[screen is terminating]

You’ll also notice that the manager polling loop exited! You’ll see output like this from the manager:

FireSim Simulation Status @ 2018-05-19 00:46:50.075885

This workload's output is located in:
.../firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/

This run's log is located in:
.../firesim/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ. 1log
This status will update every 10s.

(continues on next page)

7.2. Running a Single Node Simulation 131

FireSim Documentation, Release 1.17.0

(continued from previous page)

Hostname/IP: 172.30.2.174 | Terminated: False

1/1 instances are still running.

0/1 simulations are still running.

FireSim Simulation Exited Successfully. See results in:
.../firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/

The full log of this run is:
.../firesim/deploy/logs/2018-05-19--00-38-52-runworkload-JS5IGTV166X169DZ.1og

If you take a look at the workload output directory given in the manager output (in this case, .../firesim/deploy/
results-workload/2018-05-19--00-38-52-1linux-uniform/), you'll see the following:

$ 1s -1la firesim/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/*/*
-rw-rw-r-- 1 centos centos 797 May 19 00:46 linux-uniform®@/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 00:46 linux-uniform®@/os-release
-rw-rWw-r-- 1 centos centos 7316 May 19 00:46 linux-uniform®@/uartlog

What are these files? They are specified to the manager in a configuration file (deploy/workloads/linux-uniform.json)
as files that we want automatically copied back from the Run Farm Machine into the results-workload directory on
our manager machine, which is useful for running benchmarks automatically. The Defining Custom Workloads section
describes this process in detail.

Congratulations on running your first FireSim simulation! At this point, you can check-out some of the advanced
features of FireSim in the sidebar to the left. For example, we expect that many people will be interested in the ability
to automatically run the SPEC17 benchmarks: SPEC 2017.

Click Next if you’d like to continue on to building your own bitstreams.

Warning: In some cases, simulation may fail because you might need to update the Xilinx Vitis-
enabled U250 DRAM offset that is currently hard coded in both the FireSim Xilinx XRT/Vitis driver
code and platform shim. To verify this, run xclbinutil --info --input <YOUR_XCL_BIN>, ob-
tain the bank® MEM_DDR4 offset. If it differs from the hardcoded 0x40000000 given in driver
code (u250_dram_expected_offset variable in sim/midas/src/main/cc/simif_vitis.cc) and platform shim
(araddr/awaddr offset in sim/midas/src/main/scala/midas/platform/VitisShim.scala) replace both areas with the
new offset given by xclbinutil and regenerate the bitstream.

Warning: We highly recommend using the XDMA-based U250 flow instead of this Vitis-based flow. You
can find the XDMA-based flow here: Xilinx Alveo U250 XDMA-based Getting Started Guide. The Vitis-based
flow does not support DMA-based FireSim bridges (e.g., TracerV, Synthesizable Printfs, etc.), while the XDMA-
based flows support all FireSim features. If you’re unsure, use the XDMA-based U250 flow instead: Xilinx Alveo
U250 XDMA-based Getting Started Guide

132 Chapter 7. (Experimental) Xilinx Alveo U250 Vitis-based Getting Started Guide

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/linux-uniform.json
https://www.github.com/firesim/firesim/blob/1.17.0/sim/midas/src/main/cc/simif_vitis.cc
https://www.github.com/firesim/firesim/blob/1.17.0/sim/midas/src/main/scala/midas/platform/VitisShim.scala

FireSim Documentation, Release 1.17.0

7.3 Building Your Own Hardware Designs

This section will guide you through building a Xilinx Vitis-enabled U250 FPGA bitstream to run FireSim simulations.

7.3.1 Configuring a Build in the Manager

In the deploy/config_build.yaml file, you will notice that the builds_to_run section currently contains several
lines, which indicates to the build system that you want to run all of these “build recipes” in parallel, with the parameters
for each “build recipe” listed in the relevant section of the deploy/config_build_recipes.yaml file.

In this guide, we’ll build the default FireSim design for the Xilinx Vitis-enabled U250, which is specified by the
vitis_firesim_rocket_singlecore_no_nic section in deploy/config_build_recipes.yaml. This was the
same configuration used to build the pre-built bitstream that you used to run simulations in the guide to running a
simulation.

Looking atthe vitis_firesim_rocket_singlecore_no_nic sectionin deploy/config_build_recipes.yaml,
there are a few notable items:

* TARGET_CONFIG specifies that this configuration is a simple singlecore RISC-V Rocket with a single DRAM
channel.

* bit_builder_recipe points to bit-builder-recipes/vitis.yaml, which is found in the deploy directory
and tells the FireSim build system how to build bitstreams for this FPGA.

Having looked at this entry, let’s now set up the build in deploy/config_build.yaml. First, we’ll set up the
build_farm mapping, which specifies the Build Farm Machines that are available to build FPGA bitstreams.

* base_recipe will map to build-farm-recipes/externally_provisioned.yaml. This indicates to the
FireSim manager that the machines used to run builds are existing machines that have been set up by the user,
instead of cloud instances that are automatically provisioned.

e default_build_dir is the directory in which builds will run out of on your Build Farm Machines. Change the
default null to a path where you would like temporary build data to be stored on your Build Farm Machines.

* build_farm_hosts is a section that contains a list of IP addresses or hostnames of machines in your Build
Farm. By default, localhost is specified. If you are using a separate Build Farm Machine, you should replace
this with the IP address or hostname of the Build Farm Machine on which you would like to run the build.

Having configured our Build Farm, let’s specify the design we’d like to build. To do this, edit the builds_to_run
section in deploy/config_build.yaml so that it looks like the following:

builds_to_run:
- vitis_firesim_rocket_singlecore_no_nic

In essence, you should delete or comment out all the other items in the builds_to_run section besides
vitis_firesim_rocket_singlecore_no_nic.

7.3. Building Your Own Hardware Designs 133

https://www.github.com/firesim/firesim/blob/1.17.0/deploy

FireSim Documentation, Release 1.17.0

7.3.2 Running the Build

Now, we can run a build like so:

firesim buildbitstream

This will run through the entire build process, taking the Chisel (or Verilog) RTL and producing a bitstream that runs
on the Xilinx Vitis-enabled U250 FPGA. This whole process will usually take a few hours. When the build completes,
you will see a directory in deploy/results-build/, named after your build parameter settings, that contains all of
the outputs of the Xilinx Vitis build process. Additionally, the manager will print out a path to a log file that describes
everything that happened, in-detail, during this run (this is a good file to send us if you encounter problems).

The manager will also print an entry that can be added to config_hwdb.yaml so that the bitstream can be used to run
simulations. This entry will contain a bitstream_tar key whose value is the path to the final generated bitstream file.
You can share generated bitstreams with others by sharing the file listed in bitstream_tar and the config_hwdb.
yaml entry for it.

Now that you know how to generate your own FPGA image, you can modify the target-design to add your own features,
then build a FireSim-compatible FPGA image automatically!

This is the end of the Getting Started Guide. To learn more advanced FireSim features, you can choose a link under
the “Advanced Docs” section to the left.

134 Chapter 7. (Experimental) Xilinx Alveo U250 Vitis-based Getting Started Guide

CHAPTER
EIGHT

MANAGER USAGE (THE FIRESIM COMMAND)

8.1 Overview

When you source sourceme-manager.sh in your copy of the FireSim repo, you get access to a new command,
firesim, which is the FireSim simulation manager. If you’ve used tools like Vagrant or Docker, the firesim program
is to FireSim what vagrant and docker are to Vagrant and Docker respectively. In essence, firesim lets us manage
the entire lifecycle of FPGA simulations, just like vagrant and docker do for VMs and containers respectively.

8.1.1 “Inputs” to the Manager

The manager gets configuration information from several places:
* Command Line Arguments, consisting of:
— Paths to configuration files to use
— A task to run
— Arguments to the task
* Configuration Files
* Environment Variables
» Topology definitions for networked simulations (user_topology.py)

The following sections detail these inputs. Hit Next to continue.

8.1.2 Logging

The manager produces detailed logs when you run any command, which is useful to share with the FireSim developers
for debugging purposes in case you encounter issues. The logs contain more detailed output than the manager sends to
stdout/stderr during normal operation, so it’s also useful if you want to take a peek at the detailed commands manager
is running to facilitate builds and simulations. Logs are stored in firesim/deploy/logs/.

135

FireSim Documentation, Release 1.17.0

8.2 Manager Command Line Arguments

The manager provides built-in help output for the command line arguments it supports if you run firesim --help

usage: firesim [-h] [-c RUNTIMECONFIGFILE] [-b BUILDCONFIGFILE]

[-r BUILDRECIPESCONFIGFILE] [-a HWDBCONFIGFILE]

[-x OVERRIDECONFIGDATA] [-f TERMINATESOMEF116]

[-g TERMINATESOMEF12] [-i TERMINATESOMEF14]

[-m TERMINATESOMEM416] [--terminatesome TERMINATESOME] [-q]

[-t LAUNCHTIME]

[--platform {fl1,rhsresearch_nitefury_ii,vitis,xilinx_alveo_u200,xilinx_
—alveo_u250,xilinx_alveo_u280,xilinx_vcull8}]

{managerinit,infrasetup,boot,kill,runworkload,buildbitstream,builddriver,
—enumeratefpgas, tar2afi,runcheck, launchrunfarm, terminaterunfarm, shareagfi}

FireSim Simulation Manager.

positional arguments:
{managerinit,infrasetup,boot,kill,runworkload,buildbitstream,builddriver,
—enumeratefpgas, tar2afi,runcheck, launchrunfarm, terminaterunfarm, shareagfi}
Management task to run.

options:

-h, --help show this help message and exit

-c RUNTIMECONFIGFILE, --runtimeconfigfile RUNTIMECONFIGFILE
Optional custom runtime/workload config file. Defaults
to config_runtime.yaml.

-b BUILDCONFIGFILE, --buildconfigfile BUILDCONFIGFILE
Optional custom build config file. Defaults to
config_build.yaml.

-r BUILDRECIPESCONFIGFILE, --buildrecipesconfigfile BUILDRECIPESCONFIGFILE
Optional custom build recipe config file. Defaults to
config_build_recipes.yaml.

-a HWDBCONFIGFILE, --hwdbconfigfile HWDBCONFIGFILE
Optional custom HW database config file. Defaults to
config_hwdb.yaml.

-Xx OVERRIDECONFIGDATA, --overrideconfigdata OVERRIDECONFIGDATA
Override a single value from one of the the RUNTIME
e.g.: --overrideconfigdata "target-config link-latency
6405".

-f TERMINATESOMEF116, --terminatesomef116 TERMINATESOMEF116
DEPRECATED. Use --terminatesome=fl.l6xlarge:count
instead. Will be removed in the next major version of
FireSim (1.15.X). 0ld help message: Only used by
terminaterunfarm. Terminates this many of the
previously launched f1.16xlarges.

-g TERMINATESOMEF12, --terminatesomefl12 TERMINATESOMEF12
DEPRECATED. Use --terminatesome=fl.2xlarge:count
instead. Will be removed in the next major version of
FireSim (1.15.X). 0ld help message: Only used by
terminaterunfarm. Terminates this many of the
previously launched f1.2xlarges.

-i TERMINATESOMEF14, --terminatesomefl4 TERMINATESOMEF14

(continues on next page)

136 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

(continued from previous page)

DEPRECATED. Use --terminatesome=f1l.4xlarge:count
instead. Will be removed in the next major version of
FireSim (1.15.X). 0ld help message: Only used by
terminaterunfarm. Terminates this many of the
previously launched f1l.4xlarges.

-m TERMINATESOMEM416, --terminatesomem416 TERMINATESOMEM416
DEPRECATED. Use --terminatesome=m4.l6xlarge:count
instead. Will be removed in the next major version of
FireSim (1.15.X). 0ld help message: Only used by
terminaterunfarm. Terminates this many of the
previously launched m4.16xlarges.

--terminatesome TERMINATESOME
Only used by terminaterunfarm. Used to specify a
restriction on how many instances to terminate. E.g.,
--terminatesome=fl.2xlarge:2 will terminate only 2 of
the fl.2xlarge instances in the runfarm, regardless of
what other instances are in the runfarm. This argument
can be specified multiple times to terminate
additional instance types/counts. Behavior when
specifying the same instance type multiple times is
undefined. This replaces the old
--terminatesome{f116,f12,f14,m416} arguments. Behavior
when specifying these old-style terminatesome flags
and this new style flag at the same time is also
undefined.

-q, --forceterminate For terminaterunfarm and buildbitstream, force
termination without prompting user for confirmation.
Defaults to False

-t LAUNCHTIME, --launchtime LAUNCHTIME
Give the "Y-m-d--H-M-S" prefix of results-build
directory. Useful for tar2afi when finishing a partial
buildbitstream

--platform {f1,rhsresearch_nitefury_ii,vitis,xilinx_alveo_u200,xilinx_alveo_u250,

—xilinx_alveo_u280,xilinx_vcull8}

Required argument for "managerinit" to specify which
platform you will be using

On this page, we will go through some of these options — others are more complicated, so we will give them their own
section on the following pages.

8.2. Manager Command Line Arguments 137

FireSim Documentation, Release 1.17.0

8.2.1 --runtimeconfigfile FILENAME

This lets you specify a custom runtime config file. By default, config_runtime.yaml is used. See con-
Jfig_runtime.yaml for what this config file does.

8.2.2 --buildconfigfile FILENAME

This lets you specify a custom build config file. By default, config_build.yaml is used. See config_build.yaml for
what this config file does.

8.2.3 --buildrecipesconfigfile FILENAME

This lets you specify a custom build recipes config file. By default, config_build_recipes.yaml is used. See
config_build_recipes.yaml for what this config file does.

8.2.4 --hwdbconfigfile FILENAME

This lets you specify a custom hardware database config file. By default, config_hwdb.yaml is used. See con-
fig_hwdb.yaml for what this config file does.

8.2.5 --overrideconfigdata SECTION PARAMETER VALUE
This lets you override a single value from the runtime config file. For example, if you want to use a link la-
tency of 3003 cycles for a particular run (and your config_runtime.yaml file specifies differently), you can pass

--overrideconfigdata target_config link_latency 6405 to the manager. This can be used with any task
that uses the runtime config.

8.2.6 --launchtime TIMESTAMP

Specifies the “Y-m-d—H-M-S” timestamp to be used as the prefix in results-build directories. Useful when wanting
to run tar2afi after an aborted buildbitstream was manually fixed.

8.2.7 TASK

This is the only required/positional command line argument to the manager. It tells the manager what it should be
doing. See the next section for a list of tasks and what they do. Some tasks also take other command line arguments,
which are specified with those tasks.

8.3 Manager Tasks

This page outlines all of the tasks that the FireSim manager supports.

138 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

8.3.1 firesim managerinit

This is a setup command that does the following:

e Backup existing config files if they exist (config_runtime.yaml, config_build.yaml,
config_build_recipes.yaml, and config_hwdb.yaml).

* Replace the default config files (config_runtime.yaml, config_build.yaml, config_build_recipes.
yaml, and config_hwdb.yaml) with clean example versions.

Then, do platform-specific init steps for the given --platform.
f1

* Run aws configure, prompt for credentials

* Prompt the user for email address and subscribe them to notifications for their own builds.

 Setup the config_runtime.yaml and config_build.yaml files with AWS run/build farm arguments.
All other platforms

This includes platforms such as: xilinx_alveo_u250, xilinx_alveo_u280, xilinx_vcull8, and
rhsresearch_nitefury_ii.

¢ Setup the config_runtime.yaml and config_build.yaml files with externally provisioned run/build farm
arguments.

You can re-run this whenever you want to get clean configuration files.

Note: For £1, you can just hit Enter when prompted for aws configure credentials and your email address, and both
will keep your previously specified values.

If you run this command by accident and didn’t mean to overwrite your configuration files, you’ll find backed-up
versions in firesim/deploy/sample-backup-configs/backup*.

8.3.2 firesim buildbitstream

This command builds a FireSim bitstream using a Build Farm from the Chisel RTL for the configurations that you
specify. The process of defining configurations to build is explained in the documentation for config_build.yaml and
config_build_recipes.yaml.

For each config, the build process entails:
Fl1
1. [Locally] Run the elaboration process for your hardware configuration
. [Locally] FAME-1 transform the design with MIDAS
. [Locally] Attach simulation models (I/O widgets, memory model, etc.)
. [Locally] Emit Verilog to run through the FPGA Flow
. Use a build farm configuration to launch/use build hosts for each configuration you want to build
. [Local/Remote] Prep build hosts, copy generated Verilog for hardware configuration to build instance
. [Local or Remote] Run Vivado Synthesis and P&R for the configuration

. [Local/Remote] Copy back all output generated by Vivado including the final tar file

O 0 9 N U B~ W

. [Local/AWS Infra] Submit the tar file to the AWS backend for conversion to an AFI

8.3. Manager Tasks 139

FireSim Documentation, Release 1.17.0

10. [Local] Wait for the AFI to become available, then notify the user of completion by email

XDMA-based On-Prem.

1. [Locally] Run the elaboration process for your hardware configuration
[Locally] FAME-1 transform the design with MIDAS
[Locally] Attach simulation models (I/O widgets, memory model, etc.)
[Locally] Emit Verilog to run through the FPGA Flow
Use a build farm configuration to launch/use build hosts for each configuration you want to build
[Local/Remote] Prep build hosts, copy generated Verilog for hardware configuration to build instance

[Local or Remote] Run Vivado Synthesis and P&R for the configuration

® N A » N

[Local/Remote] Copy back all output generated by Vivado (including bit bitstream)
Vitis-based On-Prem.
1. [Locally] Run the elaboration process for your hardware configuration
[Locally] FAME-1 transform the design with MIDAS
[Locally] Attach simulation models (I/O widgets, memory model, etc.)
[Locally] Emit Verilog to run through the FPGA Flow
Use a build farm configuration to launch/use build hosts for each configuration you want to build
[Local/Remote] Prep build hosts, copy generated Verilog for hardware configuration to build instance

[Local or Remote] Run Vitis Synthesis and P&R for the configuration

® NSk w N

[Local/Remote] Copy back all output generated by Vitis (including the bitstream_tar containing the xclbin
bitstream)

This process happens in parallel for all of the builds you specify. The command will exit when all builds are completed
(but you will get notified as INDIVIDUAL builds complete if on F1) and indicate whether all builds passed or a build
failed by the exit code.

Note: Itishighly recommended that you either run this command in a screen or use mosh to access the manager
instance. Builds will not finish if the manager is killed due to ssh disconnection from the manager instance.

When you run a build for a particular configuration, a directory named LAUNCHTIME-CONFIG_TRIPLET-BUILD_NAME
is created in firesim/deploy/results-build/. This directory will contain:

F1

e AGFI_INFO: Describes the state of the AFI being built, while the manager is running. Upon build completion,
this contains the AGFI/AFI that was produced, along with its metadata.

e cl_firesim:: This directory is essentially the Vivado project that built the FPGA image, in the state it was
in when the Vivado build process completed. This contains reports, stdout from the build, and the final tar file
produced by Vivado. This also contains a copy of the generated verilog (FireSim-generated.sv) used to
produce this build.

XDMA-based On-Prem.

The Vivado project collateral that built the FPGA image, in the state it was in when the Vivado build process com-
pleted. This contains reports, stdout from the build, and the final bitstream_tar bitstream/metadata file produced
by Vivado. This also contains a copy of the generated verilog (FireSim-generated. sv) used to produce this build.

140 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

Vitis-based On-Prem.

The Vitis project collateral that built the FPGA image, in the state it was in when the Vitis build process completed.
This contains reports, stdout from the build, and the final bitstream_tar produced from the Vitis-generated xclbin
bitstream. This also contains a copy of the generated verilog (FireSim-generated. sv) used to produce this build.

If this command is cancelled by a SIGINT, it will prompt for confirmation that you want to terminate the build instances.
If you respond in the affirmative, it will move forward with the termination. If you do not want to have to confirm the
termination (e.g. you are using this command in a script), you can give the command the --forceterminate command
line argument. For example, the following will terminate all build instances in the build farm without prompting for
confirmation if a SIGINT is received:

firesim buildbitstream --forceterminate

8.3.3 firesim builddriver

For FPGA-based simulations (whenmetasimulation_enabledis falsein config_runtime.yaml), this command
will build the host-side simulation driver, also without requiring any simulation hosts to be launched or reachable. For
complicated designs, running this before running firesim launchrunfarm can reduce the time spent leaving FPGA
hosts idling while waiting for driver build.

For metasimulations (whenmetasimulation_enabledis truein config_runtime.yaml), this command will build
the entire software simulator without requiring any simulation hosts to be launched or reachable. This is useful for
example if you are using FireSim metasimulations as your primary simulation tool while developing target RTL, since
it allows you to run the Chisel build flow and iterate on your design without launching/setting up extra machines to run
simulations.

8.3.4 firesim tar2afi

Note: Can only be used for the F1 platform.

This command can be used to run only steps 9 & 10 from an aborted firesim buildbitstream for F1 that
has been manually corrected. firesim tar2afi assumes that you have a firesim/deploy/results-build/
LAUNCHTIME-CONFIG_TRIPLET-BUILD_NAME/cl_firesimdirectory tree that can be submitted to the AWS backend
for conversion to an AFI.

When using this command, you need to also provide the --launchtime LAUNCHTIME cmdline argument, specifying
an already existing LAUNCHTIME.

This command will run for the configurations specified in config_build.yaml and config_build_recipes.yaml as with
firesim buildbitstream. It is likely that you may want to comment out build recipe names that successfully completed
the firesim buildbitstream process before running this command.

8.3. Manager Tasks 141

FireSim Documentation, Release 1.17.0

8.3.5 firesim shareagfi

Note: Can only be used for the F1 platform.

This command allows you to share AGFIs that you have already built (that are listed in config_hwdb.yaml) with other
users. It will take the named hardware configurations that you list in the agfis_to_share section of config_build.
yaml, grab the respective AGFIs for each from config_hwdb.yaml, and share them across all F1 regions with the
users listed in the share_with_accounts section of config_build.yaml. You can also specify public: public
in share_with_accounts to make the AGFIs public.

You must own the AGFIs in order to do this — this will NOT let you share AGFIs that someone else owns and gave you
access to.

8.3.6 firesim launchrunfarm

Note: Can only be used for the F1 platform.

This command launches a Run Farm on AWS EC2 on which you run simulations. Run farms consist of a set of run
farm instances that can be spawned on AWS EC2. The run_farm mapping in config_runtime.yaml determines the
run farm used and its configuration (see config_runtime.yaml). The base_recipe key/value pair specifies the default
set of arguments to use for a particular run farm type. To change the run farm type, a new base_recipe file must
be provided from deploy/run-farm-recipes. You are able to override the arguments given by a base_recipe
by adding keys/values to the recipe_arg_overrides mapping. These keys/values must match the same mapping
structure as the args mapping. Overridden arguments override recursively such that all key/values present in the
override args replace the default arguments given by the base_recipe. In the case of sequences, a overridden sequence
completely replaces the corresponding sequence in the default args.

An AWS EC2 run farm consists of AWS instances like £1.16xlarge, f1.4xlarge, f1.2xlarge, and m4.16xlarge
instances. Before you run the command, you define the number of each that you want in the recipe_arg_overrides
section of config_runtime.yaml or in the base_recipe itself.

A launched run farm is tagged with a run_farm_tag, which is used to disambiguate multiple parallel run farms; that is,
you can have many run farms running, each running a different experiment at the same time, each with its own unique
run_farm_tag. One convenient feature to add to your AWS management panel is the column for fsimcluster,
which contains the run_farm_tag value. You can see how to do that in the Add the fsimcluster column to your AWS
management console section.

The other options in the run_farm section, run_instance_market, spot_interruption_behavior, and
spot_max_price define how instances in the run farm are launched. See the documentation for config_runtime.
yaml for more details on other arguments (see config_runtime.yaml).

ERRATA: One current requirement is that you must define a target config in the target_config section of
config_runtime.yaml that does not require more resources than the run farm you are trying to launch. Thus, you
should also setup your target_config parameters before trying to launch the corresponding run farm. This require-
ment will be removed in the future.

Once you setup your configuration and call firesim launchrunfarm, the command will launch the run farm. If all
succeeds, you will see the command print out instance IDs for the correct number/types of instances (you do not need
to pay attention to these or record them). If an error occurs, it will be printed to console.

Warning: On AWS EC2, once you run this command, your run farm will continue to run until you call firesim
terminaterunfarm. This means you will be charged for the running instances in your run farm until you call

142 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

terminaterunfarm. You are responsible for ensuring that instances are only running when you want them to be
by checking the AWS EC2 Management Panel.

8.3.7 firesim terminaterunfarm

Note: Can only be used for the F1 platform.

This command terminates some or all of the instances in the Run Farm defined in your config_runtime.yaml file
by the run_farm base_recipe, depending on the command line arguments you supply.

By default, running firesim terminaterunfarm will terminate ALL instances with the specified run_farm_tag.
When you run this command, it will prompt for confirmation that you want to terminate the listed instances. If you
respond in the affirmative, it will move forward with the termination.

If you do not want to have to confirm the termination (e.g. you are using this command in a script), you can give
the command the --forceterminate command line argument. For example, the following will TERMINATE ALL
INSTANCES IN THE RUN FARM WITHOUT PROMPTING FOR CONFIRMATION:

firesim terminaterunfarm --forceterminate

The --terminatesome=INSTANCE_TYPE:COUNT flag additionally allows you to terminate only some (COUNT) of the
instances of a particular type (INSTANCE_TYPE) in a particular Run Farm.

Here are some examples:

[start with 2 fl.l6xlarges, 2 fl.2xlarges, 2 m4.16xlarges]
firesim terminaterunfarm --terminatesome=f1.16xlarge:1 --forceterminate

[now, we have: 1 fl.16xlarges, 2 fl.2xlarges, 2 m4.l6xlarges]

[start with 2 fl.16xlarges, 2 fl.2xlarges, 2 m4.l6xlarges]

firesim terminaterunfarm --terminatesome=fl.16xlarge:1 --terminatesome=fl.2xlarge:2 --
—forceterminate

[now, we have: 1 fl.l16xlarges, 0 fl.2xlarges, 2 m4.l6xlarges]

Warning: On AWS EC2, once you call launchrunfarm, you will be charged for running instances in your Run
Farm until you call terminaterunfarm. You are responsible for ensuring that instances are only running when
you want them to be by checking the AWS EC2 Management Panel.

8.3. Manager Tasks 143

FireSim Documentation, Release 1.17.0

8.3.8 firesim infrasetup

Once you have launched a Run Farm and setup all of your configuration options, the infrasetup command will build
all components necessary to run the simulation and deploy those components to the machines in the Run Farm. Here
is a rough outline of what the command does:

 Constructs the internal representation of your simulation. This is a tree of components in the simulation (simu-
lated server blades, switches)

* For each type of server blade, rebuild the software simulation driver by querying the bitstream metadata to get
the build-quadruplet or using its override

* For each type of switch in the simulation, generate the switch model binary

* For each host instance in the Run Farm, collect information about all the resources necessary to run a simulation
on that host instance, then copy files and flash FPGAs with the required bitstream.

Details about setting up your simulation configuration can be found in config_runtime.yaml.

Once you run a simulation, you should re-run firesim infrasetup before starting another one, even if it is the
same exact simulation on the same Run Farm.

You can see detailed output from an example run of infrasetup in the Running a Single Node Simulation and Running
a Cluster Simulation Getting Started Guides.

8.3.9 firesim boot

Once you have run firesim infrasetup, this command will actually start simulations. It begins by launching all
switches (if they exist in your simulation config), then launches all server blade simulations. This simply launches
simulations and then exits — it does not perform any monitoring.

This command is useful if you want to launch a simulation, then plan to interact with the simulation by-hand (i.e. by
directly interacting with the console).

8.3.10 firesim kill

Given a simulation configuration and simulations running on a Run Farm, this command force-terminates all compo-
nents of the simulation. Importantly, this does not allow any outstanding changes to the filesystem in the simulated
systems to be committed to the disk image.

8.3.11 firesim runworkload

This command is the standard tool that lets you launch simulations, monitor the progress of workloads running on
them, and collect results automatically when the workloads complete. To call this command, you must have first called
firesim infrasetup to setup all required simulation infrastructure on the remote nodes.

This command will first create a directory in firesim/deploy/results-workload/ named as
LAUNCH_TIME-WORKLOADNAME, where results will be completed as simulations complete. This command will
then automatically call firesim boot to start simulations. Then, it polls all the instances in the Run Farm every 10
seconds to determine the state of the simulated system. If it notices that a simulation has shutdown (i.e. the simulation
disappears from the output of screen -1s), it will automatically copy back all results from the simulation, as defined
in the workload configuration (see the Defining Custom Workloads section).

For non-networked simulations, it will wait for ALL simulations to complete (copying back results as each workload
completes), then exit.

144 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

For globally-cycle-accurate networked simulations, the global simulation will stop when any single node powers off.
Thus, for these simulations, runworkload will copy back results from all nodes and force them to terminate by calling
kill when ANY SINGLE ONE of them shuts down cleanly.

A simulation shuts down cleanly when the workload running on the simulator calls poweroff.

8.3.12 firesim runcheck

This command is provided to let you debug configuration options without launching instances. In addition to the output
produced at command line/in the log, you will find a pdf diagram of the topology you specify, annotated with infor-
mation about the workloads, hardware configurations, and abstract host mappings for each simulation (and optionally,
switch) in your design. These diagrams are located in firesim/deploy/generated-topology-diagrams/, named
after your topology.

Here is an example of such a diagram (click to expand/zoom, it will likely be illegible without expanding):

Fig. 1: Example diagram for an 8-node cluster with one ToR switch

8.3.13 firesim enumeratefpgas

Note: Can only be used for XDMA-based On-Premises platforms.

This command should be run once for each on-premises Run Farm you plan to use that contains XDMA-based FPGAs.
When run, the command will generate a file (/opt/firesim-db. json) on each Run Farm Machine in the run farm
that contains a mapping from the FPGA ID used for JTAG programming to the PCle ID used to run simulations for
each FPGA attached to the machine.

If you ever change the physical layout of a Run Farm Machine in your Run Farm (e.g., which PCle slot the FPGAs are
attached to), you will need to re-run this command.

8.4 Manager URI Paths

Some keys specified in config_hwdb.yaml may be specified as a URI

8.4.1 URI Support

A Uniform Resource Identifier (URI) which specifies a protocol supported either directly by the fsspec library or by
one of the many third party extension libraries which build on fsspec.

Please note that while use use the fsspec library to handle many different URI protocols, many of them require
additional dependencies that FireSim itself does not require you to install. £sspec will throw an exception telling you
to install missing packages if you use one of the many URI protocols we do not test.

Likewise, individual URI protocols will have their own requirements for specifying credentials. Documentation sup-
plying credentials is provided by the individual protocol implementation. For example:

¢ adlfs for Azure Data-Lake Genl and Gen2

8.4. Manager URI Paths 145

https://filesystem-spec.readthedocs.io/en/latest/api.html#built-in-implementations
https://filesystem-spec.readthedocs.io/en/latest/api.html#other-known-implementations
https://github.com/fsspec/adlfs#details

FireSim Documentation, Release 1.17.0

* gcfs for Google Cloud Services
* s3fs for AWS S3
For SSH, add any required keys to your ssh-agent.

Please note that while some protocol backendss provide authentication via their own configuration files or environment
variables (e.g. AWS credentials stored in ~/ . aws, created by aws configure), one can additionally configure fsspec
with additional default keyword arguments per backend protocol by using one of the fsspec configuration methods.

8.5 Manager Configuration Files

This page contains a centralized reference for all of the configuration options in config_runtime.yaml,
config_build.yaml, config_build_farm.yaml, config_build_recipes.yaml, and config_hwdb.yaml. It
also contains references for all build and run farm recipes (in deploy/build-farm-recipes and deploy/run-farm-recipes).

8.5.1 config_runtime.yaml

Here is a sample of this configuration file:

RUNTIME configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
—html for documentation of all of these params.

run_farm:
managerinit replace start
base_recipe: run-farm-recipes/aws_ec2.yaml
Uncomment and add args to override defaults.
Arg structure should be identical to the args given
in the base_recipe.
#recipe_arg_overrides:
<ARG>: <OVERRIDE>
managerinit replace end

metasimulation:
metasimulation_enabled: false
vcs or verilator. use vcs-debug or verilator-debug for waveform generation
metasimulation_host_simulator: verilator
plusargs passed to the simulator for all metasimulations
metasimulation_only_plusargs: "+fesvr-step-size=128 +max-cycles=100000000"
plusargs passed to the simulator ONLY FOR vcs metasimulations
metasimulation_only_vcs_plusargs: "+vcs+initreg+0 +vcs+initmem+0"

target_config:
topology: no_net_config
no_net_num_nodes: 1
link_latency: 6405
switching_latency: 10
net_bandwidth: 200
profile_interval: -1

This references a section from config_hwdb.yaml for fpga-accelerated simulation

(continues on next page)

146 Chapter 8. Manager Usage (the firesim command)

https://gcsfs.readthedocs.io/en/latest/#credentials
https://s3fs.readthedocs.io/en/latest/#credentials
https://filesystem-spec.readthedocs.io/en/latest/features.html#configuration
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/build-farm-recipes
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/run-farm-recipes

FireSim Documentation, Release 1.17.0

(continued from previous page)

or from config_build_recipes.yaml for metasimulation

In homogeneous configurations, use this to set the hardware config deployed
for all simulators

default_hw_config: firesim_rocket_quadcore_no_nic_12_11lc4mb_ddr3

Advanced: Specify any extra plusargs you would like to provide when

booting the simulator (in both FPGA-sim and metasim modes). This is

a string, with the contents formatted as if you were passing the plusargs
at command line, e.g. "+a=1 +b=2"

plusarg_passthrough: ""

tracing:
enable: no

Trace output formats. Only enabled if "enable" is set to "yes" above

0 = human readable; 1 = binary (compressed raw data); 2 = flamegraph (stack
unwinding -> Flame Graph)

output_format: 0

Trigger selector.

0 = no trigger; 1 = cycle count trigger; 2 = program counter trigger; 3 =
instruction trigger

selector: 1

start: 0

end: -1

autocounter:
read_rate: 0

workload:
workload_name: linux-uniform.json
terminate_on_completion: no
suffix_tag: null

host_debug:
When enabled (=yes), Zeros-out FPGA-attached DRAM before simulations
begin (takes 2-5 minutes).
In general, this is not required to produce deterministic simulations on
target machines running linux. Enable if you observe simulation non-determinism.
zero_out_dram: no
If disable_synth_asserts: no, simulation will print assertion message and
terminate simulation if synthesized assertion fires.
If disable_synth_asserts: yes, simulation ignores assertion firing and
continues simulation.
disable_synth_asserts: no

DOCREF START: Synthesized Prints
synth_print:
Start and end cycles for outputting synthesized prints.
They are given in terms of the base clock and will be converted
for each clock domain.
start: 0

(continues on next page)

8.5. Manager Configuration Files 147

FireSim Documentation, Release 1.17.0

(continued from previous page)

end: -1

When enabled (=yes), prefix print output with the target cycle at which the print.
—was triggered

cycle_prefix: yes
DOCREF END: Synthesized Prints

Below, we outline each mapping in detail.

run_farm

The run_farm mapping specifies the characteristics of your FireSim run farm so that the manager can automatically
launch them, run workloads on them, and terminate them.

base_recipe

The base_recipe key/value pair specifies the default set of arguments to use for a particular run farm type. To change
the run farm type, a new base_recipe file must be provided from deploy/run-farm-recipes. You are able to
override the arguments given by a base_recipe by adding keys/values to the recipe_arg_overrides mapping.

recipe_arg_overrides

This optional mapping of keys/values allows you to override the default arguments provided by the base_recipe. This
mapping must match the same mapping structure as the args mapping within the base_recipe file given. Overridden
arguments override recursively such that all key/values present in the override args replace the default arguments given
by the base_recipe. In the case of sequences, a overridden sequence completely replaces the corresponding sequence
in the default args. Additionally, it is not possible to change the default run farm type through these overrides. This
must be done by changing the default base_recipe.

See Run Farm Recipes (run-farm-recipes/*) for more details on the potential run farm recipes that can be used.
metasimulation

The metasimulation options below allow you to run metasimulations instead of FPGA simulations when doing
launchrunfarm, infrasetup, and runworkload. See Debugging & Testing with Metasimulation for more details.

metasimulation_enabled

This is a boolean to enable running metasimulations in-place of FPGA-accelerated simulations. The number of
metasimulations that are run on a specific Run Farm host is determined by the num_metasims argument in each run
farm recipe (see Run Farm Recipes (run-farm-recipes/*)).

148 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

metasimulation_host_simulator

This key/value pair chooses which RTL simulator should be used for metasimulation. Options include verilator and
vcs if waveforms are unneeded and *-debug versions if a waveform is needed.

metasimulation_only_plusargs

This key/value pair is a string that passes plusargs (arguments with a + in front) to the metasimulations.

metasimulation_only_vcs_plusargs

This key/value pair is a string that passes plusargs (arguments with a + in front) to metasimulations using vcs or
vcs-debug.

target_config

The target_config options below allow you to specify the high-level configuration of the target you are simulating.
You can change these parameters after launching a Run Farm (assuming you have the correct number of instances), but
in many cases you will need to re-run the infrasetup command to make sure the correct simulation infrastructure is
available on your instances.

topology

This field dictates the network topology of the simulated system. Some examples:

no_net_config: This runs N (see no_net_num_nodes below) independent simulations, without a network simula-
tion. You can currently only use this option if you build one of the NoNIC hardware configs of FireSim.

example_8config: This requires a single £1.16xlarge, which will simulate 1 ToR switch attached to 8 simulated
servers.

example_1l6config: This requires two £1.16xlarge instances and one m4. 16xlarge instance, which will simulate
2 ToR switches, each attached to 8 simulated servers, with the two ToR switches connected by a root switch.

example_64config: This requires eight £1. 16x1arge instances and onem4 . 16x1large instance, which will simulate
8 ToR switches, each attached to 8 simulated servers (for a total of 64 nodes), with the eight ToR switches connected
by a root switch.

Additional configurations are available in deploy/runtools/user_topology.py and more can be added there. See
the Manager Network Topology Definitions (user_topology.py) section for more info.

no_net_num_nodes

This determines the number of simulated nodes when you are using topology: no_net_config.

8.5. Manager Configuration Files 149

FireSim Documentation, Release 1.17.0

link_latency

In a networked simulation, this allows you to specify the link latency of the simulated network in CYCLES. For example,
6405 cycles is roughly 2 microseconds at 3.2 GHz. A current limitation is that this value (in cycles) must be a multiple
of 7. Furthermore, you must not exceed the buffer size specified in the NIC’s simulation widget.

switching_latency

In a networked simulation, this specifies the minimum port-to-port switching latency of the switch models, in CYCLES.

net_bandwidth

In a networked simulation, this specifies the maximum output bandwidth that a NIC is allowed to produce as an integer
in Gbit/s. Currently, this must be a number between 1 and 200, allowing you to model NICs between 1 and 200 Gbit/s.

profile_interval

The simulation driver periodically samples performance counters in FASED timing model instances and dumps the
result to a file on the host. profile_interval defines the number of target cycles between samples; setting this field
to -1 disables polling.

default_hw_config

This sets the server configuration launched by default in the above topologies. Heterogeneous configurations can be
achieved by manually specifying different names within the topology itself, but all the example_Nconfig configura-
tions are homogeneous and use this value for all nodes.

You should set this to one of the hardware configurations you have defined already in config_hwdb.yaml. You should
set this to the NAME (mapping title) of the hardware configuration from config_hwdb.yaml, NOT the actual AGFI
or bitstream_tar itself (NOT something like agfi-XYZ...).

tracing

This section manages TracerV-based tracing at simulation runtime. For more details, see the Capruring RISC-V In-
struction Traces with TracerV page for more details.

enable

This turns tracing on, when set to yes and off when set to no. See the Enabling Tracing at Runtime.

150 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

output_format

This sets the output format for TracerV tracing. See the Selecting a Trace Output Format section.

selector, start, and end

These configure triggering for TracerV. See the Setting a TracerV Trigger section.

autocounter

This section configures AutoCounter. See the AutoCounter: Profiling with Out-of-Band Performance Counter Collec-
tion page for more details.

read_rate

This sets the rate at which AutoCounters are read. See the AutoCounter Runtime Parameters section for more details.

workload

This section defines the software that will run on the simulated system.

workload_name

This selects a workload to run across the set of simulated nodes. A workload consists of a series of jobs that need to
be run on simulated nodes (one job per node).

Workload definitions are located in firesim/deploy/workloads/*. json.
Some sample workloads:

linux-uniform. json: This runs the default FireSim Linux distro on as many nodes as you specify when setting the
target_config parameters.

specl7-intrate. json: This runs SPECint 2017’s rate benchmarks. In this type of workload, you should launch
EXACTLY the correct number of nodes necessary to run the benchmark. If you specify fewer nodes, the manager will
warn that not all jobs were assigned to a simulation. If you specify too many simulations and not enough jobs, the
manager will not launch the jobs.

Others can be found in the aforementioned directory. For a description of the JSON format, see Defining Custom
Workloads.

terminate_on_completion

Set this to no if you want your Run Farm to keep running once the workload has completed. Set this to yes if you want
your Run Farm to be TERMINATED after the workload has completed and results have been copied off.

8.5. Manager Configuration Files 151

FireSim Documentation, Release 1.17.0

suffix_tag

This allows you to append a string to a workload’s output directory name, useful for differentiating between successive
runs of the same workload, without renaming the entire workload. For example, specifying suffix_tag: test-vl
with a workload named super-application will result in a workload results directory named results-workload/
DATE--TIME-super-application-test-vl/.

host_debug
zero_out_dram

Set this to yes to zero-out FPGA-attached DRAM before simulation begins. This process takes 2-5 minutes. In general,
this is not required to produce deterministic simulations on target machines running linux, but should be enabled if you
observe simulation non-determinism.

disable_synth_asserts

Set this to yes to make the simulation ignore synthesized assertions when they fire. Otherwise, simulation will print
the assertion message and terminate when an assertion fires.

8.5.2 config_build.yaml

Here is a sample of this configuration file:

Build-time build design / AGFI configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
—html for documentation of all of these params.

this refers to build farms defined in config_build_farm.yaml
build_farm:

managerinit replace start

base_recipe: build-farm-recipes/aws_ec2.yaml

Uncomment and add args to override defaults.

Arg structure should be identical to the args given

in the base_recipe.

#recipe_arg_overrides:

<ARG>: <OVERRIDE>

managerinit replace end

builds_to_run:
this section references builds defined in config_build_recipes.yaml
if you add a build here, it will be built when you run buildbitstream

Unnetworked designs use a three-domain configuration
Tiles: 1000 MHz

<Rational Crossing>
Uncore: 500 MHz

<Async Crossing>
DRAM : 1000 MHz
firesim_rocket_quadcore_no_nic_12_11c4mb_ddr3

OB R R R R

(continues on next page)

152 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

(continued from previous page)

- firesim_boom_singlecore_no_nic_12_11lc4mb_ddr3

All NIC-based designs use the legacy FireSim frequency selection, with the
tiles and uncore running at 3.2 GHz to sustain 200Gb theoretical NIC BW

- firesim_supernode_rocket_singlecore_nic_12_lbp

- firesim_rocket_quadcore_nic_12_11c4mb_ddr3

- firesim_boom_singlecore_nic_12_11c4mb_ddr3

Configs for tutorials

- firesim_rocket_singlecore_no_nic_12_1bp

- firesim rocket_singlecore_sha3_nic_12_1lc4mb_ddr3

- firesim_rocket_singlecore_sha3_no_nic_12_11c4mb_ddr3

- firesim_rocket_singlecore_sha3_no_nic_12_11lc4mb_ddr3_printf
- firesim_gemmini_rocket_singlecore_no_nic

- firesim_gemmini_printf rocket_singlecore_no_nic

Configs for Vitis/XRT
- vitis_firesim_rocket_singlecore_no_nic

Config for RHSResearch Nitefury II
- nitefury_firesim_rocket_singlecore_no_nic

Configs for Xilinx Alveo U250/U280

- alveo_u250_firesim_rocket_singlecore_no_nic

- alveo_u250_firesim_gemmini_rocket_singlecore_no_nic
- alveo_u200_firesim _rocket_singlecore_no_nic

- alveo_u280_firesim rocket_singlecore_no_nic

R KR W

Config for Xilinx VCUI118
- xilinx_vcull8_firesim_rocket_singlecore_4GB_no_nic

agfis_to_share:
- firesim_rocket_quadcore_nic_12_11c4mb_ddr3
- firesim_rocket_quadcore_no_nic_12_llc4mb_ddr3
- firesim_boom_singlecore_no_nic_12_l11lc4mb_ddr3
- firesim_boom_singlecore_nic_12_11lc4mb_ddr3

- firesim_supernode_rocket_singlecore_nic_12_lbp

Configs for tutorials

- firesim_rocket_singlecore_no_nic_12_lbp

- firesim_rocket_singlecore_sha3_nic_12_11c4mb_ddr3

- firesim_rocket_singlecore_sha3_no_nic_12_11c4mb_ddr3

- firesim_rocket_singlecore_sha3_no_nic_12_l1c4mb_ddr3_printf

share_with_accounts:
To share with a specific user:
somebodysname: 123456789012
To share publicly:
public: public

Below, we outline each mapping in detail.

8.5. Manager Configuration Files 153

FireSim Documentation, Release 1.17.0

build_farm

In this section, you specify the specific build farm configuration that you wish to use to build FPGA bitstreams.

base_recipe

The base_recipe key/value pair specifies the default set of arguments to use for a particular build farm type. To
change the build farm type, a new base_recipe file must be provided from deploy/build-farm-recipes. You
are able to override the arguments given by a base_recipe by adding keys/values to the recipe_arg_overrides
mapping.

See Build Farm Recipes (build-farm-recipes/*) for more details on the potential build farm recipes that can be used.

recipe_arg_overrides

This optional mapping of keys/values allows you to override the default arguments provided by the base_recipe. This
mapping must match the same mapping structure as the args mapping within the base_recipe file given. Overridden
arguments override recursively such that all key/values present in the override args replace the default arguments given
by the base_recipe. In the case of sequences, a overridden sequence completely replaces the corresponding sequence
in the default args. Additionally, it is not possible to change the default build farm type through these overrides. This
must be done by changing the default base_recipe.

builds_to_run

In this section, you can list as many build entries as you want to run for a particular call to the buildbitstream
command (see config_build_recipes.yaml below for how to define a build entry). For example, if we want to run the
builds named awesome_firesim_config and quad_core_awesome_firesim_config, we would write:

builds_to_run:
- awesome_firesim_config
- quad_core_awesome_firesim_config

agfis_to_share

Note: This is only used in the AWS EC2 case.

This is used by the shareagfi command to share the specified agfis with the users specified in the next
(share_with_accounts) section. In this section, you should specify the section title (i.e. the name you made up) for
a hardware configuration in config_hwdb.yaml. For example, to share the hardware config:

firesim_rocket_quadcore_nic_12_llc4mb_ddr3:
this is a comment that describes my favorite configuration!
agfi: agfi-0a6449b5894e96e53
deploy_quintuplet_override: null
custom_runtime_config: null

you would use:

154 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

agfis_to_share:
- firesim_rocket_quadcore_nic_12_11c4mb_ddr3

share_with_accounts

Note: This is only used in the AWS EC2 case.

A list of AWS account IDs that you want to share the AGFIs listed in agfis_to_share with when calling the manager’s
shareagfi command. You should specify names in the form usersname: AWSACCTID. The left-hand-side is just
for human readability, only the actual account IDs listed here matter. If you specify public: public here, the AGFIs
are shared publicly, regardless of any other entires that are present.

8.5.3 config_build_recipes.yaml

Here is a sample of this configuration file:

Build-time build recipe configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
—html for documentation of all of these params.

this file contains sections that describe hardware designs that /can/ be built.
edit config_build.yaml to actually "turn on" a config to be built when you run
buildbitstream

HHAHRH A AR
Schema:
HAFHRH AR
<NAME>:
DESIGN: <>
TARGET_CONFIG: <>
PLATFORM_CONFIG: Config
deploy_quintuplet: null
NOTE: these platform_config_args are for F1 only
they should be set to null if using another platform
platform_config_args:
fpga_frequency: null
build _strategy: null
post_build_hook: null
metasim_customruntimeconfig: "path to custom runtime config for metasims"
bit_builder_recipe:
OPTIONAL: overrides for bit builder recipe
Arg structure should be identical to the args given
in the base_recipe.
#bit_builder_arg_overrides:
<ARG>: <OVERRIDE>

R R TR T R R R T S R R

Quad-core, Rocket-based recipes
REQUIRED FOR TUTORIALS
firesim_rocket_quadcore_nic_12_llc4mb_ddr3:

(continues on next page)

8.5. Manager Configuration Files 155

FireSim Documentation, Release 1.17.0

(continued from previous page)

PLATFORM: f1
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: WithNIC_DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_
—WithFireSimHighPerfConfigTweaks_chipyard.QuadRocketConfig
PLATFORM_CONFIG: WithAutoILA_BaseFlConfig
deploy_quintuplet: null
platform_config_args:
fpga_frequency: 90
build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/fl.yaml

NB: This has a faster host-clock frequency than the NIC-based design, because

its uncore runs at half rate relative to the tile.
firesim_rocket_quadcore_no_nic_12_llc4mb_ddr3:
PLATFORM: f1
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_
—WithFireSimTestChipConfigTweaks_chipyard.QuadRocketConfig
PLATFORM_CONFIG: WithAutoILA_ BaseFl1Config
deploy_quintuplet: null
platform_config_args:
fpga_frequency: 140
build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/fl.yaml

Single-core, BOOM-based recipes
REQUIRED FOR TUTORIALS
firesim_boom_singlecore_nic_12_1lc4mb_ddr3:
PLATFORM: f£1
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: WithNIC_DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_
—WithFireSimHighPerfConfigTweaks_chipyard.LargeBoomConfig
PLATFORM_CONFIG: WithAutoILA_BaseFlConfig
deploy_quintuplet: null
platform_config_args:
fpga_frequency: 65
build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/fl.yaml

NB: This has a faster host-clock frequency than the NIC-based design, because

its uncore runs at half rate relative to the tile.
firesim_boom_singlecore_no_nic_12_llc4mb_ddr3:
PLATFORM: f1

(continues on next page)

156 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

(continued from previous page)

TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_
~WithFireSimTestChipConfigTweaks_chipyard.LargeBoomConfig
PLATFORM_CONFIG: WithAutoILA_BaseFlConfig
deploy_quintuplet: null
platform_config_args:
fpga_frequency: 65
build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/fl.yaml

Single-core, CVA6-based recipes
firesim_cva6_singlecore_no_nic_12_l1lc4mb_ddr3:
PLATFORM: f1
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_WithFireSimConfigTweaks_
—chipyard.CVA6Config
PLATFORM_CONFIG: WithAutoILA_BaseFlConfig
deploy_quintuplet: null
platform_config_args:
fpga_frequency: 960
build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/fl.yaml

Single-core, Rocket-based recipes with Gemmini
firesim_rocket_singlecore_gemmini_no_nic_12_llc4mb_ddr3:
PLATFORM: f1
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_WithFireSimConfigTweaks_
—»chipyard.GemminiRocketConfig
PLATFORM_CONFIG: WithAutoILA_BaseFlConfig
deploy_quintuplet: null
platform_config_args:
fpga_frequency: 110
build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/fl.yaml

RAM Optimizations enabled by adding _MCRams PLATFORM_CONFIG string
firesim_boom_singlecore_no_nic_12_l1lc4mb_ddr3_ramopts:

PLATFORM: f£1

TARGET_PROJECT: firesim

DESIGN: FireSim

TARGET_CONFIG: DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_
~WithFireSimTestChipConfigTweaks_chipyard.LargeBoomConfig

(continues on next page)

8.5. Manager Configuration Files 157

FireSim Documentation, Release 1.17.0

(continued from previous page)

PLATFORM_CONFIG: WithAutoILA_MCRams_BaseFlConfig
deploy_quintuplet: null
platform_config_args:

fpga_frequency: 90

build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/fl.yaml

Supernode configurations -- multiple instances of an SoC in a single simulator
firesim_supernode_rocket_singlecore_nic_12_lbp:
PLATFORM: f1

TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: WithNIC_SupernodeFireSimRocketConfig
PLATFORM_CONFIG: WithAutoILA_BaseFlConfig
deploy_quintuplet: null
platform_config_args:

fpga_frequency: 85

build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/fl.yaml

MIDAS Examples -- BUILD SUPPORT ONLY; Can't launch driver correctly on run farm
midasexamples_gcd:
PLATFORM: f1
TARGET_PROJECT: midasexamples
DESIGN: GCD
TARGET_CONFIG: NoConfig
PLATFORM_CONFIG: DefaultFlConfig
deploy_quintuplet: null
platform_config_args:
fpga_frequency: 75
build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/fl.yaml

Additional Tutorial Config
firesim_rocket_singlecore_no_nic_l12_lbp:
PLATFORM: f1
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: WithDefaultFireSimBridges_WithFireSimHighPerfConfigTweaks_chipyard.
—RocketConfig
PLATFORM_CONFIG: BaseFl1Config
deploy_quintuplet: null
platform_config_args:
fpga_frequency: 960
build_strategy: TIMING
post_build_hook: null

(continues on next page)

158 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

(continued from previous page)

metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/fl.yaml

Additional Tutorial Config
firesim_rocket_singlecore_sha3_nic_12_llc4mb_ddr3:
PLATFORM: f1
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: WithNIC_DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_
—.WithFireSimHighPerfConfigTweaks_chipyard.Sha3RocketConfig
PLATFORM_CONFIG: BaseF1Config
deploy_quintuplet: null
platform_config_args:
fpga_frequency: 65
build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/fl.yaml

Additional Tutorial Config
firesim_rocket_singlecore_sha3_no_nic_12_llc4mb_ddr3:
PLATFORM: f1
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_
—WithFireSimHighPerfConfigTweaks_chipyard.Sha3RocketConfig
PLATFORM_CONFIG: BaseF1Config
deploy_quintuplet: null
platform_config_args:
fpga_frequency: 65
build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/fl.yaml

Additional Tutorial Config
firesim_rocket_singlecore_sha3_no_nic_12_llc4mb_ddr3_printf:
PLATFORM: f1
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: DDR3FRFCFSLLC4MB_WithDefaultFireSimBridges_
—WithFireSimHighPerfConfigTweaks_chipyard.Sha3RocketPrintfConfig
PLATFORM_CONFIG: WithPrintfSynthesis_BaseF1Config
deploy_quintuplet: null
platform_config_args:
fpga_frequency: 30
build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/fl.yaml

Additional Xilinx Vitis/XRT-only Config

(continues on next page)

8.5. Manager Configuration Files 159

FireSim Documentation, Release 1.17.0

(continued from previous page)

vitis_firesim_rocket_singlecore_no_nic:
PLATFORM: vitis
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: FireSimRocketMMIOOnlyConfig
PLATFORM_CONFIG: BaseVitisConfig
deploy_quintuplet: null
platform_config_args:
fpga_frequency: 30 # previously reached 140. using 30 for build speed
build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/vitis.yaml

Additional Tutorial Config
firesim_gemmini_rocket_singlecore_no_nic:
PLATFORM: f1
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: FireSimLeanGemminiRocketConfig
PLATFORM_CONFIG: BaseF1Config
deploy_quintuplet: null
platform_config_args:
fpga_frequency: 30 # AJG: conservative for now, later sweep for higher frequency
build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/fl.yaml

Additional Tutorial Config
firesim_gemmini_printf rocket_singlecore_no_nic:
PLATFORM: f1
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: FireSimLeanGemminiPrintfRocketConfig
PLATFORM_CONFIG: WithPrintfSynthesis_BaseF1lConfig
deploy_quintuplet: null
platform_config_args:
fpga_frequency: 10 # AJG: conservative for now, later sweep for higher frequency
build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/fl.yaml

Additional Xilinx Alveo U250-only Config
alveo_u250_firesim_rocket_singlecore_no_nic:
PLATFORM: xilinx_alveo_u250
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: FireSimRocketConfig
PLATFORM_CONFIG: BaseXilinxAlveoConfig
deploy_quintuplet: null

(continues on next page)

160 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

(continued from previous page)

platform_config_args:
fpga_frequency: 60
build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/xilinx_alveo_u250.yaml

Additional Tutorial Config
Additional Xilinx Alveo U250-only Config
alveo_u250_firesim_gemmini_rocket_singlecore_no_nic:
PLATFORM: xilinx_alveo_u250
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: FireSimLeanGemminiRocketConfig
PLATFORM_CONFIG: BaseXilinxAlveoConfig
deploy_quintuplet: null
platform_config_args:
fpga_frequency: 60
build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/xilinx_alveo_u250.yaml

Additional Xilinx Alveo U280-only Config
alveo_u280_firesim_rocket_singlecore_no_nic:
PLATFORM: xilinx_alveo_u280
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: FireSimRocketConfig
PLATFORM_CONFIG: BaseXilinxAlveoConfig
deploy_quintuplet: null
platform_config_args:
fpga_frequency: 60
build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/xilinx_alveo_u280.yaml

Additional Xilinx Alveo U200-only Config
alveo_u200_firesim_rocket_singlecore_no_nic:
PLATFORM: xilinx_alveo_u200
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: FireSimRocketConfig
PLATFORM_CONFIG: BaseXilinxAlveoConfig
deploy_quintuplet: null
platform_config_args:
fpga_frequency: 60
build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/xilinx_alveo_u200.yaml

(continues on next page)

8.5. Manager Configuration Files 161

FireSim Documentation, Release 1.17.0

(continued from previous page)

Xilinx VCU118-only Config
xilinx_vcull8_firesim_rocket_singlecore_4GB_no_nic:

PLATFORM: xilinx_vcull8
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: FireSimRocket4GiBDRAMConfig
PLATFORM_CONFIG: BaseXilinxV(CU118Config
deploy_quintuplet: null
platform_config_args:

fpga_frequency: 90

build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/xilinx_vcull8.yaml

RHSResearch Nitefury II-only Config
nitefury_firesim_rocket_singlecore_no_nic:

PLATFORM: rhsresearch_nitefury_ii
TARGET_PROJECT: firesim
DESIGN: FireSim
TARGET_CONFIG: FireSimRocketl1GiBDRAMConfig
PLATFORM_CONFIG: BaseNitefuryConfig
deploy_quintuplet: null
platform_config_args:

fpga_frequency: 50

build_strategy: TIMING
post_build_hook: null
metasim_customruntimeconfig: null
bit_builder_recipe: bit-builder-recipes/rhsresearch_nitefury_ii.yaml

Below, we outline each section and parameter in detail.

Build definition sections, e.g. awesome_firesim_config

In this file, you can specify as many build definition sections as you want, each with a header like
awesome_firesim_config (i.e. a nice, short name you made up). Such a section must contain the following fields:

162

Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

DESIGN

This specifies the basic target design that will be built. Unless you are defining a custom system, this should be set to
FireSim. We describe this in greater detail in Generating Different Targets).

TARGET_CONFIG

This specifies the hardware configuration of the target being simulated. Some examples include
FireSimRocketConfig and FireSimQuadRocketConfig. We describe this in greater detail in Generating
Different Targets).

PLATFORM_CONFIG

This specifies parameters to pass to the compiler (Golden Gate). Notably, PLATFORM_CONFIG can be used to
enable debugging tools like assertion synthesis, and resource optimizations like instance multithreading. Critically, it
also calls out the host-platform (e.g., F1) to compile against: this defines the widths of internal simulation interfaces
and specifies resource limits (e.g., how much DRAM is available on the platform).

platform_build_args

These configure the bitstream build, and are host-platform-agnostic. Platform-specific arguments, like the Vitis plat-
form (“DEVICE”), are captured as arguments to the bitbuilder.

fpga_£frequency

Specifies the host FPGA frequency for a bitstream build.

build_strategy

Specifies a pre-canned set of strategies and directives to pass to the bitstream build. Note, these are implemented
differently on different host platforms, but try to optimize for the same things. Strategies supported across both Vitis,
Xilinx Alveo U250/U280, and EC2 F1 include:

e TIMING: Optimize for improved fmax.
* AREA: Optimize for reduced resource utilization.

Names are derived AWS’s strategy set.

TARGET_PROJECT (Optional)

This specifies the target project in which the target is defined (this is described in greater detail here). If
TARGET_PROJECT is undefined the manager will default to firesim. Setting TARGET_PROJECT is required for building
the MIDAS examples (TARGET_PROJECT: midasexamples) with the manager, or for building a user-provided target
project.

8.5. Manager Configuration Files 163

FireSim Documentation, Release 1.17.0

PLATFORM (Optional)

This specifies the platform for which the target will be built for (this is described in greater detail /ere). If PLATFORM
is undefined the manager will default to £1.

deploy_quintuplet

This allows you to override the deployquintuplet stored with the AGFI. Otherwise, the
PLATFORM/TARGET_PROJECT/DESIGN/TARGET_CONFIG/PLATFORM_CONFIG you specify above will be used.
See the AGFI Tagging section for more details. Most likely, you should leave this set to null. This is usually only used
if you have proprietary RTL that you bake into an FPGA image, but don’t want to share with users of the simulator.

post_build_hook

(Optional) Provide an a script to run on the results copied back from a _single_ build instance. Upon completion of each
design’s build, the manager invokes this script and passing the absolute path to that instance’s build-results directory
as it’s first argument.

metasim_customruntimeconfig

This is an advanced feature - under normal conditions, you can use the default parameters generated automati-
cally by the simulator by setting this field to null for metasimulations. If you want to customize runtime pa-
rameters for certain parts of the metasimulation (e.g. the DRAM model’s runtime parameters), you can place a
custom config file in sim/custom-runtime-configs/. Then, set this field to the relative name of the config.
For example, sim/custom-runtime-configs/GREATCONFIG. conf becomes metasim_customruntimeconfig:
GREATCONFIG. conf.

bit_builder_recipe

This specifies the bitstream type to generate for a particular recipe. This must point to a file in deploy/
bit-builder-recipes/. See Bit Builder Recipes (bit-builder-recipes/*) for more details on bit builders and their
arguments.

bit_builder_arg_overrides

This optional mapping of keys/values allows you to override the default arguments provided by the
bit_builder_recipe. This mapping must match the same mapping structure as the args mapping within the
bit_builder_recipe file given. Overridden arguments override recursively such that all key/values present in the
override args replace the default arguments given by the bit_builder_recipe. In the case of sequences, a overridden
sequence completely replaces the corresponding sequence in the default args. Additionally, it is not possible to change
the default bit builder type through these overrides. This must be done by changing the default bit_builder_recipe.

164 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

8.5.4 config_hwdb.yaml

Here is a sample of this configuration file:

Hardware config database for FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
—html for documentation of all of these params.

Hardware configs represent a combination of an agfi, a deployquintuplet override
(if needed), and a custom runtime config (if needed)

H* ¥

The AGFIs provided below are public and available to all users.

Only AGFIs for the latest release of FireSim are guaranteed to be available.
If you are using an older version of FireSim, you will need to generate your
own images.

H oW R R

DOCREF START: Example HWDB Entry
firesim_boom_singlecore_nic_12_llc4mb_ddr3:
agfi: agfi-00e99bd64c0®643ac9
deploy_quintuplet_override: null
custom_runtime_config: null
DOCREF END: Example HWDB Entry
firesim_boom_singlecore_no_nic_12_llc4mb_ddr3:
agfi: agfi-0d475d004a5929cel
deploy_quintuplet_override: null
custom_runtime_config: null
firesim_gemmini_printf_ rocket_singlecore_no_nic:
agfi: agfi-0®acel6d35c5758893
deploy_quintuplet_override: null
custom_runtime_config: null
firesim_gemmini_rocket_singlecore_no_nic:
agfi: agfi-05eec5fb565f7cfa3
deploy_quintuplet_override: null
custom_runtime_config: null
firesim_rocket_quadcore_nic_12_llc4mb_ddr3:
agfi: agfi-03c40fa49ed5c84e8
deploy_quintuplet_override: null
custom_runtime_config: null
firesim_rocket_quadcore_no_nic_12_llc4mb_ddr3:
agfi: agfi-0e55dfl6ad9cad37aa
deploy_quintuplet_override: null
custom_runtime_config: null
firesim_rocket_singlecore_no_nic_l2_lbp:
agfi: agfi-0cfc97258aa8389f0
deploy_quintuplet_override: null
custom_runtime_config: null
firesim_rocket_singlecore_sha3_nic_12_llc4mb_ddr3:
agfi: agfi-02e4056f9bec5a240
deploy_quintuplet_override: null
custom_runtime_config: null
firesim_rocket_singlecore_sha3_no_nic_l12_llc4mb_ddr3:
agfi: agfi-0d8abef0®77c23a4dde
deploy_quintuplet_override: null

(continues on next page)

8.5. Manager Configuration Files 165

FireSim Documentation, Release 1.17.0

(continued from previous page)

custom_runtime_config: null
firesim_rocket_singlecore_sha3_no_nic_12_llc4mb_ddr3_printf:

agfi: agfi-033e840230f51668f

deploy_quintuplet_override: null

custom_runtime_config: null
firesim_supernode_rocket_singlecore_nic_l2_lbp:

agfi: agfi-049822fd73bc2fcal

deploy_quintuplet_override: null

custom_runtime_config: null
vitis_firesim_rocket_singlecore_no_nic:

bitstream_tar: https://raw.githubusercontent.com/firesim/firesim-public-bitstreams/
-.72d12£12eb24£a99e5943723990c1d44df054006/vitis/vitis_firesim_rocket_singlecore_no_nic.
—tar.gz

deploy_quintuplet_override: null

custom_runtime_config: null
vitis_firesim_gemmini_rocket_singlecore_no_nic:

bitstream_tar: https://raw.githubusercontent.com/firesim/firesim-public-bitstreams/
—0af81b912264abbe3f90£8140987814291090560/vitis/vitis_firesim_gemmini_rocket_singlecore_
—no_nic.tar.gz

deploy_quintuplet_override: null

custom_runtime_config: null
alveo_u250_firesim_rocket_singlecore_no_nic:

bitstream_tar: https://raw.githubusercontent.com/firesim/firesim-public-bitstreams/
—1dc6be48bfe043bbc47e24660clef5076a22b7e4/xilinx_alveo_u250/alveo_u250_firesim_rocket_
—»singlecore_no_nic.tar.gz

deploy_quintuplet_override: null

custom_runtime_config: null
alveo_u250_firesim_gemmini_rocket_singlecore_no_nic:

bitstream_tar: https://raw.githubusercontent.com/firesim/firesim-public-bitstreams/
—9de6c6cd854ff613114b04a2c67d7558e55d456¢c/xilinx_alveo_u250/alveo_u250_firesim_gemmini_
—rocket_singlecore_no_nic.tar.gz

deploy_quintuplet_override: null

custom_runtime_config: null
alveo_u200_firesim_rocket_singlecore_no_nic:

bitstream_tar: https://raw.githubusercontent.com/firesim/firesim-public-bitstreams/
—0abb07d46eced6b54e07026533£85bdc73f5al5e/xilinx_alveo_u200/alveo_u200_firesim_rocket_
-»singlecore_no_nic.tar.gz

deploy_quintuplet_override: null

custom_runtime_config: null
alveo_u280_firesim_rocket_singlecore_no_nic:

bitstream_tar: https://raw.githubusercontent.com/firesim/firesim-public-bitstreams/
. £445dd689c74d9e9c8e5fdbal9e299488£9446ce/xilinx_alveo_u280/alveo_u280_firesim_rocket_
—»singlecore_no_nic.tar.gz

deploy_quintuplet_override: null

custom_runtime_config: null
xilinx_vcull8_firesim_rocket_singlecore_4GB_no_nic:

bitstream_tar: https://raw.githubusercontent.com/firesim/firesim-public-bitstreams/
—.df66683984628552f25acha52e5247ed78321994/xilinx_vcull8/xilinx_vcull8_firesim_rocket_
—»singlecore_4GB_no_nic.tar.gz

deploy_quintuplet_override: null

custom_runtime_config: null
nitefury_firesim_rocket_singlecore_no_nic:

(continues on next page)

166 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

(continued from previous page)

bitstream_tar: https://raw.githubusercontent.com/firesim/firesim-public-bitstreams/
—b06e34569c2e4b350£f8adeb96168244£2d43422b/rhsresearch_nitefury_ii/nitefury_firesim_
—rocket_singlecore_no_nic.tar.gz

deploy_quintuplet_override: null

custom_runtime_config: null

This file tracks hardware configurations that you can deploy as simulated nodes in FireSim. Each such configuration
contains a name for easy reference in higher-level configurations, defined in the section header, an handle to a bitstream
(i.e. an AGFI or bitstream_tar path), which represents the FPGA image, a custom runtime config, if one is needed,
and a deploy quintuplet override if one is necessary.

When you build a new bitstream, you should put it in this file so that it can be referenced from your other configuration
files.

The following is an example section from this file - you can add as many of these as necessary:

firesim_boom_singlecore_nic_12_l1lc4mb_ddr3:
agfi: agfi-00e99bd64c0643ac9
deploy_quintuplet_override: null
custom_runtime_config: null

Here are the components of these entries:

The name: firesim_boom_singlecore_nic_12_11c4mb_ddr3

In this example, firesim_boom_singlecore_nic_12_11c4mb_ddrs3 is the name that will be used to reference this
hardware design in other configuration locations. The following items describe this hardware configuration:

agfi

This represents the AGFI (FPGA Image) used by this hardware configuration. Only used in AWS EC2 F1 FireSim
configurations (a bitstream_tar key/value cannot exist with this key/value in the same recipe).

bitstream_tar

This is not shown in the example entry above, but would be used for an on-premises bitstream.
Indicates where the bitstream (FPGA Image) and metadata associated with it is located, may be one of:
¢ A Uniform Resource Identifier (URI), (see Manager URI Paths for details)

* A filesystem path available to the manager. Local paths are relative to the deploy folder.

8.5. Manager Configuration Files 167

FireSim Documentation, Release 1.17.0

deploy_quintuplet_override

This is an advanced feature - under normal conditions, you should leave this set to null, so that the manager uses the
configuration quintuplet that is automatically stored with the bitstream metadata at build time. Advanced users can set
this to a different value to build and use a different driver when deploying simulations. Since the driver depends on logic
now hardwired into the FPGA bitstream, drivers cannot generally be changed without requiring FPGA recompilation.

custom_runtime_config

This is an advanced feature - under normal conditions, you can use the default parameters generated automatically by the
simulator by setting this field to null. If you want to customize runtime parameters for certain parts of the simulation
(e.g. the DRAM model’s runtime parameters), you can place a custom config file in sim/custom-runtime-configs/
. Then, set this field to the relative name of the config. For example, sim/custom-runtime-configs/GREATCONFIG.
conf becomes custom_runtime_config: GREATCONFIG.conf.

driver_tar

The value for this key can be one of:
¢ A Uniform Resource Identifier (URI), (see Manager URI Paths for details)
* A filesystem path available to the manager. Local paths are relative to the deploy folder.

When this key is present, the FireSim FPGA-driver software will not be built from source. Instead, during firesim
infrasetup, this file will be deployed and extracted into the sim_slot_X folder on the run farm instance. This file may
be a.zar, .tar.gz, .tar.bz2 or any other format that GNU tar (version 1.26) can automatically detect. The purpose of this
feature is to enable advanced CI configurations where the driver build step is decoupled. For now this can only accept
a path to a file on the manager’s local filesystem. This key can also be a URL

Add more hardware config sections, like NAME_GOES_HERE_2

You can add as many of these entries to config_hwdb.yaml as you want, following the format discussed above (i.e.
you provide agfi or bitstream_tar, deploy_quintuplet_override, and custom_runtime_config).

8.5.5 Run Farm Recipes (run-farm-recipes/*)

Here is an example of this configuration file:

AWS EC2 run farm hosts recipe.
all fields are required but can be overridden in the “*_runtime.yaml®

run_farm_type: AWSEC2F1
args:
managerinit arg start
tag to apply to run farm hosts
run_farm_tag: mainrunfarm
enable expanding run farm by run_farm_hosts given
always_expand_run_farm: true
minutes to retry attempting to request instances
launch_instances_timeout_minutes: 60
run farm host market to use (ondemand, spot)

(continues on next page)

168 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

(continued from previous page)

run_instance_market: ondemand

1f using spot instances, determine the interrupt behavior (terminate, stop,.
—hibernate)

spot_interruption_behavior: terminate

if using spot instances, determine the max price

spot_max_price: ondemand

default location of the simulation directory on the run farm host

default_simulation_dir: /home/centos

run farm hosts to spawn: a mapping from a spec below (which is an EC2
instance type) to the number of instances of the given type that you
want in your runfarm.
run_farm_hosts_to_use:

- fl.1l6xlarge: 0

- fl.4xlarge: 0

- fl.2xlarge: 1

- m4.1l6xlarge: 0O

- zld.3xlarge: 0

- zld.6xlarge: 0

- zld.12xlarge: 0

managerinit arg end

REQUIRED: List of host "specifications", i.e. re-usable collections of
host parameters.

#

On EC2, most users will never need to edit this section,

unless you want to add new host instance types.

#

The '"name" of a spec below (e.g. "fl.2xlarge" below) MUST be a valid EC2
instance type and is used to refer to the spec above.

#

Besides required parameters shown below, each can have multiple OPTIONAL
arguments, called "override_*", corresponding to the "default_*" arguments
specified above. Each "override_*" argument overrides the corresponding
"default_*" argument in that run host spec.

#

Optional params include:

override_simulation_dir: /scratch/specific-build-host-build-dir

override_platform: EC2InstanceDeployManager

run_farm_host_specs:

- fl.2xlarge: # REQUIRED: On EC2, the spec name MUST be an EC2 instance type.
REQUIRED: number of FPGAs on the machine
num_£fpgas: 1
REQUIRED: number of metasims this machine can host
num_metasims: 0
REQUIRED: whether it is acceptable to use machines of this spec
to host ONLY switches (e.g. any attached FPGAs are '"wasted")
use_for_switch_only: false

- fl.4xlarge:
num_fpgas: 2
num_metasims: 0
use_for_switch_only: false

(continues on next page)

8.5. Manager Configuration Files 169

FireSim Documentation, Release 1.17.0

(continued from previous page)

- fl.16xlarge:
num_£fpgas: 8
num_metasims: 0
use_for_switch_only: false
- m4.16xlarge:
num_£fpgas: 0
num_metasims: 0
use_for_switch_only: true
- zld.3xlarge:
num_£fpgas: 0
num_metasims: 1
use_for_switch_only: false
- zld.6xlarge:
num_£fpgas: 0
num_metasims: 2
use_for_switch_only: false
- zld.12xlarge:
num_£fpgas: 0
num_metasims: 8
use_for_switch_only: false

run_farm_type

This key/value specifies a run farm class to use for launching, managing, and terminating run farm hosts used for
simulations. By default, run farm classes can be found in deploy/runtools/run_farm.py. However, you can specify your
own custom run farm classes by adding your python file to the PYTHONPATH. For example, to use the AWSEC2F1 run
farm class, you would write run_farm_type: AWSEC2F1.

args

This section specifies all arguments needed for the specific run_farm_type used. For a list of arguments needed for
a run farm class, users should refer to the _parse_args function in the run farm class given by run_farm_type.

aws_ec2.yaml run farm recipe

The run farm recipe shown above configures a FireSim run farm to use AWS EC2 instances. It contains several key/value
pairs:

run_farm_tag

Use run_farm_tag to differentiate between different Run Farms in FireSim. Having multiple config_runtime.
yaml files with different run_farm_tag values allows you to run many experiments at once from the same manager
instance.

The instances launched by the launchrunfarm command will be tagged with this value. All later operations done by
the manager rely on this tag, so you should not change it unless you are done with your current Run Farm.

Per AWS restrictions, this tag can be no longer than 255 characters.

170 Chapter 8. Manager Usage (the firesim command)

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/runtools/run_farm.py

FireSim Documentation, Release 1.17.0

always_expand_run_farm

When true (the default behavior when not given) the number of instances of each type (see £1. 16xlarges etc. below)
are launched every time you run launchrunfarm.

When false, launchrunfarm looks for already existing instances that match run_farm_tag and treat f1.
16xlarges (and other ‘instance-type’ values below) as a total count.

For example, if you have fl.2xlarges set to 100 and the first time you run launchrunfarm you have
launch_instances_timeout_minutes set to O (i.e. giveup after receiving a ClientError for each Availabili-
tyZone) and AWS is only able to provide you 75 £1.2x1larges because of capacity issues, always_expand_runfarm
changes the behavior of launchrunfarm in subsequent attempts. yes means launchrunfarm will try to launch 100
f1.2xlarges again. no means that launchrunfarm will only try to launch an additional 25 f1.2xlarges because
it will see that there are already 75 that have been launched with the same run_farm_tag.

launch_instances_timeout_minutes

Integer number of minutes that the launchrunfarm command will attempt to request new instances before giving
up. This limit is used for each of the types of instances being requested. For example, if you set to 60, and you are
requesting all four types of instances, launchrunfarm will try to launch each instance type for 60 minutes, possibly
trying up to a total of four hours.

This limit starts to be applied from the first time launchrunfarm receives a ClientError response in all Availabil-
ityZones (AZs) for your region. In other words, if you request more instances than can possibly be requested in the
given limit but AWS is able to satisfy all of the requests, the limit will not be enforced.

To experience the old (<= 1.12) behavior, set this limit to 0 and launchrunfarm will exit the first time it receives
ClientError across all AZ’s. The old behavior is also the default if 1aunch_instances_timeout_minutes is not
included.

run_instance_market

You can specify either spot or ondemand here, to use one of those markets on AWS.

spot_interruption_behavior

When run_instance_market: spot, this value determines what happens to an instance if it receives the interrup-
tion signal from AWS. You can specify either hibernate, stop, or terminate.

spot_max_price

When run_instance_market: spot, this value determines the max price you are willing to pay per instance, in
dollars. You can also set it to ondemand to set your max to the on-demand price for the instance.

8.5. Manager Configuration Files 171

FireSim Documentation, Release 1.17.0

default_simulation_dir

This is the path on the run farm host that simulations will run out of.

run_farm_hosts_to_use

This is a sequence of unique specifications (given by run_farm_host_specs) to number of instances needed. Set
these key/value pairs respectively based on the number and types of instances you need. While we could automate this
setting, we choose not to, so that users are never surprised by how many instances they are running.

Note that these values are ONLY used to launch instances. After launch, the manager will query the AWS API to find
the instances of each type that have the run_farm_tag set above assigned to them.

Also refer to always_expand_runfarm which determines whether launchrunfarm treats these counts as an incre-
mental amount to be launched every time it is envoked or a total number of instances of that type and run_farm_tag
that should be made to exist. Note, launchrunfarm will never terminate instances.

run_farm_host_specs

This is a sequence of specifications that describe a AWS EC2 instance and its properties. A sequence con-
sists of the AWS EC2 instance name (i.e. f1l.2xlarge) and number of FPGAs it supports (num_£fpgas), num-
ber of metasims it could support (num_metasims), and if the instance should only host switch simulations
(use_for_switch_only). Additionally, a specification can optionally add override_simulation_dir to over-
ride the default_simulation_dir for that specific run farm host. Similarly, a specification can optionally add
override_platform to choose a different default deploy manager platform for that specific run farm host (for more
details on this see the following section). By default, the deploy manager is setup for AWS EC2 simulations.

externally_provisioned.yaml run farm recipe

This run farm allows users to provide a list of pre-setup unmanaged run farm hosts (by hostname or IP address) that they
can run simulations on. Note that this run farm type does not launch or terminate the run farm hosts. This functionality
should be handled by the user. For example, users can use this run farm type to run simulations locally.

Here is an example of this configuration file:

Unmanaged list of run farm hosts. Assumed that they are pre-setup to run simulations.
all fields are required but can be overridden in the “*_runtime.yaml®

run_farm_type: ExternallyProvisioned
args:
managerinit arg start
REQUIRED: default platform used for run farm hosts. this is a class specifying
how to run simulations on a run farm host.
default_platform: EC2InstanceDeployManager

REQUIRED: default directory where simulations are run out of on the run farm hosts
default_simulation_dir: /home/centos

REQUIRED: List of unique hostnames/IP addresses, each with their

corresponding specification that describes the properties of the host.
#

EX:

(continues on next page)

172 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

(continued from previous page)

run_farm_hosts_to_use:
use localhost which is described by "four_fpgas_spec" below.
localhost: four_fpgas_spec
supply IP address, which points to a machine that is described
by "four_fpgas_spec" below.
- "111.111.1.111": four_fpgas_spec
run_farm_hosts_to_use:
- localhost: one_fpgas_spec
managerinit arg end

H*

#
#
#
#
#
#

"default_*" argument in that run host spec.

Optional params include:
override_simulation_dir: /scratch/specific-build-host-build-dir
override_platform: EC2InstanceDeployManager
run_farm_host_specs:
- four_fpgas_spec:
REQUIRED: number of FPGAs on the machine
num_f£pgas: 4
REQUIRED: number of metasims this machine can host
num_metasims: 0
REQUIRED: whether it is acceptable to use machines of this spec
to host ONLY switches (e.g. any attached FPGAs are "wasted")
use_for_switch_only: false

REQUIRED: List of host "specifications", i.e. re-usable collections of
host parameters.

#

The "name" of a spec (e.g. "four_fpgas_spec" below) is user-determined
and is used to refer to the spec above.

#

Besides required parameters shown below, each can have multiple OPTIONAL
arguments, called "override_*", corresponding to the "default_*" arguments
specified above. Each "override_*" argument overrides the corresponding
#

#

#

#

#

four_metasims_spec:
num_£fpgas: 0O
num_metasims: 4
use_for_switch_only: false

switch_only_spec:
num_£fpgas: 0
num_metasims: 0
use_for_switch_only: true

one_£fpga_spec:
num_f£pgas: 1
num_metasims: 0
use_for_switch_only: false

one_£fpgas_spec:
num_fpgas: 1
num_metasims: 0

(continues on next page)

8.5. Manager Configuration Files 173

FireSim Documentation, Release 1.17.0

(continued from previous page)

use_for_switch_only:

two_fpgas_spec:
num_f£pgas: 2
num_metasims: 0

use_for_switch_only:

three_£fpgas_spec:
num_£fpgas: 3
num_metasims: 0

use_for_switch_only:

four_fpgas_spec:
num_£pgas: 4
num_metasims: 0

use_for_switch_only:

five_fpgas_spec:
num_f£pgas: 5
num_metasims: 0

use_for_switch_only:

six_fpgas_spec:
num_£fpgas: 6
num_metasims: 0

use_for_switch_only:

seven_£fpgas_spec:
num_fpgas: 7
num_metasims: 0

use_for_switch_only:

eight_fpgas_spec:
num_f£pgas: 8
num_metasims: 0

use_for_switch_only:

nine_£fpgas_spec:
num_f£pgas: 9
num_metasims: 0

use_for_switch_only:

ten_fpgas_spec:
num_£fpgas: 10
num_metasims: 0

use_for_switch_only:

eleven_£fpgas_spec:
num_fpgas: 11
num_metasims: 0

use_for_switch_only:

false

false

false

false

false

false

false

false

false

false

false

(continues on next page)

174

Chapter 8.

Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

(continued from previous page)

- twelve_fpgas_spec:
num_fpgas: 12
num_metasims: 0
use_for_switch_only: false

- thirteen_£fpgas_spec:
num_fpgas: 13
num_metasims: 0
use_for_switch_only: false

- fourteen_£fpgas_spec:
num_fpgas: 14
num_metasims: 0
use_for_switch_only: false

- fifteen_£fpgas_spec:
num_fpgas: 15
num_metasims: 0
use_for_switch_only: false

- sixteen_fpgas_spec:
num_fpgas: 16
num_metasims: 0
use_for_switch_only: false

default_platform

This key/value specifies a default deploy platform (also known as a deploy manager) class to use for managing simu-
lations across all run farm hosts. For example, this class manages how to flash FPGAs with bitstreams, how to copy
back results, and how to check if a simulation is running. By default, deploy platform classes can be found in de-
ploy/runtools/run_farm_deploy_managers.py. However, you can specify your own custom run farm classes by adding
your python file to the PYTHONPATH. There are default deploy managers / platforms that correspond to AWS EC2
F1 FPGAs, Vitis FPGAs, Xilinx Alveo U250/U280 FPGAs, Xilinx VCU118 FPGAs, and RHS Research Nitefury
II FPGAs: EC2InstanceDeployManager, VitisInstanceDeployManager, Xilinx{AlveoU250,AlveoU280,
VCU118}InstanceDeploylManager, and RHSResearchNitefuryIIInstanceDeployManager respectively. For
example, to use the EC2InstanceDeployManager deploy platform class, you would write default_platform:
EC2InstanceDeployManager.

8.5. Manager Configuration Files 175

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/runtools/run_farm_deploy_managers.py
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/runtools/run_farm_deploy_managers.py

FireSim Documentation, Release 1.17.0

default_simulation_dir

This is the default path on all run farm hosts that simulations will run out of.

run_farm_hosts_to_use

This is a sequence of unique hostnames/IP address to specifications (given by run_farm_host_specs). Set these
key/value pairs respectively to map unmanaged run farm hosts to their description (given by a specification). For
example, to run simulations locally, a user can write a sequence element with - localhost: four_fpgas_specto
indicate that localhost should be used and that it has a type of four_£fpgas_spec.

run_farm_host_specs

This is a sequence of specifications that describe an unmanaged run farm host and its properties. A sequence
consists of the specification name (i.e. four_fpgas_spec) and number of FPGAs it supports (num_£fpgas),
number of metasims it could support (num_metasims), and if the instance should only host switch simulations
(use_for_switch_only). Additionally, a specification can optionally add override_simulation_dir to over-
ride the default_simulation_dir for that specific run farm host. Similarly, a specification can optionally add
override_platform to choose a different default_platform for that specific run farm host.

8.5.6 Build Farm Recipes (build-farm-recipes/¥*)

Here is an example of this configuration file:

Build-time build farm design configuration for the FireSim Simulation Manager

See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
—html for documentation of all of these params.

all fields are required but can be overridden in the “*_runtime.yaml®

HARH AR HHHAH

Schema:

HHARHARHRHHH

Class name of the build farm type.

This can be determined from ‘deploy/buildtools/buildfarm.py’).

build_farm_type: <TYPE NAME>

args:

Build farm arguments that are passed to the ‘BuildFarmHostDispatcher®
object. Determined by looking at ‘parse_args function of class.

<K/V pairs of args>

Note: For large designs (ones that would fill a EC2 F1.2xlarge/Xilinx VU9P)
Vivado uses in excess of 32 GiB. Keep this in mind when selecting a
non-default instance type.
build_farm_type: AWSEC2
args:
managerinit arg start
tag to apply to build farm hosts
build_farm_tag: mainbuildfarm
instance type to use per build
instance_type: zld.2xlarge

(continues on next page)

176 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

(continued from previous page)

instance market to use per build (ondemand, spot)

build_instance_market: ondemand

1f using spot instances, determine the interrupt behavior (terminate, stop,.
—hibernate)

spot_interruption_behavior: terminate

if using spot instances, determine the max price

spot_max_price: ondemand

default location of build directory on build host

default_build_dir: /home/centos/firesim-build

managerinit arg end

build_farm_type
This key/value specifies a build farm class to use for launching, managing, and terminating build farm hosts used for
building bitstreams. By default, build farm classes can be found in deploy/buildtools/buildfarm.py. However, you can

specify your own custom build farm classes by adding your python file to the PYTHONPATH. For example, to use the
AWSEC2 build farm class, you would write build_farm_type: AWSEC2.

args

This section specifies all arguments needed for the specific build_farm_type used. For a list of arguments needed for
a build farm class, users should refer to the _parse_args function in the build farm class given by build_farm_type.

aws_ec2.yaml build farm recipe

This build farm recipe configures a FireSim build farm to use AWS EC2 instances enabled with Vivado.

Here is an example of this configuration file:

Build-time build farm design configuration for the FireSim Simulation Manager

See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
—html for documentation of all of these params.

all fields are required but can be overridden in the “*_runtime.yaml"

HARH AR A HHAH

Schema:

HHARHARHRHHH

Class name of the build farm type.

This can be determined from ‘deploy/buildtools/buildfarm.py’).

build_farm_type: <TYPE NAME>

args:

Build farm arguments that are passed to the ‘"BuildFarmHostDispatcher®
object. Determined by looking at ‘parse_args’ function of class.

<K/V pairs of args>

Note: For large designs (ones that would fill a EC2 F1.2xlarge/Xilinx VU9P)
Vivado uses in excess of 32 GiB. Keep this in mind when selecting a

non-default instance type.

build_farm_type: AWSEC2

args:

(continues on next page)

8.5. Manager Configuration Files 177

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/buildtools/buildfarm.py

FireSim Documentation, Release 1.17.0

(continued from previous page)

managerinit arg start

tag to apply to build farm hosts

build_farm_tag: mainbuildfarm

instance type to use per build

instance_type: zld.2xlarge

instance market to use per build (ondemand, spot)

build_instance_market: ondemand

1f using spot instances, determine the interrupt behavior (terminate, stop,.
—hibernate)

spot_interruption_behavior: terminate

1if using spot instances, determine the max price

spot_max_price: ondemand

default location of build directory on build host

default_build_dir: /home/centos/firesim-build

managerinit arg end

build_farm_tag

Use build_farm_tag to differentiate between different Build Farms used across multiple FireSim repositories. The
instances launched by the buildbitstream command will be tagged with this value. Mainly for CI use.

Per AWS restrictions, this tag can be no longer than 255 characters.

instance_type

The AWS EC2 instance name to run a bitstream build on. Note that for large designs, Vivado uses an excess of 32 GiB
so choose a non-default instance type wisely.

build_instance_market

You can specify either spot or ondemand here, to use one of those markets on AWS.

spot_interruption_behavior

When run_instance_market: spot, this value determines what happens to an instance if it receives the interrup-
tion signal from AWS. You can specify either hibernate, stop, or terminate.

spot_max_price

When build_instance_market: spot, this value determines the max price you are willing to pay per instance, in
dollars. You can also set it to ondemand to set your max to the on-demand price for the instance.

178 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

default_build_dir

This is the path on the build farm host that bitstream builds will run out of.

externally_provisioned.yaml build farm recipe

This build farm recipe allows users to provide an list of pre-setup unmanaged build farm hosts (by hostname or 1P
address) that they can run bitstream builds on. Note that this build farm type does not launch or terminate the build
farm hosts. This functionality should be handled by the user. For example, users can use this build farm type to run
bitstream builds locally.

Here is an example of this configuration file:

Build-time build farm design configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
—html for documentation of all of these params.

HARH AR HRHHH

Schema:

HARH AR A RHAH

Class name of the build farm type.

This can be determined from “deploy/buildtools/buildfarm.py’).

build_farm_type: <TYPE NAME>

args:

Build farm arguments that are passed to the ‘BuildFarmHostDispatcher®
object. Determined by looking at ‘parse_args function of class.

<K/V pairs of args>

Unmanaged list of build hosts. Assumed that they are pre-setup to run builds.
build_farm_type: ExternallyProvisioned
args:
managerinit arg start
REQUIRED: (replace this) default location of build directory on build host.
default_build_dir: null
REQUIRED: List of IP addresses (or "localhost"). Each can have an OPTIONAL
argument, called "override_build_dir", specifying to override the default
build directory.
#
EX:
build_farm_hosts:
use localhost and don't override the default build dir
localhost
use other IP address (don't override default build dir)
"111.111.1.111"
use other IP address (override default build dir for this build host)
- "222.222.2.222":
override_build _dir: /scratch/specific-build-host-build-dir
build_farm_hosts:
- localhost
managerinit arg end

H

R R R R W R
!

8.5. Manager Configuration Files 179

FireSim Documentation, Release 1.17.0

default_build_dir

This is the default path on all the build farm hosts that bitstream builds will run out of.

build_farm_hosts

This is a sequence of unique hostnames/IP addresses that should be used as build farm hosts. Each build farm host
(given by the unique hostname/IP address) can have an optional mapping that provides an override_build_dir that
overrides the default_build_dir given just for that build farm host.

8.5.7 Bit Builder Recipes (bit-builder-recipes/*)

Here is an example of this configuration file:

Build-time bitbuilder design configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
—html for documentation of all of these params.

HAHRHRARARS

Schema:

HARH AR AR A

Class name of the bitbuilder type.

This can be determined from “deploy/buildtools/bitbuilder.py’).

bitbuilder_type: <TYPE NAME>

args:

Bitbuilder arguments that are passed to the ‘"BitBuilder"

object. Determined by looking at °_parse_args ™ function of class.
<K/V pairs of args>

bit_builder_type: F1BitBuilder
args:
REQUIRED: name of s3 bucket
s3_bucket_name: firesim
REQUIRED: append aws username and current region to s3_bucket_name?
append_userid_region: true

bit_builder_type

This key/value specifies a bit builder class to use for building bitstreams. By default, bit builder classes can be
found in deploy/buildtools/bitbuilder.py. However, you can specify your own custom bit builder classes by adding
your python file to the PYTHONPATH. For example, to use the F1BitBuilder build farm class, you would write
bit_builder_type: FI1BitBuilder.

180 Chapter 8. Manager Usage (the firesim command)

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/buildtools/bitbuilder.py

FireSim Documentation, Release 1.17.0

args

This section specifies all arguments needed for the specificbit_builder_type used. For alist of arguments needed for
abit builder class, users should refer to the _parse_args function in the bit builder class given by bit_builder_type.

f1.yaml bit builder recipe

This bit builder recipe configures a build farm host to build an AWS EC2 F1 AGFI (FPGA bitstream).

Here is an example of this configuration file:

Build-time bitbuilder design configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
—html for documentation of all of these params.

HAHRGRBRTRHS

Schema:

HARHARHRHAHH

Class name of the bitbuilder type.

This can be determined from ‘deploy/buildtools/bitbuilder.py’).

bitbuilder_type: <TYPE NAME>

args:

Bitbuilder arguments that are passed to the ‘"BitBuilder"

object. Determined by looking at °_parse_args function of class.
<K/V pairs of args>

bit_builder_type: F1BitBuilder
args:
REQUIRED: name of s3 bucket
s3_bucket_name: firesim
REQUIRED: append aws username and current region to s3_bucket_name?
append_userid_region: true

s3_bucket_name

This is used behind the scenes in the AGFI creation process. You will only ever need to access this bucket manually if
there is a failure in AGFI creation in Amazon’s backend.

Naming rules: this must be all lowercase and you should stick to letters and numbers ([a-z0-9]).

The first time you try to run a build, the FireSim manager will try to create the bucket you name here. If the name is
unavailable, it will complain and you will need to change this name. Once you choose a working name, you should
never need to change it.

In general, firesim-yournamehere is a good choice.

8.5. Manager Configuration Files 181

FireSim Documentation, Release 1.17.0

append_userid_region

When enabled, this appends the current users AWS user ID and region to the s3_bucket_name.

vitis.yaml bit builder recipe

This bit builder recipe configures a build farm host to build an Vitis bitstream (FPGA bitstream called an xclbin,
packaged into a bitstream_tar).

device

This specifies a Vitis platform to compile against, for example: xilinx_u250_gen3x16_xdma_3_1_202020_1 when
targeting a Vitis-enabled Alveo U250 FPGA.

Here is an example of this configuration file:

Build-time bitbuilder design configuration for the FireSim Simulation Manager
See https://docs.fires.im/en/stable/Advanced-Usage/Manager/Manager-Configuration-Files.
—html for documentation of all of these params.

HARHARHHHHH

Schema:

HAHRHRAR AR

Class name of the bitbuilder type.

This can be determined from ‘deploy/buildtools/bitbuilder.py’).

bitbuilder_type: <TYPE NAME>

args:

Bitbuilder arguments that are passed to the 'BitBuilder’

object. Determined by looking at “_parse_args' function of class.
<K/V pairs of args>

bit_builder_type: VitisBitBuilder
args:
REQUIRED: vitis fpga platform
device: xilinx u250_gen3x16_xdma_4_1_202210_1

xilinx_alveo_u250.yaml bit builder recipe

This bit builder recipe configures a build farm host to build an Xilinx Alveo U250 bitstream, packaged into a
bitstream_tar.

xilinx_alveo_u280.yaml bit builder recipe

This bit builder recipe configures a build farm host to build an Xilinx Alveo U280 bitstream, packaged into a
bitstream_tar.

182 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

xilinx_vcull8.yaml bit builder recipe

This bit builder recipe configures a build farm host to build an Xilinx VCUI118 bitstream, packaged into a
bitstream_tar.

rhsresearch_nitefury_ii.yaml bit builder recipe
This bit builder recipe configures a build farm host to build an RHS Research Nitefury II bitstream, packaged into a

bitstream_tar.

8.6 Manager Environment Variables

This page contains a centralized reference for the environment variables used by the manager.

8.6.1 FIRESIM_RUNFARM_PREFIX

This environment variable is used to prefix all Run Farm tags with some prefix in the AWS EC2 case. This is useful
for separating run farms between multiple copies of FireSim.

8.6.2 FIRESIM_BUILDFARM_PREFIX

This environment variable is used to prefix all Build Farm tags with some prefix in the AWS EC2 case. This is mainly
for CI use only.

8.7 Manager Network Topology Definitions (user_topology.py)

Custom network topologies are specified as Python snippets that construct a tree. You can see examples of these in
deploy/runtools/user_topology.py, shown below. Better documentation of this API will be available once it stabilizes.

Fundamentally, you create a list of roots, which consists of switch or server nodes, then construct a tree by adding
downlinks to these roots. Since links are bi-directional, adding a downlink from node A to node B implicitly adds an
uplink from B to A.

You can add additional topology generation methods here, then use them in config_runtime.yaml.

8.7.1 user_topology.py contents:

o

Define your additional topologies here. The FireSimTopology class inherits

mirn

from UserToplogies and thus can instantiate your topology.

from __future__ import annotations

from runtools.firesim_topology_elements import FireSimSwitchNode, FireSimServerNode,..
—FireSimSuperNodeServerNode, FireSimDummyServerNode, FireSimNode

from typing import Optional, Union, Callable, Sequence, TYPE_CHECKING, cast, List, Any
if TYPE_CHECKING:

(continues on next page)

8.6. Manager Environment Variables 183

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/runtools/user_topology.py

FireSim Documentation, Release 1.17.0

(continued from previous page)

from runtools.firesim_topology_with_passes import FireSimTopologyWithPasses

class UserTopologies:
""" A class that just separates out user-defined/configurable topologies
from the rest of the boilerplate in FireSimTopology() """
no_net_num_nodes: int
custom_mapper: Optional[Union[Callable, str]]

roots: Sequence[FireSimNode]

def __init__(self, no_net_num_nodes: int) -> None:
self.no_net_num_nodes = no_net_num_nodes
self.custom_mapper = None
self.roots = []

def clos_m_n_r(self, m: int, n: int, r: int) -> None:
""" DO NOT USE THIS DIRECTLY, USE ONE OF THE INSTANTIATIONS BELOwW. """
""" Clos topol where:
m = number of root switches
n = number of links to nodes on leaf switches
r = number of leaf switches

and each leaf switch has a link to each root switch.

With the default mapping specified below, you will need:
m switch nodes (on F1: m4.1l6xlarges).
n fpga nodes (on F1l: fl.l16xlarges).

TODO: improve this later to pack leaf switches with <= 4 downlinks onto
one 16x.large.

i

rootswitches = [FireSimSwitchNode() for x in range(m)]
self.roots = rootswitches
leafswitches = [FireSimSwitchNode() for x in range(r)]
servers = [[FireSimServerNode() for x in range(n)] for y in range(r)]
for rswitch in rootswitches:
rswitch.add_downlinks(leafswitches)

for leafswitch, servergroup in zip(leafswitches, servers):
leafswitch.add_downlinks(servergroup)

def custom_mapper(fsim_topol_with_passes: FireSimTopologyWithPasses) -> None:
for i, rswitch in enumerate(rootswitches):
switch_inst_handle = fsim_topol_with_passes.run_farm.get_switch_only_
—host_handle()
switch_inst = fsim_topol_with_passes.run_farm.allocate_sim_host(switch_
—inst_handle)
switch_inst.add_switch(rswitch)

for j, lswitch in enumerate(leafswitches):
numsims = len(servers([j])
inst_handle = fsim_topol_with_passes.run_farm.get_smallest_sim_host_

—ShandIethum_SimsS=numsSims) (continues on next page)

184 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

(continued from previous page)

sim_inst = fsim_topol_with_passes.run_farm.allocate_sim_host(inst_handle)
sim_inst.add_switch(lswitch)
for sim in servers[j]:

sim_inst.add_simulation(sim)

self.custom_mapper = custom_mapper

def clos_2_8_2(self) -> None:
""" clos topol with:
2 roots
8 nodes/leaf
2 leaves. """
self.clos_m_n_r(2, 8, 2)
def clos_8_8_16(self) -> None:
""" clos topol with:
8 roots
8 nodes/leaf
16 leaves. = 128 nodes."""
self.clos_m_n_r(8, 8, 16)

def fat_tree_4ary(self) -> None:

4-ary fat tree as described in

http://ccr.sigcomm.org/online/files/p63-alfares.pdf

coreswitches = [FireSimSwitchNode() for x in range(4)]

self.roots = coreswitches

aggrswitches = [FireSimSwitchNode() for x in range(8)]

edgeswitches = [FireSimSwitchNode() for x in range(8)]

servers = [FireSimServerNode() for x in range(16)]

for switchno in range(len(coreswitches)):
core = coreswitches[switchno]
base = 0 if switchno < 2 else 1
dls = list(map(lambda x: aggrswitches[x], range(base, 8, 2)))
core.add_downlinks(dls)

for switchbaseno in range(0®, len(aggrswitches), 2):
switchno = switchbaseno + 0
aggr = aggrswitches[switchno]
aggr.add_downlinks([edgeswitches[switchno], edgeswitches[switchno+1]])
switchno = switchbaseno + 1
aggr = aggrswitches[switchno]
aggr.add_downlinks([edgeswitches[switchno-1], edgeswitches[switchno]])

for edgeno in range(len(edgeswitches)):
edgeswitches[edgeno] .add_downlinks([servers[edgeno*2], servers[edgeno*2+1]])

def custom_mapper (fsim_topol_with_passes: FireSimTopologyWithPasses) -> None:
""" In a custom mapper, you have access to the firesim topology with passes,
where you can access the run_farm nodes:

Requires 2 fpga nodes w/ 8+ fpgas and 1 switch node

To map, call add_switch or add_simulation on run farm instance

(continues on next page)

8.7. Manager Network Topology Definitions (user_topology.py) 185

FireSim Documentation, Release 1.17.0

(continued from previous page)

objs in the aforementioned arrays.

Because of the scope of this fn, you also have access to whatever
stuff you created in the topology itself, which we expect will be
useful for performing the mapping."""

map the fat tree onto one switch host instance (for core switches)
and two 8-sim-slot (e.g. 8-fpga) instances

(e.g., two pods of aggr/edge/4sims per fl1.16xlarge)

switch_inst_handle = fsim_topol_with_passes.run_farm.get_switch_only_host_

~handle()

switch_inst = fsim_topol_with_passes.run_farm.allocate_sim_host(switch_inst_

—handle)

for core in coreswitches:
switch_inst.add_switch(core)

eight_sim_host_handle = fsim_topol_with_passes.run_farm.get_smallest_sim_

—host_handle(num_sims=8)

sim_hosts = [fsim_topol_with_passes.run_farm.allocate_sim_host(eight_sim_

—host_handle) for _ in range(2)]

def

def

for aggrsw in aggrswitches[:4]:
sim_hosts[0].add_switch(aggrsw)

for aggrsw in aggrswitches[4:]:
sim_hosts[1].add_switch(aggrsw)

for edgesw in edgeswitches[:4]:
sim_hosts[0].add_switch(edgesw)

for edgesw in edgeswitches[4:]:
sim_hosts[1].add_switch(edgesw)

for sim in servers[:8]:
sim_hosts[0].add_simulation(sim)

for sim in servers[8:]:
sim_hosts[1].add_simulation(sim)

self.custom_mapper = custom_mapper

example_multilink(self) -> None:

self.roots = [FireSimSwitchNode()]
midswitch = FireSimSwitchNode()

lowerlayer = [midswitch for x in range(16)]
self.roots[0].add_downlinks(lowerlayer)
servers = [FireSimServerNode()]
midswitch.add_downlinks(servers)

example_multilink_32(self) -> None:
self.roots = [FireSimSwitchNode()]
midswitch = FireSimSwitchNode()

lowerlayer = [midswitch for x in range(32)]
self.roots[0].add_downlinks(lowerlayer)

(continues on next page)

186

Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

(continued from previous page)

servers = [FireSimServerNode()]
midswitch.add_downlinks(servers)

def example_multilink_64(self) -> None:
self.roots = [FireSimSwitchNode()]
midswitch = FireSimSwitchNode()
lowerlayer = [midswitch for x in range(64)]
self.roots[0].add_downlinks(lowerlayer)
servers = [FireSimServerNode()]
midswitch.add_downlinks(servers)

def example_cross_links(self) -> None:
self.roots = [FireSimSwitchNode() for x in range(2)]
midswitches = [FireSimSwitchNode() for x in range(2)]
self.roots[0].add_downlinks(midswitches)
self.roots[1].add_downlinks(midswitches)
servers = [FireSimServerNode() for x in range(2)]
midswitches[0].add_downlinks([servers[0]])
midswitches[1].add_downlinks([servers[1]])

def small_hierarchy_8sims(self) -> None:
self.custom_mapper = 'mapping_use_one_8_slot_node'
self.roots = [FireSimSwitchNode()]
midlevel = [FireSimSwitchNode() for x in range(4)]
servers = [[FireSimServerNode() for x in range(2)] for x in range(4)]
self.roots[0].add_downlinks(midlevel)
for swno in range(len(midlevel)):
midlevel [swno].add_downlinks(servers[swno])

def small_hierarchy_2sims(self) -> None:
self.custom_mapper = 'mapping_use_one_8 slot_node'
self.roots = [FireSimSwitchNode()]
midlevel = [FireSimSwitchNode() for x in range(1)]
servers = [[FireSimServerNode() for x in range(2)] for x in range(1)]
self.roots[0].add_downlinks(midlevel)
for swno in range(len(midlevel)):
midlevel [swno].add_downlinks(servers[swno])

def example_lconfig(self) -> None:
self.roots = [FireSimSwitchNode()]
servers = [FireSimServerNode() for y in range(1)]
self.roots[0].add_downlinks(servers)

def example_2config(self) -> None:
self.roots = [FireSimSwitchNode()]
servers = [FireSimServerNode() for y in range(2)]
self.roots[0].add_downlinks(servers)

def example_4config(self) -> None:
self.roots = [FireSimSwitchNode()]
servers = [FireSimServerNode() for y in range(4)]
self.roots[0].add_downlinks(servers)

(continues on next page)

8.7. Manager Network Topology Definitions (user_topology.py) 187

FireSim Documentation, Release 1.17.0

(continued from previous page)

def example_8config(self) -> None:
self.roots = [FireSimSwitchNode()]
servers = [FireSimServerNode() for y in range(8)]
self.roots[0].add_downlinks(servers)

def example_l6config(self) -> None:
self.roots = [FireSimSwitchNode()]
level2switches = [FireSimSwitchNode() for x in range(2)]
servers = [[FireSimServerNode() for y in range(8)] for x in range(2)]

for root in self.roots:
root.add_downlinks(level2switches)

for 12switchNo in range(len(level2switches)):
level2switches[1l2switchNo].add_downlinks(servers[l2switchNo])

def example_32config(self) -> None:
self.roots = [FireSimSwitchNode()]
level2switches = [FireSimSwitchNode() for x in range(4)]
servers = [[FireSimServerNode() for y in range(8)] for x in range(4)]

for root in self.roots:
root.add_downlinks(level2switches)

for 12switchNo in range(len(level2switches)):
level2switches[1l2switchNo].add_downlinks(servers[l2switchNo])

def example_64config(self) -> None:
self.roots = [FireSimSwitchNode()]
level2switches = [FireSimSwitchNode() for x in range(8)]
servers = [[FireSimServerNode() for y in range(8)] for x in range(8)]

for root in self.roots:
root.add_downlinks(level2switches)

for 12switchNo in range(len(level2switches)):
level2switches[1l2switchNo].add_downlinks(servers[l2switchNo])

def example_128config(self) -> None:
self.roots = [FireSimSwitchNode()]
levellswitches = [FireSimSwitchNode() for x in range(2)]
level2switches = [[FireSimSwitchNode() for x in range(8)] for x in range(2)]
servers = [[[FireSimServerNode() for y in range(8)] for x in range(8)] for x in.
—range(2)]

self.roots[0].add_downlinks(levellswitches)

for switchno in range(len(levellswitches)):
levellswitches[switchno].add_downlinks(level2switches[switchno])

for switchgroupno in range(len(level2switches)):

(continues on next page)

188 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

(continued from previous page)

for switchno in range(len(level2switches[switchgroupno])):
level2switches[switchgroupno] [switchno].add_
—.downlinks(servers[switchgroupno] [switchno])

def example_256config(self) -> None:
self.roots = [FireSimSwitchNode()]
levellswitches = [FireSimSwitchNode() for x in range(4)]
level2switches = [[FireSimSwitchNode() for x in range(8)] for x in range(4)]
servers = [[[FireSimServerNode() for y in range(8)] for x in range(8)] for x in.
—range(4)]

self.roots[0].add_downlinks(levellswitches)

for switchno in range(len(levellswitches)):
levellswitches[switchno].add_downlinks(level2switches[switchno])

for switchgroupno in range(len(level2switches)):
for switchno in range(len(level2switches[switchgroupno])):
level2switches[switchgroupno] [switchno].add_
—~downlinks(servers[switchgroupno] [switchno])

@staticmethod
def supernode_flatten(arr: List[Any]) -> List[Any]:
res: List[Any] = []
for x in arr:
res = res + X
return res

def supernode_example_6config(self) -> None:
self.roots = [FireSimSwitchNode()]
self.roots[0].add_downlinks([FireSimSuperNodeServerNode()])
self.roots[0].add_downlinks([FireSimDummyServerNode() for x in range(5)])

def supernode_example_4config(self) -> None:
self.roots = [FireSimSwitchNode()]
self.roots[0].add_downlinks([FireSimSuperNodeServerNode()])
self.roots[0].add_downlinks([FireSimDummyServerNode() for x in range(3)])

def supernode_example_8config(self) -> None:
self.roots = [FireSimSwitchNode()]
servers = UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),.
—FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in.
—range(2)1)
self.roots[0].add_downlinks(servers)

def supernode_example_l6config(self) -> None:
self.roots = [FireSimSwitchNode()]
servers = UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),.
—FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in,
—range(4)])
self.roots[0].add_downlinks(servers)

(continues on next page)

8.7. Manager Network Topology Definitions (user_topology.py) 189

FireSim Documentation, Release 1.17.0

(continued from previous page)

def supernode_example_32config(self) -> None:
self.roots = [FireSimSwitchNode()]
servers = UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),.
. FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in.
—range(8)1)
self.roots[0].add_downlinks(servers)

def supernode_example_64config(self) -> None:
self.roots = [FireSimSwitchNode()]
level2switches = [FireSimSwitchNode() for x in range(2)]
servers = [UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),.
—FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in,
—range(8)]) for x in range(2)]
for root in self.roots:
root.add_downlinks(level2switches)
for 12switchNo in range(len(level2switches)):
level2switches[1l2switchNo].add_downlinks(servers[l2switchNo])

def supernode_example_128config(self) -> None:
self.roots = [FireSimSwitchNode()]
level2switches = [FireSimSwitchNode() for x in range(4)]
servers = [UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),..
—FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in,
—range(8)]) for x in range(4)]
for root in self.roots:
root.add_downlinks(level2switches)
for 12switchNo in range(len(level2switches)):
level2switches[12switchNo].add_downlinks(servers[12switchNo])

def supernode_example_256config(self) -> None:
self.roots = [FireSimSwitchNode()]
level2switches = [FireSimSwitchNode() for x in range(8)]
servers = [UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),.
—FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in,
—range(8)]) for x in range(8)]
for root in self.roots:
root.add_downlinks(level2switches)
for 12switchNo in range(len(level2switches)):
level2switches[12switchNo].add_downlinks(servers[12switchNo])

def supernode_example_512config(self) -> None:
self.roots = [FireSimSwitchNode()]
levellswitches = [FireSimSwitchNode() for x in range(2)]
level2switches = [[FireSimSwitchNode() for x in range(8)] for x in range(2)]
servers = [[UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),.
. FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in._
—range(8)]) for x in range(8)] for x in range(2)]
self.roots[0].add_downlinks(levellswitches)
for switchno in range(len(levellswitches)):
levellswitches[switchno].add_downlinks(level2switches[switchno])
for switchgroupno in range(len(level2switches)):
for switchno in range(len(level2switches[switchgroupno])):

(continues on next page)

190 Chapter 8. Manager Usage (the firesim command)

FireSim Documentation, Release 1.17.0

(continued from previous page)

level2switches[switchgroupno] [switchno].add_
—downlinks(servers[switchgroupno] [switchno])

def supernode_example_1024config(self) -> None:
self.roots = [FireSimSwitchNode()]
levellswitches = [FireSimSwitchNode() for x in range(4)]
level2switches = [[FireSimSwitchNode() for x in range(8)] for x in range(4)]
servers = [[UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),.
—FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in.
—range(8)]) for x in range(8)] for x in range(4)]
self.roots[0].add_downlinks(levellswitches)
for switchno in range(len(levellswitches)):
levellswitches[switchno].add_downlinks(level2switches[switchno])
for switchgroupno in range(len(level2switches)):
for switchno in range(len(level2switches[switchgroupno])):
level2switches[switchgroupno] [switchno].add_
—downlinks(servers[switchgroupno] [switchno])

def supernode_example_deep64config(self) -> None:
self.roots = [FireSimSwitchNode()]
levellswitches = [FireSimSwitchNode() for x in range(2)]
level2switches = [[FireSimSwitchNode() for x in range(1)] for x in range(2)]
servers = [[UserTopologies.supernode_flatten([[FireSimSuperNodeServerNode(),.
. FireSimDummyServerNode(), FireSimDummyServerNode(), FireSimDummyServerNode()] for y in,_
—range(8)]) for x in range(1)] for x in range(2)]
self.roots[0].add_downlinks(levellswitches)
for switchno in range(len(levellswitches)):
levellswitches[switchno].add_downlinks(level2switches[switchno])
for switchgroupno in range(len(level2switches)):
for switchno in range(len(level2switches[switchgroupno])):
level2switches[switchgroupno] [switchno].add_
—downlinks(servers[switchgroupno] [switchno])

def dual_example_8config(self) -> None:
""" two separate 8-node clusters for experiments, e.g. memcached mutilate.
self.roots = [FireSimSwitchNode()] * 2
servers = [FireSimServerNode() for y in range(8)]
servers2 = [FireSimServerNode() for y in range(8)]
self.roots[0].add_downlinks(servers)
self.roots[1].add_downlinks(servers2)

mirn

def triple_example_8config(self) -> None:
""" three separate 8-node clusters for experiments, e.g. memcached mutilate.
self.roots = [FireSimSwitchNode()] * 3
servers = [FireSimServerNode() for y in range(8)]
servers2 = [FireSimServerNode() for y in range(8)]
servers3 = [FireSimServerNode() for y in range(8)]
self.roots[0].add_downlinks(servers)
self.roots[1].add_downlinks(servers2)
self.roots[2].add_downlinks(servers3)

o

def no_net_config(self) -> None:

(continues on next page)

8.7. Manager Network Topology Definitions (user_topology.py) 191

FireSim Documentation, Release 1.17.0

(continued from previous page)

self.roots = [FireSimServerNode() for x in range(self.no_net_num_nodes)]

Spins up all of the precompiled, unnetworked targets
def all_no_net_targets_config(self) -> None:
hwdb_entries = [
"firesim_boom_singlecore_no_nic_12_1lc4mb_ddr3",
"firesim_rocket_quadcore_no_nic_12_11lc4mb_ddr3",
]
assert len(hwdb_entries) == self.no_net_num_nodes
self.roots = [FireSimServerNode(hwdb_entries[x]) for x in range(self.no_net_num_
—nodes)]

######Used only for tutorial DPUrpOSeSHAHHHHHHAAMBAAHHHHHY
def example_sha3hetero_2config(self):
self.roots= [FireSimSwitchNode()]
servers = [FireSimServerNode(server_hardware_config=
"firesim_boom_singlecore_nic_12_11c4mb_ddr3"),
FireSimServerNode (server_hardware_config=
"firesim_rocket_singlecore_sha3_nic_12_11lc4mb_ddr3")]
self.roots[0].add_downlinks(servers)

FHOoH O R W R W% W

8.8 AGFI Metadata/Tagging

In the AWS EC2 case, when you build an AGFI in FireSim, the AGFI description stored by AWS is populated with
metadata that helps the manager decide how to deploy a simulation. The important metadata is listed below, along with
how each field is set and used:

e firesim-buildquintuplet: This always reflects the quintuplet combination used to BUILD the AGFI.

e firesim-deployquintuplet: This reflects the quintuplet combination that is used to DEPLOY the AGFI.
By default, this is the same as firesim-buildquintuplet. In certain cases however, your users may not
have access to a particular configuration, but a simpler configuration may be sufficient for building a compatible
software driver (e.g. if you have proprietary RTL in your FPGA image that doesn’t interface with the outside
system). In this case, you can specify a custom deployquintuplet at build time. If you do not do so, the manager
will automatically set this to be the same as firesim-buildquintuplet.

e firesim-commit: This is the commit hash of the version of FireSim used to build this AGFI. If the AGFI was
created from a dirty copy of the FireSim repo, “-dirty” will be appended to the commit hash.

192 Chapter 8. Manager Usage (the firesim command)

CHAPTER
NINE

WORKLOADS

This section describes workload definitions in FireSim.

9.1 Defining Custom Workloads

This page documents the JSON input format that FireSim uses to understand your software workloads that run on the
target design. Most of the time, you should not be writing these files from scratch. Instead, use FireMarshal to build a
workload (including Linux kernel images and root filesystems) and use firemarshal’s install command to generate
an initial . json file for FireSim. Once you generate a base . json with FireMarshal, you can add some of the options
noted on this page to control additional files used as inputs/outputs to/from simulations.

Workloads in FireSim consist of a series of Jobs that are assigned to be run on individual simulations. Currently, we
require that a Workload defines either:

* A single type of job, that is run on as many simulations as specfied by the user. These workloads are usually
suffixed with -uniform, which indicates that all nodes in the workload run the same job. An example of such a
workload is deploy/workloads/linux-uniform.json.

* Several different jobs, in which case there must be exactly as many jobs as there are running simulated nodes.
An example of such a workload is deploy/workloads/ping-latency.json.

FireSim uses these workload definitions to help the manager deploy your simulations. Historically, there was also a
script to build workloads using these JSON files, but this has been replaced with a more powerful tool, FireMarshal.
New workloads should always be built with FireMarshal.

In the following subsections, we will go through the two aforementioned example workload configurations, describing
the how the manager uses each part of the JSON file inline.

The following examples use the default buildroot-based linux distribution (br-base). In order to customize Fedora, you
should refer to the Running Fedora on FireSim page.

9.1.1 Uniform Workload JSON

deploy/workloads/linux-uniform.json is an example of a “uniform” style workload, where each simulated node runs
the same software configuration.

Let’s take a look at this file:

{
"benchmark_name" : "linux-uniform",
"common_bootbinary" : "br-base-bin",
"common_rootfs" : "br-base.img",

(continues on next page)

193

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/linux-uniform.json
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/ping-latency.json
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/linux-uniform.json

FireSim Documentation, Release 1.17.0

(continued from previous page)

"common_outputs" : ["/etc/os-release"],
"common_simulation_outputs" : ["uartlog", "memory_stats*.csv']

}

There is also a corresponding directory named after this workload/file:

centos@ip-192-168-2-7.ec2.internal:~/firesim/deploy/workloads/linux-uniform$ ls -la
total 4

drwxrwxr-x 2 centos centos 69 Feb 8 00:07 .

drwxrwxr-x 19 centos centos 4096 Feb 8 00:39 ..

lrwxrwxrwx 1 centos centos 47 Feb 7 00:38 br-base-bin -> ../../../sw/firesim-
—software/images/firechip/br-base/br-base-bin

lrwxrwxrwx 1 centos centos 53 Feb 8 00:07 br-base-bin-dwarf -> ../../../sw/firesim-
—.software/images/firechip/br-base/br-base-bin-dwarf

lrwxrwxrwx 1 centos centos 47 Feb 7 00:38 br-base.img -> ../../../sw/firesim-
—.software/images/firechip/br-base/br-base.img

We will elaborate on this later.
Looking at the JSON file, you’ll notice that this is a relatively simple workload definition.

In this “uniform” case, the manager will name simulations after the benchmark_name field, appending a number for
each simulation using the workload (e.g. linux-uniform@, linux-uniforml, and so on). It is standard pratice to
keep benchmark_name, the JSON filename, and the above directory name the same. In this case, we have set all of
them to linux-uniform.

Next, the common_bootbinary field represents the binary that the simulations in this workload are expected to boot
from. The manager will copy this binary for each of the nodes in the simulation (each gets its own copy). The
common_bootbinary path is relative to the workload’s directory, in this case deploy/workloads/linux-uniform. You’ll
notice in the above output from 1s -1a that this is actually just a symlink to br-base-bin that is built by the Fire-
Marshal tool.

Similarly, the common_rootfs field represents the disk image that the simulations in this workload are expected to
boot from. The manager will copy this root filesystem image for each of the nodes in the simulation (each gets its own
copy). The common_rootfs path is relative to the workload’s directory, in this case deploy/workloads/linux-uniform.
You’ll notice in the above output from 1s -1a that this is actually just a symlink to br-base.img that is built by the
FireMarshal tool.

The common_outputs field is a list of outputs that the manager will copy out of the root filesystem image AFTER
a simulation completes. In this simple example, when a workload running on a simulated cluster with firesim
runworkload completes, /etc/os-release will be copied out from each rootfs and placed in the job’s output direc-
tory within the workload’s output directory (See the firesim runworkload section). You can add multiple paths here.
Additionally, you can use bash globbing for file names (ex: file*name).

The common_simulation_outputs field is a list of outputs that the manager will copy off of the simulation host
machine AFTER a simulation completes. In this example, when a workload running on a simulated cluster with
firesim runworkload completes, the uartlog (an automatically generated file that contains the full console output
of the simulated system) and memory_stats. csv files will be copied out of the simulation’s base directory on the host
instance and placed in the job’s output directory within the workload’s output directory (see the firesim runworkload
section). You can add multiple paths here. Additionally, you can use bash globbing for file names (ex: file*name).

194 Chapter 9. Workloads

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/linux-uniform
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/linux-uniform

FireSim Documentation, Release 1.17.0

9.1.2 Non-uniform Workload JSON (explicit job per simulated node)

Now, we’ll look at the ping-latency workload, which explicitly defines a job per simulated node.

{

"benchmark_name" :

"common_bootbinary" :

"common_outputs" :

"ping-latency",
"bbl-vmlinux",

1,

"common_simulation_inputs" : [],
"common_simulation_outputs" : ["uartlog"],
"no_post_run_hook": "",
"workloads" : [
{
"name": "pinger",

"simulation_inputs":

"simulation_outputs":

"outputs": []

"name": "pingee",
"simulation_inputs":

"simulation_outputs":

"outputs": []

"name": "idler-1",
"simulation_inputs":

"simulation_outputs":

"outputs": []

"name": "idler-2",
"simulation_inputs":

"simulation_outputs":

"outputs": []

"name": "idler-3",
"simulation_inputs":

"simulation_outputs":

"outputs": []

"name": "idler-4",
"simulation_inputs":

"simulation_outputs":

"outputs": []

"name": "idler-5",
"simulation_inputs":

"simulation_outputs":

"outputs": []

1,
1,

1,
1,

1,
1,

1,
1,

1,
1,

1,
1,

1,
1,

(continues on next page)

9.1. Defining Custom Workloads

195

FireSim Documentation, Release 1.17.0

(continued from previous page)

3

{
"name": "idler-6",
"simulation_inputs": [],
"simulation_outputs": [],
"outputs": []

}

Additionally, let’s take a look at the state of the ping-1latency directory AFTER the workload is built (assume that a
tool like FireMarshal already created the rootfses and linux images):

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/workloads/ping-
—latency$ 1ls -la
total 15203216

drwxrwxr-x 3 centos centos 4096 May 18 07:45 .

drwxrwxr-x 13 centos centos 4096 May 18 17:14 ..

lrwxrwxrwx 1 centos centos 41 May 17 21:58 bbl-vmlinux -> ../linux-uniform/br-
—base-bin

-rw-rw-r-- 1 centos centos 7 May 17 21:58 .gitignore

-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-1.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-2.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-3.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-4.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-5.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:46 idler-6.ext2
drwxrwxr-x 3 centos centos 16 May 17 21:58 overlay

-rw-r--r-- 1 centos centos 1946009600 May 18 07:44 pingee.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:44 pinger.ext2
-rw-rw-r-- 1 centos centos 2236 May 17 21:58 ping-latency-graph.py

First, let’s identify some of these files:
e bbl-vmlinux: This workload just uses the default linux binary generated for the 1inux-uniform workload.
e .gitignore: This just ignores the generated rootfses, which you probably don’t want to commit to the repo.

e idler-[1-6].ext2, pingee.ext2, pinger.ext2: These are rootfses that we want to run on different nodes
in our simulation. They can be generated with a tool like FireMarshal.

Next, let’s review some of the new fields present in this JSON file:

e common_simulation_inputs: This is an array of extra files that you would like to supply to the simulator
as input. One example is supplying files containing DWARF debugging info for TracerV + Stack Unwinding.
See the Modifying your workload description section of the TracerV + Flame Graphs: Profiling Software with
Out-of-Band Flame Graph Generation page for an example.

* no_post_run_hook: This is a placeholder for running a script on your manager automatically once your work-
load completes. To use this option, rename it to post_run_hook and supply a command to be run. The manager
will automatically suffix the command with the path of the workload’s results directory.

* workloads: This time, you'll notice that we have this array, which is populated by objects that represent indi-
vidual jobs (note the naming discrepancy here, from here on out, we will refer to the contents of this array as
jobs rather than workloads). Each job has some additional fields:

196 Chapter 9. Workloads

FireSim Documentation, Release 1.17.0

name: In this case, jobs are each assigned a name manually. These names MUST BE UNIQUE within a
particular workload.

simulation_inputs: Just like common_simulation_inputs, but specific to this job.

simulation_outputs: Just like common_simulation_outputs, but specific to this job.

outputs: Just like common_outputs, but specific to this job.

Because each of these jobs do not supply a rootfs field, the manager instead assumes that that the rootfs for each job
is named name.ext2. To explicitly supply a rootfs name that is distinct from the job name, add the rootfs field to a
job and supply a path relative to the workload’s directory.

Once you specify the . json for this workload (and assuming you have built the corresponding rootfses with Fire-
Marshal, you can run it with the manager by setting workload_name: ping-latency.jsoninconfig_runtime.
yaml. The manager will automatically look for the generated rootfses (based on workload and job names that it reads
from the JSON) and distribute work appropriately.

Just like in the uniform case, it will copy back the results that we specify in the JSON file. We’ll end up with a directory
in firesim/deploy/results-workload/ named after the workload name, with a subdirectory named after each job
in the workload, which will contain the output files we want.

9.2 FireMarshal

Workload generation in FireSim is handled by a tool called FireMarshal in firesim/sw/firesim-software/.

Workloads in FireMarshal consist of a series of Jobs that are assigned to logical nodes in the target system. If no jobs
are specified, then the workload is considered uniform and only a single image will be produced for all nodes in the
system. Workloads are described by a json file and a corresponding workload directory and can inherit their defini-
tions from existing workloads. Typically, workload configurations are kept in sw/firesim-software/workloads/
although you can use any directory you like. We provide a few basic workloads to start with including buildroot or
Fedora-based linux distributions and bare-metal.

Once you define a workload, the marshal command will produce a corresponding boot-binary and rootfs for each job
in the workload. This binary and rootfs can then be launched on gemu or spike (for functional simulation), or installed
to firesim for running on real RTL.

For more information, see the official FireMarshal documentation, and its quickstart tutorial.

9.3 SPEC 2017

SPEC2017 support in FireSim is provided through FireMarshal, which cross-compiles spec using Speckle in Chipyard.
Build SPEC2017 in <chipyard-dir>/target-software/spec2017, and then install to FireSim’s workload direc-
tory using FireMarshal’s install command. See https://github.com/ucb-bar/spec2017-workload for more detail on the
SPEC2017 workload definition.

When using reference inputs, SPEC workloads tend to complete within one to two days, but this varies strongly as a
function of the target microarchitecture, FPGA frequency, and FMR.

9.2. FireMarshal 197

https://firemarshal.readthedocs.io/en/latest/
https://firemarshal.readthedocs.io/en/latest/Tutorials/quickstart.html
https://github.com/ucb-bar/spec2017-workload

FireSim Documentation, Release 1.17.0

9.4 Running Fedora on FireSim

FireSim also supports running a fedora-based linux workload. To build this workload, you can follow FireMarshal’s
quickstart guide (replace all instances of br-base. json with fedora-base. json).

To boot Fedora on FireSim, we provide a pre-written FireSim workload JSON deploy/workloads/fedora-uniform.json,
that points to the generated Fedora images. Simply change the workload_name option in your config_runtime.yaml
to fedora-uniform. json and then follow the standard FireSim procedure for booting a workload (e.g. Running a
Single Node Simulation or Running a Cluster Simulation).

9.5 ISCA 2018 Experiments

This page contains descriptions of the experiments in our ISCA 2018 paper and instructions for reproducing them on
your own simulations.

One important difference between the configuration used in the ISCA 2018 paper and the open-source release of FireSim
is that the ISCA paper used a proprietary L2 cache design that is not open-source. Instead, the open-source FireSim
uses an LLC model that models the behavior of having an L2 cache as part of the memory model. Even with the LLC
model, you should be able to see the same trends in these experiments, but exact numbers may vary.

Each section below describes the resources necessary to run the experiment. Some of these experiments require a large
number of instances — you should make sure you understand the resource requirements before you run one of the scripts.

Compatiblity: These were last tested with commit 4769e5d86ac£6a9508d2b5a63141dc80abef20a6 (Oct. 2019) of
FireSim. After this commit, the Linux version in FireSim has been bumped past Linux 4.15. To reproduce workloads
that rely on OS behavior that has changed, like memcached-thread-imbalance, you must use the last tested Oct.
2019 commit.

9.5.1 Prerequisites

These guides assume that you have previously followed the single-node/cluster-scale experiment guides in the FireSim
documentation. Note that these are advanced experiments, not introductory tutorials.

9.5.2 Building Benchmark Binaries/Rootfses

We include scripts to automatically build all of the benchmark rootfs images that will be used below. To
build them, make sure you have already run ./marshal build workloads/br-base.json in firesim/sw/
firesim-software, then run:

cd firesim/deploy/workloads/
make allpaper

198 Chapter 9. Workloads

https://firemarshal.readthedocs.io/en/latest/quickstart.html
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/fedora-uniform.json
https://sagark.org/assets/pubs/firesim-isca2018.pdf

FireSim Documentation, Release 1.17.0

9.5.3 Figure 5: Ping Latency vs. Configured Link Latency

Resource requirements:

run_farm_tag: pinglatency-mainrunfarm
run_farm_hosts_to_use:
- fl.16xlarge: 1

To Run:

cd firesim/deploy/workloads/
./run-ping-latency.sh withlaunch

9.5.4 Figure 6: Network Bandwidth Saturation

Resource requirements:

run_farm_tag: bwtest-mainrunfarm
run_farm_hosts_to_use:
- fl.16xlarge: 2

To Run:

cd firesim/deploy/workloads/
./run-bw-test.sh withlaunch

9.5.5 Figure 7: Memcached QoS / Thread Imbalance

Resource requirements:

run_farm_tag: memcached-mainrunfarm
run_farm_hosts_to_use:
- fl.1l6xlarge: 3

To Run:

cd firesim/deploy/workloads/
./run-memcached-thread-imbalance.sh withlaunch

9.5.6 Figure 8: Simulation Rate vs. Scale

Resource requirements:

run_farm_tag: simperftestscale-mainrunfarm
run_farm_hosts_to_use:
- fl.16xlarge: 32

To Run:

cd firesim/deploy/workloads/
./run-simperf-test-scale.sh withlaunch

9.5. ISCA 2018 Experiments

199

FireSim Documentation, Release 1.17.0

A similar benchmark is also provided for supernode mode, see run-simperf-test-scale-supernode.sh.

9.5.7 Figure 9: Simulation Rate vs. Link Latency

Resource requirements:

run_farm_tag: simperftestlatency-mainrunfarm
run_farm_hosts_to_use:
- fl.16xlarge: 1

To Run:

cd firesim/deploy/workloads/
./run-simperf-test-latency.sh withlaunch

A similar benchmark for supernode mode will be provided soon. See https://github.com/firesim/firesim/issues/244

9.5.8 Running all experiments at once

This script simply executes all of the above scripts in parallel. One caveat is that the bw-test script currently cannot run
in parallel with the others, since it requires patching the switches. This will be resolved in a future release.

cd firesim/deploy/workloads/
./run-all.sh

9.6 GAP Benchmark Suite

You can run the reference implementation of the GAP (Graph Algorithm Performance) Benchmark Suite. We provide
scripts that cross-compile the graph kernels for RISCV.

For more information about the benchmark itself, please refer to the site: http://gap.cs.berkeley.edu/benchmark.html
Some notes:
* Only the Kron input graph is currently supported.

* Benchmark uses graph500 input graph size of 2220 vertices by default. test input size has 2”10 vertices and
can be used by specifying an argument into make: make gapbs input=test

* The reference input size with 2727 verticies is not currently supported.

By default, the gapbs workload definition runs the benchmark multithreaded with number of threads equal to the
number of cores. To change the number of threads, you need to edit firesim/deploy/workloads/runscripts/
gapbs-scripts/gapbs.sh. Additionally, the workload does not verify the output of the benchmark by default. To
change this, add a --verify parameter to the json.

To Build Binaries and RootFSes:

cd firesim/deploy/workloads/
make gapbs

Run Resource Requirements:

200 Chapter 9. Workloads

https://github.com/firesim/firesim/issues/244
http://gap.cs.berkeley.edu/benchmark.html

FireSim Documentation, Release 1.17.0

run_farm_tag: gapbs-runfarm
run_farm_hosts_to_use:
- fl.16xlarge: 0

To Run:

./run-workload.sh workloads/gapbs.yaml --withlaunch

Simulation times are host and target dependent. For reference, on a four-core rocket-based SoC with a DDR3 + 1 MiB
LLC model, with a 90 MHz host clock, test and graph500 input sizes finish in a few minutes.

9.7 [DEPRECATED] Defining Custom Workloads

Danger: This version of the Defining Custom Workloads page is kept here to document some of the legacy
workload configurations still present in deploy/workloads/. New workloads should NOT be generated using
these instructions. New workloads should be written by following the current version of the Defining Custom
Workloads page.

Workloads in FireSim consist of a series of Jobs that are assigned to be run on individual simulations. Currently, we
require that a Workload defines either:

* A single type of job, that is run on as many simulations as specfied by the user. These workloads are usually
suffixed with -uniform, which indicates that all nodes in the workload run the same job. An example of such a
workload is deploy/workloads/linux-uniform.json.

 Several different jobs, in which case there must be exactly as many jobs as there are running simulated nodes.
An example of such a workload is deploy/workloads/ping-latency.json.

FireSim can take these workload definitions and perform two functions:
* Building workloads using deploy/workloads/gen-benchmark-rootfs.py
* Deploying workloads using the manager

In the following subsections, we will go through the two aforementioned example workload configurations, describing
how these two functions use each part of the json file inline.

ERRATA: You will notice in the following json files the field “workloads” this should really be named “jobs” — we
will fix this in a future release.

ERRATA: The following instructions assume the default buildroot-based linux distribution (br-base). In order to
customize Fedora, you should build the basic Fedora image (as described in Running Fedora on FireSim) and modify
the image directly (or in QEMU). Imporantly, Fedora currently does not support the “command” option for workloads.

9.7. [DEPRECATED] Defining Custom Workloads 201

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/linux-uniform.json
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/ping-latency.json
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/gen-benchmark-rootfs.py

FireSim Documentation, Release 1.17.0

9.7.1 Uniform Workload JSON

deploy/workloads/linux-uniform.json is an example of a “uniform” style workload, where each simulated node runs
the same software configuration.

Let’s take a look at this file:

{
"benchmark_name" : "linux-uniform",
"common_bootbinary" : "br-base-bin",
"common_rootfs" : "br-base.img",
"common_outputs" : ["/etc/os-release"],
"common_simulation_outputs" : ["uartlog", "memory_stats*.csv'"]
}

There is also a corresponding directory named after this workload/file:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/workloads/linux-
—uniform$ ls -la

total 4

drwxrwxr-x 2 centos centos 42 May 17 21:58 .

drwxrwxr-x 13 centos centos 4096 May 18 17:14 ..

lrwxrwxrwx 1 centos centos 41 May 17 21:58 br-base-bin -> ../../../sw/firesim-
—.software/images/firechip/br-base/br-base-bin

lrwxrwxrwx 1 centos centos 41 May 17 21:58 br-base.img -> ../../../sw/firesim-
—.software/images/firechip/br-base/br-base.img

We will elaborate on this later.
Looking at the JSON file, you’ll notice that this is a relatively simple workload definition.

In this “uniform” case, the manager will name simulations after the benchmark_name field, appending a number for
each simulation using the workload (e.g. linux-uniform@, linux-uniforml, and so on). It is standard pratice to
keep benchmark_name, the json filename, and the above directory name the same. In this case, we have set all of them
to linux-uniform.

Next, the common_bootbinary field represents the binary that the simulations in this workload are expected to boot
from. The manager will copy this binary for each of the nodes in the simulation (each gets its own copy). The
common_bootbinary path is relative to the workload’s directory, in this case deploy/workloads/linux-uniform. You’ll
notice in the above output from 1s -1a that this is actually just a symlink to br-base-bin that is built by the Fire-
Marshal tool.

Similarly, the common_rootfs field represents the disk image that the simulations in this workload are expected to
boot from. The manager will copy this root filesystem image for each of the nodes in the simulation (each gets its own
copy). The common_root£s path is relative to the workload’s directory, in this case deploy/workloads/linux-uniform.
You’ll notice in the above output from 1s -1a that this is actually just a symlink to br-base. img that is built by the
FireMarshal tool.

The common_outputs field is a list of outputs that the manager will copy out of the root filesystem image AFTER
a simulation completes. In this simple example, when a workload running on a simulated cluster with firesim
runworkload completes, /etc/os-release will be copied out from each rootfs and placed in the job’s output di-
rectory within the workload’s output directory (See the firesim runworkload section). You can add multiple paths
here.

The common_simulation_outputs field is a list of outputs that the manager will copy off of the simulation host
machine AFTER a simulation completes. In this example, when a workload running on a simulated cluster with
firesim runworkload completes, the uartlog (an automatically generated file that contains the full console output
of the simulated system) and memory_stats. csv files will be copied out of the simulation’s base directory on the host

202 Chapter 9. Workloads

https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/linux-uniform.json
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/linux-uniform
https://www.github.com/firesim/firesim/blob/1.17.0/deploy/workloads/linux-uniform

FireSim Documentation, Release 1.17.0

instance and placed in the job’s output directory within the workload’s output directory (see the firesim runworkload
section). You can add multiple paths here.

ERRATA: “Uniform” style workloads currently do not support being automatically built — you can currently hack
around this by building the rootfs as a single-node non-uniform workload, then deleting the workloads field of the
JSON to make the manager treat it as a uniform workload. This will be fixed in a future release.

9.7.2 Non-uniform Workload JSON (explicit job per simulated node)

Now, we’ll look at the ping-latency workload, which explicitly defines a job per simulated node.

{
"common_bootbinary" : "bbl-vmlinux",
"benchmark_name" : "ping-latency",
"deliver_dir" : "/",

"common_args" : [],
"common_files" : ["bin/pinglatency.sh"],
"common_outputs" : [],
"common_simulation_outputs" : ["uartlog"],
"no_post_run_hook": "",
"workloads" : [
{
"name": "pinger",
"files": [],
"command": "pinglatency.sh && poweroff -f",
"simulation_outputs": [],
"outputs": []

"name": "pingee",

"files": [],

"command": "while true; do sleep 1000; done",
"simulation_outputs": [],

"outputs": []

"name": "idler-1",

"files": [],

"command": "while true; do sleep 1000; done",
"simulation_outputs": [],

"outputs": []

"name": "idler-2",

"files": [1],

"command": "while true; do sleep 1000; done",
"simulation_outputs": [],

"outputs": []

"name": "idler-3",
"files": [1],
"command": "while true; do sleep 1000; done",

(continues on next page)

9.7. [DEPRECATED] Defining Custom Workloads 203

FireSim Documentation, Release 1.17.0

(continued from previous page)

"simulation_outputs": [],
"outputs": []

1,
{
"name": "idler-4",
"files": [1],
"command": "while true; do sleep 1000; done",
"simulation_outputs": [],
"outputs": []
I
{
"name": "idler-5",
"files": [1,
"command": "while true; do sleep 1000; done",
"simulation_outputs": [],
"outputs": []
3
{
"name": "idler-6",
"files": [],
"command": "while true; do sleep 1000; done",
"simulation_outputs": [],
"outputs": []
}

Additionally, let’s take a look at the state of the ping-latency directory AFTER the workload is built:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/workloads/ping-
—latency$ 1ls -la
total 15203216

drwxrwxr-x 3 centos centos 4096 May 18 07:45 .

drwxrwxr-x 13 centos centos 4096 May 18 17:14 ..

lrwxrwxrwx 1 centos centos 41 May 17 21:58 bbl-vmlinux -> ../linux-uniform/br-
—base-bin

-rw-rw-r-- 1 centos centos 7 May 17 21:58 .gitignore

-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-1.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-2.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-3.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-4.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-5.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:46 idler-6.ext2
drwxrwxr-x 3 centos centos 16 May 17 21:58 overlay

-rw-r--r-- 1 centos centos 1946009600 May 18 07:44 pingee.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:44 pinger.ext2
-rw-rw-r-- 1 centos centos 2236 May 17 21:58 ping-latency-graph.py

First, let’s identify some of these files:

* bbl-vmlinux: Just like in the 1inux-uniform case, this workload just uses the default Linux binary gen-
erated in firesim-software. Note that it’s named differently here, but still symlinks to br-base-bin in
linux-uniform.

204 Chapter 9. Workloads

FireSim Documentation, Release 1.17.0

e .gitignore: This just ignores the generated rootfses, which we’ll learn about below.

e idler-[1-6].ext2, pingee.ext2, pinger.ext2: These are rootfses that are generated from the json script
above. We'll learn how to do this shortly.

Additionally, let’s look at the overlay subdirectory:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/workloads/ping-
—latency/overlay$ 1ls -la */*
-rwxrwxr-x 1 centos centos 249 May 17 21:58 bin/pinglatency.sh

This is a file that’s actually committed to the repo, that runs the benchmark we want to run on one of our simulated
systems. We’ll see how this is used soon.

Now, let’s take a look at how we got here. First, let’s review some of the new fields present in this JSON file:

e common_files: This is an array of files that will be included in ALL of the job rootfses when they’re built. This
is relative to a path that we’ll pass to the script that generates rootfses.

* workloads: This time, you'll notice that we have this array, which is populated by objects that represent indi-
vidual jobs. Each job has some additional fields:

— name: In this case, jobs are each assigned a name manually. These names MUST BE UNIQUE within a
particular workload.

— files: Just like common_files, but specific to this job.

— command: This is the command that will be run automatically immediately when the simulation running
this job boots up. This is usually the command that starts the workload we want.

— simulation_outputs: Just like common_simulation_outputs, but specific to this job.
— outputs: Just like common_outputs, but specific to this job.

In this example, we specify one node that boots up and runs the pinglatency. sh benchmark, then powers off cleanly
and 7 nodes that just idle waiting to be pinged.

Given this JSON description, our existing pinglatency.sh script in the overlay directory, and the base rootfses
generated in firesim-software, the following command will automatically generate all of the rootfses that you
see in the ping-latency directory.

[from the workloads/ directory]
./gen-benchmark-rootfs.py -w ping-latency.json -r -b ../../sw/firesim-software/images/
—firechip/br-base/br-base.img -s ping-latency/overlay

Notice that we tell this script where the json file lives, where the base rootfs image is, and where we expect to find
files that we want to include in the generated disk images. This script will take care of the rest and we’ll end up with
idler-[1-6].ext2, pingee.ext2, and pinger.ext2!

You’ll notice a Makefile in the workloads/ directory — it contains many similar commands for all of the workloads
included with FireSim.

Once you generate the rootfses for this workload, you can run it with the manager by setting workload_name:
ping-latency.json in config_runtime.yaml. The manager will automatically look for the generated rootfses
(based on workload and job names that it reads from the json) and distribute work appropriately.

Just like in the uniform case, it will copy back the results that we specify in the json file. We’ll end up with a directory
in firesim/deploy/results-workload/ named after the workload name, with a subdirectory named after each job
in the workload, which will contain the output files we want.

9.7. [DEPRECATED] Defining Custom Workloads 205

FireSim Documentation, Release 1.17.0

206 Chapter 9. Workloads

CHAPTER
TEN

TARGETS

FireSim generates SoC models by transforming RTL emitted by a Chisel generator, such as the Rocket SoC generator.
Subject to conditions outlined in Restrictions on Target RTL, if it can be generated by Chisel, it can be simulated in
FireSim.

10.1 Restrictions on Target RTL

Current limitations in Golden Gate place the following restrictions on the (FIR)RTL that can be transformed and thus
used in FireSim:

1. The top-level module must have no inputs or outputs. Input stimulus and output capture must be implemented
using target RTL or target-to-host Bridges.

2. All target clocks must be generated by a single RationalClockBridge.

3. Black boxes must be “clock-gateable” by replacing its input clock with a gated equivalent which will be used to
stall simulation time in that module.

a. Asaconsequence, target clock-gating cannot be implemented using black-box primitives, and must instead
be modeled by adding clock-enables to all state elements of the gated clock domain (i.e., by adding an enable
or feedback mux on registers to conditionally block updates, and by gating write-enables on memories).

4. Asynchronous reset must only be implemented using Rocket Chip’s black-box async reset. These are replaced
with synchronously reset registers using a FIRRTL transformation.

10.1.1 Including Verilog IP

FireSim now supports target designs that incorporate Verilog IP using the standard BlackBox interface from Chisel.
For an example of how to add Verilog IP to a target system based on Rocket Chip, see the Incorporating Verilog Blocks
section of the Chipyard documentation.

1. For the transform to work, the Chisel Blackbox that wraps the Verilog IP must have input clocks that can safely
be clock-gated.

2. The compiler that produces the decoupled simulator (“FAME Transform”) automatically recognizes such black-
boxes inside the target design.

3. The compiler automatically gates each clock of the Verilog IP to ensure that it deterministically advances in
lockstep with the rest of the simulator.

4. This allows any Verilog module, subject to the constraint above, to be instantiated anywhere in the target design
using the standard Chisel Blackbox interface.

207

https://github.com/freechipsproject/chisel3/wiki/Blackboxes
https://chipyard.readthedocs.io/en/latest/Customization/Incorporating-Verilog-Blocks.html

FireSim Documentation, Release 1.17.0

10.1.2 Multiple Clock Domains

FireSim can support simulating targets that have multiple clock domains. As stated above, all clocks must be generated
using a single RationalClockBridge. For most users the default FireSim test harness in Chipyard will suffice, if you
need to define a custom test harness instantiate the RationalClockBridge like so:

// Here we request three target clocks (the base clock is implicit). All
// clocks beyond the base clock are specified using the RationalClock case
// class which gives the clock domain's name, and its clock multiplier and
// divisor relative to the base clock.

val clockBridge = RationalClockBridge(RationalClock("HalfRate", 1, 2),

RationalClock("ThirdRate", 1, 3))

// The clock bridge has a single output: a Vec[Clock] of the requested clocks
// in the order they were specified, which we are now free to use through our
// Chisel design. While not necessary, here we unassign the Vec to give them
// more informative references in our Chisel.

val Seq(fullRate, halfRate, thirdRate) = clockBridge.io.clocks.toSeq

Further documentation can be found in the source (sim/midas/src/main/scala/midas/widgets/ClockBridge.
scala).

The Base Clock

By convention, target time is specified in cycles of the base clock, which is defined to be the clock of the
RationalClockBridge whose clock ratio (multiplier / divisor) is one. While we suggest making the base clock
the fastest clock in your system, as in any microprocessor-based system it will likely correspond to your core clock
frequency, this is not a constraint.

Limitations:

* The number of target clocks FireSim can simulate is bounded by the number of BUFGCE resources available on

the host FPGA, as these are used to independently clock-gate each target clock.

As its name suggests, the RationalClockBridge can only generate target clocks that are rationally related.
Specifically, all requested frequencies must be expressable in the form:

— flcm

fi »

Where,
— f; is the desired frequency of the i*" clock
— fiem, is the least-common multiple of all requested frequencies
— k; is a 16-bit unsigned integer

An arbitrary frequency can be modeled using a sufficiently precise rational multiple. Golden Gate will raise a
compile-time error if it cannot support a desired frequency.

Each bridge module must reside entirely within a single clock domain. The Bridge’s target interface must contain
a single input clock, and all inputs and outputs of the bridge module must be latched and launched, respectively,
by registers in the same clock domain.

208

Chapter 10. Targets

FireSim Documentation, Release 1.17.0

10.2 Target-Side FPGA Constraints

FireSim provides utilities to generate Xilinx Design Constraints (XDC) from string snippets in target’s Chisel. Golden
Gate collects these annotations and emits separate xdc files for synthesis and implementation. See FPGA Build Files
for a complete listing of output files used in FPGA compilation.

10.2.1 RAM Inference Hints

Vivado generally does a reasonable job inferring embedded memories from FireSim-generated RTL, though there are
some cases in which it must be coaxed. For example:

¢ Due to insufficient BRAM resources, you may wish to use URAM for a memory that’d infer as BRAM.

« If Vivado can’t find pipeline registers to absorb into a URAM or none exist in the target, you may get an warning
like:

[Synth 8-6057] Memory: "<memory>" defined in module: "<module>" implemented as.
—Ultra-Ram

has no pipeline registers. It is recommended to use pipeline registers to achieve.
—high

performance.

Since Golden Gate modifies the module hierarchy extensively, it’s highly desirable to annotate these memories in the
Chisel source so that their hints may move with the memory instance. This is a more robust alternative to relying on
wildcard / glob matches from a static XDC specification.

Chisel memories can be annotated in situ like so:

import midas.targetutils.xdc._

val mem = SyncReadMem(1l << addrBits, UInt(dataBits.W))
RAMStyleHint (mem, RAMStyles.ULTRA)

// Alternatively: RAMStyleHint (mem, RAMStyles.BRAM)

Alternatively, you can “dot-in” (traverse public members of a Scala class hierarchy) to annotate a memory in a sub-
module. Here’s an example:

val modA = Module(new SyncReadMemModule(None))
val modB = Module(new SyncReadMemlModule (None))
RAMStyleHint (modA.mem, RAMStyles.ULTRA)
RAMStyleHint (modB.mem, RAMStyles.BRAM)

These annotations can be deployed anywhere: in the target, in bridge modules, and in internal FireSim RTL. The result-
ing constraints should appear the synthesis xdc file emitted by Golden Gate. For more information see the ScalaDoc for
RAMStyleHint or read the source located at: sim/midas/targetutils/src/main/scala/midas/xdc/RAMStyleHint.scala.

10.2. Target-Side FPGA Constraints 209

https://www.github.com/firesim/firesim/blob/1.17.0/sim/midas/targetutils/src/main/scala/midas/xdc/RAMStyleHint.scala

FireSim Documentation, Release 1.17.0

10.3 Provided Target Designs

10.3.1 Target Generator Organization

FireSim provides multiple projects, each for a different type of target. Each project has its own chisel generator that
invokes Golden Gate, its own driver sources, and a makefrag that plugs into the Make-based build system that resides
in sim/. These projects are:

1.

3,
4.

firesim (Default): rocket chip-based targets. These include targets with either BOOM or rocket pipelines, and
should be your starting point if you’re building an SoC with the Rocket Chip generator.

midasexamples: the Golden Gate example designs. Located at sim/src/main/scala/midasexamples, these are a
set of simple chisel circuits like GCD, that demonstrate how to use Golden Gate. These are useful test cases for
bringing up new Golden Gate features.

bridges: tests for firesim-1ib bridges. These have more dependencies and involve more logic than midasexamples.

fasedtests: designs to do integration testing of FASED memory-system timing models.

Projects have the following directory structure:

sim/

+-Makefile # Top-level makefile for projects where FireSim is the top-level repo
+-Makefrag # Target-agnostic makefrag, with recipes to generate drivers and RTL.
—»simulators

r-src/main/scala/{target-project}/

L Makefrag # Defines target-specific make variables and recipes.

+-src/main/cc/{target-project}/

I—{driver—csrcs}.cc # The target's simulation driver, and sofware-model..

—sources

L-{driver-headers}.h

L-src/main/makefrag/{target-project}/

I—Generator.scala # Contains the main class that generates target.

—RTL and calls Golden Gate

L {other-scala-sources}.scala

10.3.2 Specifying A Target Instance

To generate a specific instance of a target, the build system leverages five Make variables:

1.

TARGET_PROJECT: this points the Makefile (sim/Makefile) at the right target-specific Makefrag, which defines
the generation and metasimulation software recipes. The makefrag for the default target project is defined at
sim/src/main/makefrag/firesim.

. DESIGN: the name of the top-level Chisel module to generate (a Scala class name). These are defined in FireChip

Chipyard generator.

TARGET_CONFIG: specifies a Config instance that is consumed by the target design’s generator. For the default
firesim target project, predefined configs are described in in the FireChip Chipyard generator.

PLATFORM_CONFIG: specifies a Config instance that is consumed by Golden Gate and specifies compiler-
level and host-land parameters, such as whether to enable assertion synthesis, or multi-ported RAM op-
timizations. Common platform configs are described in firesim-1lib/sim/src/main/scala/configs/
CompilerConfigs.scala).

PLATFORNM: this points the Makefile (sim/Makefile) at the right FPGA platform to build for. This must correspond
to a platform defined at platforms.

210

Chapter 10. Targets

https://www.github.com/firesim/firesim/blob/1.17.0/sim/src/main/scala/midasexamples
https://www.github.com/firesim/firesim/blob/1.17.0/platforms

FireSim Documentation, Release 1.17.0

TARGET_CONFIG and PLATFORM_CONFIG are strings that are used to construct a Config instance (derives from
RocketChip’s parameterization system, Config, see the CDE repo). These strings are of the form “{..._}{<Class
Name>_}<Class Name>". Only the final, base class name is compulsory: class names that are prepended with *“_" are
used to create a compound Config instance.

// Specify by setting TARGET_CONFIG=Base

class Base extends Config((site, here, up) => {...})

class Overridel extends Config((site, here, up) => {...})

class Override2 extends Config((site, here, up) => {...})

// Specify by setting TARGET_CONFIG=Compound

class Compound extends Config(new Override2 ++ new Overridel ++ new Base)
// OR by setting TARGET_CONFIG=Override2_Overridel_Base

// Can specify undefined classes this way. ex: TARGET_CONFIG=Override2_Base

With this scheme, you don’t need to define a Config class for every instance you wish to generate, making it very useful
for sweeping over a parameterization space.

Note that the precedence of Configs decreases from left to right in a string. Appending a config to an ex-
isting one will only have an effect if it sets a field not already set in higher precendence Configs. For example,
“BaseF1Config_SetFieldAtoX” is equivalent to “BaseF1Config_SetFieldAtoX_SetFieldAtoY™.

How a particular Config resolves it’s Field s can be unintuitive for complex compound Config s. One precise way to
check a config is doing what you expect is to open the scala REPL, instantiate an instance of the desired Config, and
inspect its fields.

$ make sbt # Launch into SBT's shell with extra FireSim arguments
sbt:firechip> console # Launch the REPL

scala> val inst = (new firesim.firesim.FireSimRocketChipConfig).toInstance # Make an.
—.instance

inst: freechips.rocketchip.config.Config = FireSimRocketChipConfig

scala> import freechips.rocketchip.subsystem._ # Get some important Fields
import freechips.rocketchip.subsystem.RocketTilesKey

scala> inst(RocketTilesKey).size # Query number of cores

res2: Int =1

scala> inst(RocketTilesKey) .head.dcache.get.nWWays # Query L1 D$ associativity

res3: Int = 4

10.3. Provided Target Desighs 211

https://github.com/chipsalliance/cde

FireSim Documentation, Release 1.17.0

10.4 Rocket Chip Generator-based SoCs (firesim project)

Using the Make variables listed above, we give examples of generating different targets using the default Rocket Chip-
based target project.

10.4.1 Rocket-based SoCs

Three design classes use Rocket scalar in-order pipelines.

Single core, Rocket pipeline (default)

make TARGET_CONFIG=FireSimRocketConfig

Single-core, Rocket pipeline, with network interface

make TARGET_CONFIG=WithNIC_FireSimRocketChipConfig

Quad-core, Rocket pipeline

make TARGET_CONFIG=FireSimQuadRocketConfig

10.4.2 BOOM-based SoCs

The BOOM (Berkeley Out-of-Order Machine) superscalar out-of-order pipelines can also be used with the same design
classes that the Rocket pipelines use. Only the TARGET_CONFIG needs to be changed, as shown below:

Single-core BOOM

make TARGET_CONFIG=FireSimLargeBoomConfig

Single-core BOOM, with network interface

make TARGET_CONFIG=WithNIC_FireSimBoomConfig

10.4.3 Generating A Different FASED Memory-Timing Model Instance

Golden Gate’s memory-timing model generator, FASED, can elaborate a space of different DRAM model in-
stances: we give some typical ones here. These targets use the Makefile-defined defaults of DESIGN=FireSim
PLATFORM_CONFIG=BaseF1Config.

Quad-rank DDR3 first-ready, first-come first-served memory access scheduler

make TARGET_CONFIG=DDR3FRFCFS_FireSimRocketConfig

As above, but with a 4 MiB (maximum simulatable capacity) last-level-cache model

make TARGET_CONFIG=DDR3FRFCFSLLC4MB_FireSimRocketConfig

FASED timing-model configurations are passed to the FASED Bridges in your Target’s FIRRTL, and so must be
prepended to TARGET_CONFIG.

212 Chapter 10. Targets

https://github.com/ucb-bar/riscv-boom

FireSim Documentation, Release 1.17.0

10.5 Midas Examples (midasexamples project)

This project can generate a handful of toy target-designs (set with the make variable DESIGN). Each of these designs
has their own chisel source file and serves to demostrate the features of Golden Gate.

Some notable examples are:
1. GCD: the “Hello World!” of hardware.
2. WireInterconnect: demonstrates how combinational paths can be modeled with Golden Gate.
3. PrintfModule: demonstrates synthesizable printfs
4. AssertModule: demonstrates synthesizable assertions

To generate a target, set the make variable TARGET_PROJECT=midasexamples. so that the right project makefrag is
sourced.

10.5.1 Examples

To generate the GCD midasexample:

make DESIGN=GCD TARGET_PROJECT=midasexamples

10.6 FASED Tests (fasedtests project)

This project generates target designs capable of driving considerably more bandwidth to an AXI4-memory slave than
current FireSim targets. These are used to do integration and stress testing of FASED instances.

10.6.1 Examples

Generate a synthesizable AXI4Fuzzer (based off of Rocket Chip’s TL fuzzer), driving a DDR3 FR-FCFS-based FASED
instance.

make TARGET_PROJECT=fasedtests DESIGN=AXI4Fuzzer TARGET_CONFIG=FRFCFSConfig

As above, now configured to drive 10 million transactions through the instance.

make TARGET_PROJECT=fasedtests DESIGN=AXI4Fuzzer TARGET_CONFIG=NT10e7_FRFCFSConfig

10.5. Midas Examples (midasexamples project) 213

FireSim Documentation, Release 1.17.0

214 Chapter 10. Targets

CHAPTER
ELEVEN

DEBUGGING IN SOFTWARE

This section describes methods of debugging the target design and the simulation in FireSim, before running on the
FPGA.

11.1 Debugging & Testing with Metasimulation

When discussing RTL simulation in FireSim, we are generally referring to metasimulation: simulating the FireSim
simulator’s RTL, typically using VCS or Verilator. In contrast, we’ll refer to simulation of the target’s unmodified (by
GoldenGate decoupling, host and target transforms) RTL as target-level simulation. Target-level simulation in Chipyard
is described at length here.

Metasimulation is the most productive way to catch bugs before generating an AGFI, and a means for reproducing
bugs seen on the FPGA. By default, metasimulation uses an abstract but fast model of the host: the FPGA’s DRAM
controllers are modeled with a single-cycle memory system, the PCI-E subsystem is not simulated, instead the driver
presents DMA and MMIO traffic directly on the FPGATop interfaces. Since FireSim simulations are robust against
timing differences across hosts, target behavior observed in an FPGA-hosted simulation should be exactly reproducible
in a metasimulation.

As a final note, metasimulations are generally only slightly slower than target-level simulations. Example performance
numbers can be found at Metasimulation vs. Target simulation performance.

11.1.1 Supported Host Simulators

Currently, the following host simulators are supported for metasimulation:
* Verilator
— FOSS, automatically installed during FireSim setup.
— Referred to throughout the codebase as verilator.
* Synopsys VCS
— License required.
— Referred to throughout the codebase as vcs.

Pull requests to add support for other simulators are welcome.

215

https://chipyard.readthedocs.io/en/latest/Simulation/Software-RTL-Simulation.html
https://www.veripool.org/verilator/
https://www.synopsys.com/verification/simulation/vcs.html

FireSim Documentation, Release 1.17.0

11.1.2 Running Metasimulations using the FireSim Manager

The FireSim manager supports running metasimulations using the standard firesim {launchrunfarm,
infrasetup, runworkload, terminaterunfarm} flow that is also used for FPGA-accelerated simulations.
Rather than using FPGA s, these metasimulations run within one of the aforementioned software simulators (Supported
Host Simulators) on standard compute hosts (i.e. those without FPGAs). This allows users to write a single definition of
a target (configured design and software workload), while seamlessly moving between software-only metasimulations
and FPGA-accelerated simulations.

As an example, if you have the default config_runtime.yaml that is setup for FPGA-accelerated simulations (e.g.
the one used for the 8-node networked simulation from the :ref:cluster-sim section), a few modifications to the
configuration files can convert it to running a distributed metasimulation.

First, modify the existing metasimulation mapping in config_runtime.yaml to the following:

metasimulation:
metasimulation_enabled: true
vcs or verilator. use vcs-debug or verilator-debug for waveform generation
metasimulation_host_simulator: verilator
plusargs passed to the simulator for all metasimulations
metasimulation_only_plusargs: "+fesvr-step-size=128 +max-cycles=100000000"
plusargs passed to the simulator ONLY FOR vcs metasimulations
metasimulation_only_vcs_plusargs: "+vcs+initreg+® +vcs+initmem+@"

This configures the manager to run Verilator-hosted metasimulations (without waveform generation) for the target
specified in config_runtime.yaml. When in metasimulation mode, the default_hw_config that you specify in
target_config references an entry in config_build_recipes.yaml instead of an entry in config_hwdb.yaml.

As is the case when the manager runs FPGA-accelerated simulations, the number of metasimulations that are run is
determined by the parameters in the target_config section, e.g. topology and no_net_num_nodes. Many parallel
metasimulations can then be run by writing a FireMarshal workload with a corresponding number of jobs.

In metasimulation mode, the run farm configuration must be able to support the required number of metasimula-
tions (see run_farm for details). The num_metasims parameter on a run farm host specification defines how many
metasimulations are allowed to run on a particular host. This corresponds with the num_£fpgas parameter used in
FPGA-accelerated simulation mode. However num_metasims does not correspond as tightly with any physical prop-
erty of the host; it can be tuned depending on the complexity of your design and the compute/memory resources on a
host.

For example, in the case of the AWS EC2 run farm (aws_ec2.yaml), we define three instance types (z1d.{3, 6,
12}xlarge) by default that loosely correspond with £1.{2, 4, 16}xlarge instances, but instead have no FPGAs
and run only metasims (of course, the £1.* instances could run metasims, but this would be wasteful):

run_farm_hosts_to_use:
- zld.3xlarge: ©
- zld.6xlarge: ©
- zld.12xlarge: 1

run_farm_host_specs:
- zl1d.3xlarge:
num_£pgas: 0
num_metasims: 1
use_for_switch_only: false
- zld.6xlarge:
num_£pgas: 0
num_metasims: 2

(continues on next page)

216 Chapter 11. Debugging in Software

FireSim Documentation, Release 1.17.0

(continued from previous page)

use_for_switch_only: false
- zld.12xlarge:

num_£pgas: 0

num_metasims: 8

use_for_switch_only: false

In this case, the run farm will use a z1d. 12x1arge instance to host 8 metasimulations.

To generate waveforms in a metasimulation, change metasimulation_host_simulator to a simulator ending in
-debug (e.g. verilator-debug). When running with a simulator with waveform generation, make sure to add
waveform. vpd to the common_simulation_outputs area of your workload JSON file, so that the waveform is copied
back to your manager host when the simulation completes.

A last notable point is that unlike the normal FPGA simulation case, there are two output logs in metasimulations.
There is the expected uartlog file that holds the stdout from the metasimulation (as in FPGA-based simula-
tions). However, there will also be a metasim_stderr.out file that holds stderr coming out of the metasimula-
tion, commonly populated by printf calls in the RTL, including those that are not marked for printf synthesis.
If you want to copy metasim_stderr.out to your manager when a simulation completes, you must add it to the
common_simulation_outputs of the workload JSON.

Other than the changes discussed in this section, manager behavior is identical between FPGA-based simulations and
metasimulations. For example, simulation outputs are stored in deploy/results-workload/ on your manager host,
FireMarshal workload definitions are used to supply target software, etc. All standard manager functionality is sup-
ported in metasimulations, including running networked simulations and using existing FireSim debugging tools (i.e.
AutoCounter, TracerV, etc).

Once the configuration changes discussed thus far in this section are made, the standard firesim {launchrunfarm,
infrasetup, runworkload, terminaterunfarm} set of commands will run metasimulations.

If you are planning to use FireSim metasimulations as your primary simulation tool while developing a new target
design, see the (optional) firesim builddriver command, which can build metasimulations through the manager
without requiring run farm hosts to be launched or accessible. More about this command is found in the firesim
builddriver section.

11.1.3 Understanding a Metasimulation Waveform
Module Hierarchy

To build out a simulator, Golden Gate adds multiple layers of module hierarchy to the target design and performs
additional hierarchy mutations to implement bridges and resource optimizations. Metasimulation uses the FPGATop
module as the top-level module, which excludes the platform shim layer (F1Shim, for EC2 F1). The original top-level
of the input design is nested three levels below FPGATop:

Note that many other bridges (under FPGATop), channel implementations (under SimWrapper), and optimized models
(under FAMETop) may be present, and vary from target to target. Under the FAMETop module instance you will find
the original top-level module (FireSimPDES_, in this case), however it has now been host-decoupled using the default
LI-BDN FAME transformation and is referred to as the Aub model. It will have ready-valid I/O interfaces for all of the
channels bound to it, and internally containing additional channel enqueue and clock firing logic to control the advance
of simulated time. Additionally, modules for bridges and optimized models will no longer be found contained in this
submodule hierarchy. Instead, I/O for those extracted modules will now be as channel interfaces.

11.1. Debugging & Testing with Metasimulation 217

FireSim Documentation, Release 1.17.0

V1 MEB JF

Hierarchy Type
SfEermul (emul) hodule
“{}FPGATop (FPGATop) hodule
+TAsserBridgeModule_0 (AssertBridgeiodule) Module
}ﬂFASEDMemowTimingModel_D (FASEDMemoryTiminghodel) Module
+FLoadMemwidget_0 (Loadhlemyyidget) hodule
H:IEF"eeHF’oheBridgehﬂDdUIe_ﬂ (Peek PokeBridgehModule) hodule
I} SerfalBridgehodule_0 (SerlalBridgeiodule) Wodule
}ﬂ@imulationhﬂaster_ﬂ (Simulationiaster) Module
< Other Bridges >
SfEsim (Simrapper) Module
< Channel Implementations >
o} ReadyvalidChannel_ep_serial_out { ReadyValidChannel) Module
S} target (FAMETop) Module
< Optimized Models (Rams / Multithreaded) >
S{FFireSimPDES_ (FireSimPDES) todule
< Target Clock Buffers >
o lazyModule_ (ChipTop) Module

< Target Module Hierarchy >

Fig. 1: The module hierarchy visible in a typical metasimulation.

218 Chapter 11. Debugging in Software

FireSim Documentation, Release 1.17.0

Clock Edges and Event Timing

Since FireSim derives target clocks by clock gating a single host clock, and since bridges and optimized models may
introduce stalls of their own, timing of target clock edges in a metasimulation will appear contorted relative to a conven-
tional target-simulation. Specifically, the host-time between clock edges will not be proportional to target-time elapsed
over that interval, and will vary in the presence of simulator stalls.

Finding The Source Of Simulation Stalls

In the best case, FireSim simulators will be able to launch new target clock pulses on every host clock cycle. In other
words, for single-clock targets the simulation can run at FMR = 1. In the single clock case delays are introduced by
bridges (like FASED memory timing models) and optimized models (like a multi-cycle Register File model). You
can identify which bridges are responsible for additional delays between target clocks by filtering for *sink_valid
and *source_ready on the hub model. When <channel>_sink_valid is deasserted, a bridge or model has not yet
produced a token for the current timestep, stalling the hub. When <channel>_source_ready is deasserted, a bridge
or model is back-pressuring the channel.

11.1.4 Scala Tests

To make it easier to do metasimulation-based regression testing, the ScalaTests wrap calls to Makefiles, and run a
limited set of tests on a set of selected designs, including all of the MIDAS examples and a handful of Chipyard-based
designs. This is described in greater detail in the Developer documentation.

11.1.5 Running Metasimulations through Make

Warning: This section is for advanced developers; most metasimulation users should use the manager-based
metasimulation flow described above.

Metasimulations are run out of the firesim/sim directory.

[in firesim/sim]
make <verilator|vcs>

To compile a simulator with full-visibility waveforms, type:

make <verilator|vcs>-debug

As part of target-generation, Rocket Chip emits a make fragment with recipes for running suites of assembly tests.
MIDAS puts this in firesim/sim/generated-src/f1/<DESIGN>-<TARGET_CONFIG>-<PLATFORM_CONFIG>/
firesim.d. Make sure your $RISCV environment variable is set by sourcing firesim/sourceme-manager.sh or
firesim/env.sh, and type:

make run-<asm|bmark>-tests EMUL=<vcs]|verilator>

To run only a single test, the make target is the full path to the output. Specifically:

make EMUL=<vcs|verilator> $PWD/output/f1/<DESIGN>-<TARGET_CONFIG>-<PLATFORM_CONFIG>/
«»<RISCV-TEST-NAME>.<vpd|out>

11.1. Debugging & Testing with Metasimulation 219

FireSim Documentation, Release 1.17.0

A .vpd target will use (and, if required, build) a simulator with waveform dumping enabled, whereas a .out target
will use the faster waveform-less simulator.

Additionally, you can run a unique binary in the following way:

make STM_BINARY=<PATH_TO_BINARY> run-<vcs|verilator>
make STM_BINARY=<PATH_TO_BINARY> run-<vcs|verilator>-debug

Examples

Run all RISCV-tools assembly and benchmark tests on a Verilated simulator.

[in firesim/sim]

make

make -j run-asm-tests
make -j run-bmark-tests

Run all RISCV-tools assembly and benchmark tests on a Verilated simulator with waveform dumping.

make verilator-debug
make -j run-asm-tests-debug
make -j run-bmark-tests-debug

Run rv64ui-p-simple (a single assembly test) on a Verilated simulator.

make
make $(pwd)/output/fl1/FireSim-FireSimRocketConfig-BaseF1Config/rv64ui-p-simple.out

Run rv64ui-p-simple (a single assembly test) on a VCS simulator with waveform dumping.

make vcs-debug
make EMUL=vcs $(pwd)/output/f1/FireSim-FireSimRocketConfig-BaseF1lConfig/rv64ui-p-simple.
—vpd

11.1.6 Metasimulation vs. Target simulation performance

Generally, metasimulations are only slightly slower than target-level simulations. This is illustrated in the chart below.

Type | Waves | VCS Verilator | Verilator -O1 | Verilator -O2
Target | Off 48kHz | 39kHz | 6.6kHz N/A

Target | On 0.8kHz | 3.0kHz | 5.1kHz N/A

Meta | Off 38kHz | 24kHz | 45kHz 5.3 KHz
Meta On 29kHz | 1.5kHz 2.7 kHz 3.4 KHz

Note that using more aggressive optimization levels when compiling the Verilated-design dramatically lengthens com-
pile time:

Type | Waves | VCS | Verilator | Verilator -O1 | Verilator -O2
Meta | Off 35s 48s 3m32s 4m35s
Meta | On 35s 49s 5m27s 6m33s

220 Chapter 11. Debugging in Software

FireSim Documentation, Release 1.17.0

Notes: Default configurations of a single-core, Rocket-based instance running rv64ui-v-add. Frequencies are given
in target-Hz. Presently, the default compiler flags passed to Verilator and VCS differ from level to level. Hence, these
numbers are only intended to give ball park simulation speeds, not provide a scientific comparison between simulators.
VCS numbers collected on a local Berkeley machine, Verilator numbers collected on a c4.4xlarge. (metasimulation
Verilator version: 4.002, target-level Verilator version: 3.904)

11.1. Debugging & Testing with Metasimulation 221

FireSim Documentation, Release 1.17.0

222 Chapter 11. Debugging in Software

CHAPTER
TWELVE

DEBUGGING AND PROFILING ON THE FPGA

A common issue with FPGA-prototyping is the difficulty involved in trying to debug and profile systems once they are
running on the FPGA. FireSim addresses these issues with a variety of tools for introspecting on designs once you have
a FireSim simulation running on an FPGA. This section describes these features.

12.1 Capturing RISC-V Instruction Traces with TracerV

FireSim can provide a cycle-by-cycle trace of a target CPU’s architectural state over the course of execution, including
fields like instruction address, raw instruction bits, privilege level, exception/interrupt status and cause, and a valid
signal. This can be useful for profiling or debugging. TracerV is the FireSim bridge that provides this functionality.
This feature was introduced in our FirePerf paper at ASPLOS 2020 .

This section details how to capture these traces in cycle-by-cycle formats, usually for debugging purposes.

For profiling purposes, FireSim also supports automatically producing stack traces from this data and producing Flame
Graphs, which is documented in the TracerV + Flame Graphs: Profiling Software with Out-of-Band Flame Graph
Generation section.

12.1.1 Building a Design with TracerV

In all FireChip designs, TracerV is included by default. Other targets can enable it by attaching a TracerV Bridge to
the RISC-V trace port of each core they wish to trace (there should be one bridge per core). By default, only the cycle
number, instruction address, and valid bit are collected.

12.1.2 Enabling Tracing at Runtime

To improve simulation preformance, FireSim does not collect and record data from the TracerV Bridge by default. To
enable collection, modify the enable flag in the tracing section in your config_runtime.yaml file to yes instead
of no:

tracing:
enable: yes

Now when you run a workload, a trace output file will be placed in the sim_slot_<slot #> directory on the F1
instance under the name TRACEFILE-CO0. The CO represents core 0 in the simulated SoC. If you have multiple cores,
each will have its own file (ending in C1, C2, etc). To copy all TracerV trace files back to your manager, you can add
TRACEFILE* to your common_simulation_outputs or simulation_outputs in your workload . json file. See
the Defining Custom Workloads section for more information about these options.

223

https://sagark.org/assets/pubs/fireperf-asplos2020.pdf

FireSim Documentation, Release 1.17.0

12.1.3 Selecting a Trace Output Format

FireSim supports three trace output formats, which can be set in your config_runtime.yaml file with the
output_format option in the tracing section:

tracing:
enable: yes

Trace output formats. Only enabled if "enable" is set to "yes" above

0 = human readable; 1 = binary (compressed raw data); 2 = flamegraph (stack
unwinding -> Flame Graph)

output_format: 0

See the “Interpreting the Trace Result” section below for a description of these formats.

12.1.4 Setting a TracerV Trigger

Tracing the entirety of a long-running job like a Linux-based workload can generate a large trace and you may only
care about the state within a certain timeframe. Therefore, FireSim allows you to specify a trigger condition for starting
and stopping trace data collection.

By default, TracerV does not use a trigger, so data collection starts at cycle 0 and ends at the last cycle of the simulation.
To change this, modify the following under the tracing section of your config_runtime.yaml. Use the selector
field to choose the type of trigger (options are described below). The start and end fields are used to supply the start
and end values for the trigger.

tracing
enable: yes

Trace output formats. Only enabled if "enable" is set to "yes" above

0 = human readable; 1 = binary (compressed raw data); 2 = flamegraph (stack
unwinding -> Flame Graph)

output_format: 0

Trigger selector.

0 = no trigger; 1 = cycle count trigger; 2 = program counter trigger; 3 =
instruction trigger

selector: 1

start: O

end: -1

The four triggering methods available in FireSim are as follows:

No trigger

Records the trace for the entire simulation.
This is option 0 in the . yaml above.

The start and end fields are ignored.

224 Chapter 12. Debugging and Profiling on the FPGA

FireSim Documentation, Release 1.17.0

Target cycle trigger

Trace recording begins when a specified start cycle is reached and ends when a specified end cycle is reached. Cycles
are specified in base target-clock cycles (the zeroth output clock from the ClockBridge). For example, if the base clock
drives the uncore, and the core clock frequency is 2x the uncore frequency, specifying start and end cycles of 100 and
200 result in instructions being collected between core-clock cycles 200 and 400.

This is option 1 in the .yaml above.

The start and end fields are interpreted as decimal integers.

Program Counter (PC) value trigger

Trace recording begins when a specified program counter value is reached and ends when a specified program counter
value is reached.

This is option 2 in the .yaml above.

The start and end fields are interpreted as hexadecimal values.

Instruction value trigger

Trace recording begins when a specific instruction is seen in the instruction trace and ends when a specific instruction is
seen in the instruction trace. This method is particularly valuable for setting the trigger from within the target software
under evaluation, by inserting custom “NOP” instructions. Linux distributions included with FireSim include small
trigger programs by default for this purpose; see the end of this subsection.

This is option 3 in the .yaml above.

The start and end fields are interpreted as hexadecimal values. For each, the field is a 64-bit value, with the upper
32-bits representing a mask and the lower 32-bits representing a comparison value. That is, the start or stop condition
will be satisfied when the following evaluates to true:

((inst value) & (upper 32 bits)) == (lower 32 bits)

That is, setting start: ffffffff00008013 will cause recording to start when the instruction value is exactly
00008013 (the addi x0, x1, O instruction in RISC-V).

This form of triggering is useful when recording traces only when a particular application is running within Linux. To
simplify the use of this triggering mechanism, workloads derived from br-base. json in FireMarshal automatically
include the commands firesim-start-trigger and firesim-end-trigger, which issue a addi x®, x1, 0and
addi x0®, x2, O instruction respectively. In your config_runtime.yaml, if you set the following trigger settings:

selector: 3
start: ffffffff00008013
end: ffffffff00010013

And then run the following at the bash prompt on the simulated system:

$ firesim-start-trigger && ./my-interesting-benchmark && firesim-end-trigger

The trace will contain primarily only traces for the duration of my-interesting-benchmark. Note that there will be
a small amount of extra trace information from firesim-start-trigger and firesim-end-trigger, as well as
the OS switching between these and my-interesting-benchmark.

12.1. Capturing RISC-V Instruction Traces with TracerV 225

FireSim Documentation, Release 1.17.0

Attention: While it is unlikely that a compiler will generate the aforementioned trigger instructions within normal
application code, it is also a good idea to confirm that these instructions are not inadvertently present within the
section of code you wish to profile. This will result in the trace recording inadvertently turning on and off in the
middle of the workload.

On the flip-side, a developer can deliberately insert the aforementioned addi instructions into the code they wish
to profile, to enable more fine-grained control.

12.1.5 Interpreting the Trace Result

Human readable output

This is output_format: 0.

The human readable trace output format looks like so:

Clock Domain: baseClock, Relative Frequency: 1/1 of Base Clock
Cycle: 0000000000000079 I0: 0000000000010040
Cycle: 0000000000000105 I0: 000000000001004c
Cycle: 0000000000000123 I0: 0000000000010054
Cycle: 0000000000000135 I0: 0000000000010058
Cycle: 0000000000000271 I0: 000000000001005c
Cycle: 0000000000000307 I0: 0000000000010000
Cycle: 0000000000000327 I0: 0000000000010008
Cycle: 0000000000000337 IO: 0000000000010010
Cycle: 0000000000000337 I1: 0000000000010014
Cycle: 0000000000000337 I2: 0000000000010018

In this output, each line begins with the cycle (in decimal) in the core’s clock domain that instruction was committed.
For a given cycle, the instruction address (in hex) of each committed is prefixed I<#> according to their appearance
in program order: I0 is the oldest instruction committed, I1 is the second oldest, and so forth. If no instructions were
committed in a given cycle, that cycle will be skipped in the output file.

Cycle: 0000000000000337 I0: 0000000000010010
Cycle: 0000000000000337 I1: 0000000000010014

| L 40 bits of instruction address (hex)
L per-cycle commit-order
64-bit local-cycle count

—_———

Binary output

This is output_format: 1.

This simply writes the 512 bits received from the FPGA each cycle to the output file in binary. Each 512-bit chunk
is stored little-endian. The lowermost 64 bits stores the cycle, the second 64-bits stores the address and valid bits of
committed instruction O in little-endian, the next 64-bits stores the address and valid bits of committed instruction 1 in
little-endian, and so on, up to a maximum of 7 instructions.

226 Chapter 12. Debugging and Profiling on the FPGA

FireSim Documentation, Release 1.17.0

Flame Graph output

This is output_format: 2. See the TracerV + Flame Graphs: Profiling Software with Out-of-Band Flame Graph
Generation section.

12.1.6 Caveats

There are currently a few restrictions / manual tweaks that are required when using TracerV under certain conditions:

* TracerV by default outputs only instruction address and a valid bit and assumes that the combination of
these fits within 64 bits. Changing this requires modifying sim/firesim-1ib/src/main/scala/bridges/
TracerVBridge.scala.

¢ The maximum IPC of the traced core cannot exceed 7.

* Please reach out on the FireSim mailing list if you need help addressing any of these restrictions: https://groups.
google.com/forum/#!forum/firesim

12.2 Assertion Synthesis: Catching RTL Assertions on the FPGA

Golden Gate can synthesize assertions present in FIRRTL (implemented as stop statements) that would otherwise be
lost in the FPGA synthesis flow. Rocket and BOOM include hundreds of such assertions which, when synthesized, can
provide great insight into why the target may be failing.

12.2.1 Enabling Assertion Synthesis

To enable assertion synthesis prepend WithSynthAsserts config to your PLATFORM_CONFIG. During compi-
lation, Golden Gate will print the number of assertions it’s synthesized. In the generated header, you will find the
definitions of all synthesized assertions. The synthesized_assertions_t bridge driver will be automatically in-
stantiated.

12.2.2 Runtime Behavior

If an assertion is caught during simulation, the driver will print the assertion cause, the path to module instance in
which it fired, a source locator, and the cycle on which the assertion fired. Simulation will then terminate.

An example of an assertion caught in a dual-core instance of BOOM is given below:

id: 1190, module: IssueSlot_4, path: FireSimNoNIC.tile_1l.core.issue_units_0.slots_3]
Assertion failed

at issue_slot.scala:214 assert (!slot_pl_poisoned)

at cycle: 2142042185

Just as in a software-hosted RTL simulation using verilator or VCS, the reported cycle is the number of target cycles
that have elapsed in the clock domain in which the assertion was instantiated (in Chisel specifically this is the implicit
clock at the time you called assert). If you rerun a FireSim simulation with identical inputs, the same assertion should
fire deterministically at the same cycle.

12.2. Assertion Synthesis: Catching RTL Assertions on the FPGA 227

https://groups.google.com/forum/#!forum/firesim
https://groups.google.com/forum/#!forum/firesim

FireSim Documentation, Release 1.17.0

12.2.3 Related Publications

Assertion synthesis was first presented in our FPL2018 paper, DESSERT.

12.3 Printf Synthesis: Capturing RTL printf Calls when Running on
the FPGA

Golden Gate can synthesize printfs present in Chisel/FIRRTL (implemented as printf statements) that would oth-
erwise be lost in the FPGA synthesis flow. Rocket and BOOM have printfs of their commit logs and other useful
transaction streams.

Co: 409 [1] pc=[008000004c] W[r10=0000000000000000][1] R[r 0=0000000000000000]. .
—R[r20=0000000000000003] inst=[£1402573] csrr a®, mhartid

Co: 410 [0] pc=[008000004c] W[r 0=0000000000000000][0] R[r 0=0000000000000000]..
—R[r20=0000000000000003] inst=[£1402573] csrr a0, mhartid

Co: 411 [0] pc=[008000004c] W[r 0=0000000000000000][0] R[r 0=0000000000000000]..
—R[r20=0000000000000003] inst=[f1402573] csrr a0, mhartid

Co: 412 [1] pc=[0080000050] W[r 0=0000000000000000][0] R[r10=0000000000000000]. .
—R[r 0=0000000000000000] inst=[00051063] bnez ad, pc + 0

Co: 413 [1] pc=[0080000054] W[r 5=0000000080000054][1] R[r 0=0000000000000000]. .
~R[r 0=0000000000000000] inst=[00000297] auipc t0, 0x0

Co: 414 [1] pc=[0080000058] W[r 5=0000000080000064][1] R[r 5=0000000080000054]. .
~R[r16=0000000000000003] inst=[01028293] addi t®, t0, 16

Co: 415 [1] pc=[008000005c] W[r 0=0000000000010000][1] R[r 5=0000000080000064]. .
—R[r 5=0000000080000064] inst=[30529073] csrw mtvec, t0

Synthesizing these printfs lets you capture the same logs on a running FireSim instance.

12.3.1 Enabling Printf Synthesis

To synthesize a printf, you need to annotate the specific printfs you’d like to capture in your Chisel source code like so:

midas.targetutils.SynthesizePrintf(printf("x p 0x%x\n", rf waddr, rf_waddr, rf_
—wdata))

Be judicious, as synthesizing many, frequently active printfs will slow down your simulator.

Once your printfs have been annotated, enable printf synthesis by prepending the WithPrintfSynthesis
configuration mixin to your PLATFORM_CONFIG in config_build_recipes.yaml. For exam-
ple, if your previous PLATFORM_CONFIG was PLATFORM_CONFIG=BaseFlConfig, then change it to
PLATFORM_CONFIG=WithPrintfSynthesis_BaseFlConfig. Note, you must prepend the mixin. During
compilation, Golden Gate will print the number of printfs it has synthesized. In the target’s generated header
(FireSim-generated.const.h), you’ll find metadata for each of the printfs Golden Gate synthesized. This is
passed as argument to the constructor of the synthesized_prints_t bridge driver, which will be automatically
instantiated in FireSim driver.

228 Chapter 12. Debugging and Profiling on the FPGA

https://people.eecs.berkeley.edu/~biancolin/papers/dessert-fpl18.pdf

FireSim Documentation, Release 1.17.0

12.3.2 Runtime Arguments

+print-file Specifies the file name prefix. Generated files will be of the form <print-file><N>, with one output file
generated per clock domain. The associated clock domain’s name and frequency relative to the base clock is
included in the header of the output file.

+print-start Specifies the target-cycle in cycles of the base clock at which the printf trace should be captured in the
simulator. Since capturing high-bandwidth printf traces will slow down simulation, this allows the user to reach
the region-of-interest at full simulation speed.

+print-end Specifies the target-cycle in cycles of the base clock at which to stop pulling the synthesized print trace
from the simulator.

+print-binary By default, a captured printf trace will be written to file formatted as it would be emitted by a software
RTL simulator. Setting this dumps the raw binary coming off the FPGA instead, improving simulation rate.

+print-no-cycle-prefix (Formatted output only) This removes the cycle prefix from each printf to save bandwidth in
cases where the printf already includes a cycle field. In binary-output mode, since the target cycle is implicit in
the token stream, this flag has no effect.

You can set some of these options by changing the fields in the “synthprint” section of your config_runtime.yaml.

synth_print:

Start and end cycles for outputting synthesized prints.

They are given in terms of the base clock and will be converted

for each clock domain.

start: 0

end: -1

When enabled (=yes), prefix print output with the target cycle at which the print.
—was triggered

cycle_prefix: yes

LEINTS

The “start” field corresponds to “print-start”, “end” to “print-end”, and “cycleprefix” to “print-no-cycle-prefix”.

12.3.3 Related Publications

Printf synthesis was first presented in our FPL2018 paper, DESSERT.

12.4 AutolLA: Simple Integrated Logic Analyzer (ILA) Insertion

Sometimes it takes too long to simulate FireSim on RTL simulators, and in some occasions we would also like to debug
the simulation infrastructure itself. For these purposes, we can use the Xilinx Integrated Logic Analyzer resources on
the FPGA.

ILAs allows real time sampling of pre-selected signals during FPGA runtime, and provided and interface for setting
trigger and viewing samples waveforms from the FPGA. For more information about ILAs, please refer to the Xilinx
guide on the topic.

The midas.targetutils package provides annotations for labeling signals directly in the Chisel source. These will
be consumed by a downstream FIRRTL pass which wires out the annotated signals, and binds them to an appropriately
sized ILA instance.

12.4. AutolLA: Simple Integrated Logic Analyzer (ILA) Insertion 229

https://people.eecs.berkeley.edu/~biancolin/papers/dessert-fpl18.pdf

FireSim Documentation, Release 1.17.0

12.4.1 Enabling AutolLA

To enable AutolLA, mixin WithAutoILA must be prepended to the PLATFORM_CONFIG. Prior to version 1.13, this
was done by default.

12.4.2 Annotating Signals

In order to annotate a signal, we must import the midas.targetutils.FpgaDebug annotator. FpgaDebug’s apply
method accepts a vararg of chisel3.Data. Invoke it as follows:

import midas.targetutils.FpgaDebug

class SomeModuleIO(implicit p: Parameters) extends SomeIO() (p){
val outl = Output(Bool())
val inl = Input(Bool())
FpgaDebug(outl, inl)

}

You can annotate signals throughout FireSim, including in Golden Gate Rocket-Chip Chisel sources, with the only
exception being the Chisel3 sources themselves (eg. in Chisel3.util.Queue).

Note: In case the module with the annotated signal is instantiated multiple times, all instatiations of the annotated
signal will be wired to the ILA.

12.4.3 Setting a ILA Depth

The ILA depth parameter specifies the duration in cycles to capture annotated signals around a trigger. Increasing
this parameter may ease debugging, but will also increase FPGA resource utilization. The default depth is 1024 cy-
cles. The desired depth can be configured much like the desired HostFrequency by appending a mixin to the PLAT-
FORM_CONFIG. See Target-Side FPGA Constraints for details on PLATFORM_CONFIG.

Below is an example PLATFORM_CONFIG that can be used in the build_recipes config file.

PLATFORM_CONFIG=ILADepth8192_BaseF1Config

12.4.4 Using the ILA at Runtime

Prerequisite: Make sure that ports 8443, 3121 and 10201 are enabled in the “firesim” AWS security group.

In order to use the ILA, we must enable the GUI interface on our manager instance. In the past, AWS had a cus-
tom setup_gui. sh script. However, this was recently deprecated due to compatibility issues with various packages.
Therefore, AWS currently recommends using NICE DCV as a GUI client. You should download a DCV client, and
then run the following commands on your FireSim manager instance:

sudo yum -y groupinstall "GNOME Desktop"

sudo yum -y install glx-utils

sudo rpm --import https://s3-eu-west-1.amazonaws.com/nice-dcv-publish/NICE-GPG-KEY
wget https://dluj6qtbmh3dt5.cloudfront.net/2019.0/Servers/nice-dcv-2019.0-7318-el7.tgz
tar xvf nice-dcv-2019.0-7318-el7.tgz

cd nice-dcv-2019.0-7318-el7

sudo yum -y install nice-dcv-server-2019.0.7318-1.el7.x86_64.rpm

sudo yum -y install nice-xdcv-2019.0.224-1.el7.x86_64.rpm

(continues on next page)

230 Chapter 12. Debugging and Profiling on the FPGA

https://docs.aws.amazon.com/dcv/latest/adminguide/what-is-dcv.html
https://docs.aws.amazon.com/dcv/latest/userguide/client.html

FireSim Documentation, Release 1.17.0

(continued from previous page)

sudo systemctl enable dcvserver

sudo systemctl start dcvserver

sudo passwd centos

sudo systemctl stop firewalld

dcv create-session --type virtual --user centos centos

These commands will setup Linux desktop pre-requisites, install the NICE DCV server, ask you to setup the password
to the centos user, disable firewalld, and finally create a DCV session. You can now connect to this session through
the DCV client.

After access the GUI interface, open a terminal, and open vivado. Follow the instructions in the AWS-FPGA guide
for connecting xilinx hardware manager on vivado (running on a remote machine) to the debug target .

where <hostname or IP address> is the internal IP of the simulation instance (not the manager instance. i.e. The
IP starting with 192.168.X.X). The probes file can be found in the manager instance under the path firesim/deploy/
results-build/<build_identifier>/cl_firesim/build/checkpoints/<probes_file.ltx>

Select the ILA with the description of WRAPPER_INST/CL/CL_FIRESIM_DEBUG_WIRING_TRANSFORM, and you
may now use the ILA just as if it was on a local FPGA.

12.5 AutoCounter: Profiling with Out-of-Band Performance Counter
Collection

FireSim can provide visibility into a simulated CPU’s architectural and microarchitectural state over the course of
execution through the use of counters. These are similar to performance counters provided by processor vendors, and
more general counters provided by architectural simulators.

This functionality is provided by the AutoCounter feature (introduced in our FirePerf paper at ASPLOS 2020), and
can be used for profiling and debugging. Since AutoCounter injects counters only in simulation (unlike target-level
performance counters), these counters do not affect the behavior of the simulated machine, no matter how often they
are sampled.

12.5.1 Chisel Interface

AutoCounter enables the addition of ad-hoc counters using the PerfCounter object in the midas.targetutils package.
PerfCounters counters can be added in one of two modes:

1. Accumulate, using the standard PerfCounter.apply method. Here the annotated Ulnt (1 or more bits) is added
to a 64b accumulation register: the target is treated as representing an N-bit Ulnt and will increment the counter
by a value between [0, 2*n - 1] per cycle.

2. Identity, using the PerfCounter.identity method. Here the annotated Ulnt is sampled directly. This can be
used to annotate a sample with values are not accumulator-like (e.g., a PC), and permits the user to define more
complex instrumentation logic in the target itself.

We give examples of using PerfCounter below:

// A standard boolean event. Increments by 1 or 0 every local clock cycle.
midas.targetutils.PerfCounter(en_clock, "gate_clock", "Core clock gated")

// A multibit example. If the core can retire three isntructions per cycle,
// encode this as a two-bit unit. Extra-width is OK but the encoding to the Ulnt
// (e.g., doing a pop count), must be done by the user.

(continues on next page)

12.5. AutoCounter: Profiling with Out-of-Band Performance Counter Collection 231

https://github.com/aws/aws-fpga/blob/master/hdk/docs/Virtual_JTAG_XVC.md#connecting-xilinx-hardware-manager-vivado-lab-edition-running-on-a-remote-machine-to-the-debug-target-fpga-enabled-ec2-instance
https://github.com/aws/aws-fpga/blob/master/hdk/docs/Virtual_JTAG_XVC.md#connecting-xilinx-hardware-manager-vivado-lab-edition-running-on-a-remote-machine-to-the-debug-target-fpga-enabled-ec2-instance
https://sagark.org/assets/pubs/fireperf-asplos2020.pdf

FireSim Documentation, Release 1.17.0

(continued from previous page)

midas.targetutils.PerfCounter(insns_ret, "iret", "Instructions retired")

// An identity value. Note: the pc here must be <= 64b wide.
midas.targetutils.PerfCounter.identity(pc, "pc", "The value of the program counter at.
—the time of a sample")

See the PerfCounter Scala API docs for more detail about the Chisel-side interface.

12.5.2 Enabling AutoCounter in Golden Gate

By default, annotated events are not synthesized into AutoCounters. To enable AutoCounter when compiling a design,
prepend the WithAutoCounter config to your PLATFORM_CONFIG. During compilation, Golden Gate will print the
signals it is generating counters for.

12.5.3 Rocket Chip Cover Functions

The cover function is applied to various signals in the Rocket Chip generator repository to mark points of interest (i.e.,
interesting signals) in the RTL. Tools are free to provide their own implementation of this function to process these
signals as they wish. In FireSim, these functions can be used as a hook for automatic generation of counters.

Since cover functions are embedded throughout the code of Rocket Chip (and possibly other code repositories), Auto-
Counter provides a filtering mechanism based on module granularity. As such, only cover functions that appear within
selected modules will generate counters.

The filtered modules can be indicated using one of two methods:

1. An annotation attached to the module for which cover functions should be turned into AutoCounters. The an-
notation requires a ModuleTarget which can be pointed to any module in the design. Alternatively, the current
module can be annotated as follows:

class SomeModule(implicit p: Parameters) extends Module

{

chisel3.experimental.annotate (AutoCounterCoverModuleAnnotation(
Module.currentModule.get.toTarget))

2. An input file with a list of module names. This input file is named autocounter-covermodules.txt, and
includes a list of module names separated by new lines (no commas).

12.5.4 AutoCounter Runtime Parameters

AutoCounter currently takes a single runtime configurable parameter, defined under the autocounter: section in the
config_runtime.yaml file. The read_rate parameter defines the rate at which the counters should be read, and is
measured in target-cycles of the base target-clock (clock O produced by the ClockBridge). Hence, if the read_rate is
defined to be 100 and the tile frequency is 2x the base clock (ex., which may drive the uncore), the simulator will read
and print the values of the counters every 200 core-clock cycles. If the core-domain clock is the base clock, it would
do so every 100 cycles. By default, the read_rate is set to O cycles, which disables AutoCounter.

autocounter:
read counters every 100 cycles
read_rate: 100

232 Chapter 12. Debugging and Profiling on the FPGA

https://fires.im/firesim/latest/api/midas/targetutils/PerfCounter\protect \T1\textdollar .html

FireSim Documentation, Release 1.17.0

Note: AutoCounter is designed as a coarse-grained observability mechanism, as sampling each counter requires two
(blocking) MMIO reads (each read takes O(100) ns on EC2 F1). As a result sampling at intervals less than O(10000)
cycles may adversely affect simulation performance for large numbers of counters. If you intend on reading counters

at a finer granularity, consider using synthesizable printfs.

12.5.5 AutoCounter CSV Output Format

AutoCounter output files are CSVs generated in the working directory where the simulator was invoked (this applies
to metasimulators too), with the default names AUTOCOUNTERFILE<i>.csv, one per clock domain. The CSV output

format is depicted below, assuming a sampling period of N base clock cycles.

Table 1: AutoCounter CSV Format

version version number

Clock Domain Name | name Base Multiplier | M Base Divisor | N

label local_cycle labelO labell labelN
description local clock cycle | descO descl descN

type Accumulate typeO typel typeN

event width 1 widthO widthl widthN
accumulator width 64 64 64 64

N cycle @ time N | value0 @ tN valuel @ tN value @ tN
kN cycle @ time kN | value0 @ tkN valuel @ tkN valueN @ tkN

Column Notes:

1. Each column beyond the first two corresponds to a PerfCounter instance in the clock domain.

2. Column 0 past

the header corresponds to the base clock cycle of the sample.

3. The local_cycle counter (column 1) is implemented as an always enabled single-bit event, and increments even
when the target is under reset.

Row Notes:

1. Header row O:
Header row 1:
Header row 2:
Header row 3:

Header row 4:

AN

Header row 5:
rollover.

=~

Header row 6:
8. Sample row 0:

9. Sample row k:

autocounter csv format version, an integer.

clock domain information.

the label parameter provided to PerfCounter suffixed with the instance path.
the description parameter provided to PerfCounter. Quoted.

the width of the field annotated in the target.

the width of the accumulation register. Not configurable, but makes it clear when to expect

indicates the accumulation scheme. Can be “Identity” or “Accumulate”.
sampled values at the bitwidth of the accumulation register.

ditto above, k * N base cycles later

12.5. AutoCounter: Profiling with Out-of-Band Performance Counter Collection

233

FireSim Documentation, Release 1.17.0

12.5.6 Using TracerV Trigger with AutoCounter

In order to collect AutoCounter results from only from a particular region of interest in the simulation, AutoCounter
has been integrated with TracerV triggers. See the Setting a TracerV Trigger section for more information.

12.5.7 AutoCounter using Synthesizable Printfs

The AutoCounter transformation in Golden Gate includes an event-driven mode that uses Synthesizable Printfs (see
Printf Synthesis: Capturing RTL printf Calls when Running on the FPGA) to export counter results as they are up-
dated rather than sampling them periodically with a dedicated Bridge. This mode can be enabled by prepending the
WithAutoCounterCoverPrintf config to your PLATFORM_CONFIG instead of WithAutoCounterCover. Based on
the selected event mode the printfs will have the following runtime behavior:

* Accumulate: On a non-zero increment, the local cycle count and the new counter value are printed. This produces
a series of prints with monotonically increasingly values.

* Identity: On a transition of the annotated target, the local cycle count and the new value are printed. Thus a target
that transitions every cycle will produce printf traffic every cycle.

This mode may be useful for temporally fine-grained observation of counters. The counter values will be printed to
the same output stream as other synthesizable printfs. This mode uses considerably more FPGA resources per counter,
and may consume considerable amounts of DMA bandwidth (since it prints every cycle a counter increments), which
may adversly affect simulation performance (increased FMR).

12.5.8 Reset & Timing Considerations
 Events and identity values provided while under local reset, or while the GlobalResetCondition asserted, are
zero-ed out. Similarly, printfs that might otherwise be active under a reset are masked out.

* The sampling period in slower clock domains is currently calculated using a truncating division of the period in
the base clock domain. Thus, when the base clock period can not be cleanly divided, samples in the slower clock
domain will gradually fall out of phase with samples in the base clock domain. In all cases, the “local_cycle”
column is most accurate measure of sample time.

12.6 TracerV + Flame Graphs: Profiling Software with Out-of-Band
Flame Graph Generation

FireSim supports generating Flame Graphs out-of-band, to visualize the performance of software running on simulated
processors. This feature was introduced in our FirePerf paper at ASPLOS 2020 .

Before proceeding, make sure you understand the Capruring RISC-V Instruction Traces with TracerV section.

12.6.1 What are Flame Graphs?

Fig. 1: Example Flame Graph (from http://www.brendangregg.com/FlameGraphs/)

Flame Graphs are a type of histogram that shows where software is spending its time, broken down by components of
the stack trace (e.g., function calls). The x-axis represents the portion of total runtime spent in a part of the stack trace,
while the y-axis represents the stack depth at that point in time. Entries in the flame graph are labeled with and sorted
by function name (not time).

234 Chapter 12. Debugging and Profiling on the FPGA

http://www.brendangregg.com/flamegraphs.html
https://sagark.org/assets/pubs/fireperf-asplos2020.pdf
http://www.brendangregg.com/FlameGraphs/

FireSim Documentation, Release 1.17.0

Given this visualization, time-consuming routines can easily be identified: they are leaves (top-most horizontal bars)
of the stacks in the flame graph and consume a significant proportion of overall runtime, represented by the width of
the horizontal bars.

Traditionally, data to produce Flame Graphs is collected using tools like perf, which sample stack traces on running
systems in software. However, these tools are limited by the fact that they are ultimately running additional software
on the system being profiled, which can change the behavior of the software that needs to be profiled. Furthermore, as
sampling frequency is increased, this effect becomes worse.

In FireSim, we use the out-of-band trace collection provided by TracerV to collect these traces cycle-exactly and without
perturbing running software. On the host-software side, TracerV unwinds the stack based on DWARF information
about the running binary that you supply. This stack trace is then fed to the open-source FlameGraph stack trace
visualizer to produce Flame Graphs.

12.6.2 Prerequisites

1. Make sure you understand the Capturing RISC-V Instruction Traces with TracerV section.

2. You must have a design that integrates the TracerV bridge. See the Building a Design with TracerV section.
12.6.3 Enabling Flame Graph generation in config_runtime.yaml

To enable Flame Graph generation for a simulation, you must set enable: yes and output_format: 2 in the
tracing section of your config_runtime.yaml file, for example:

tracing:
enable: yes

Trace output formats. Only enabled if "enable" is set to "yes" above

0 = human readable; 1 = binary (compressed raw data); 2 = flamegraph (stack
unwinding -> Flame Graph)

output_format: 2

Trigger selector.

0 = no trigger; 1 = cycle count trigger; 2 = program counter trigger; 3 =
instruction trigger

selector: 1

start: 0

end: -1

The trigger selector settings can be set as described in the Setting a TracerV Trigger section. In particular, when
profiling the OS only when a desired application is running (e.g., iper£f3 in our ASPLOS 2020 paper), instruction
value triggering is extremely useful. See the /nstruction value trigger section for more.

12.6. TracerV + Flame Graphs: Profiling Software with Out-of-Band Flame Graph Generation 235

https://github.com/brendangregg/FlameGraph
https://github.com/brendangregg/FlameGraph
https://sagark.org/assets/pubs/fireperf-asplos2020.pdf

FireSim Documentation, Release 1.17.0

12.6.4 Producing DWARF information to supply to the TracerV driver

When running in FirePerf mode, the TracerV software driver expects a binary containing DWARF debugging informa-
tion, which it will use to obtain labels for stack unwinding.

TracerV expects this file to be named exactly as your bootbinary, but suffixed with -dwarf. For example (and as we
will see in the following section), if your bootbinary is named br-base-bin, TracerV will require you to provide a
file named br-base-bin-dwarf.

If you are generating a Linux distribution with FireMarshal, this file containing debug information for the generated
Linux kernel will automatically be provided (and named correctly) in the directory containing your images. For ex-
ample, building the br-base. json workload will automatically produce br-base-bin, br-base-bin-dwarf (for
TracerV flame graph generation), and br-base.img.

12.6.5 Modifying your workload description
Finally, we must make three modifications to the workload description to complete the flame graph flow. For general
documentation on workload descriptions, see the Defining Custom Workloads section.

1. We must add the file containing our DWARF information as one of the simulation_inputs, so that it is auto-
matically copied to the remote F1 instance running the simulation.

2. We must modify simulation_outputs to copy back the generated trace file.

3. We must set the post_run_hook to gen-all-flamegraphs-fireperf.sh (which FireSim puts on your path
by default), which will produce flame graphs from the trace files.

To concretize this, let us consider the default 1inux-uniform. json workload, which does not support Flame Graph
generation:

{
"benchmark_name" : "linux-uniform",
"common_bootbinary" : "br-base-bin",
"common_rootfs" : "br-base.img",
"common_outputs" : ["/etc/os-release"],
"common_simulation_outputs" : ["uartlog", "memory_stats*.csv']
}

Below is the modified version of this workload, 1inux-uniform-flamegraph. json, which makes the aforemen-
tioned three changes:

{
"benchmark_name" : "linux-uniform",
"common_bootbinary" : "br-base-bin",
"common_rootfs" : "br-base.img",
"common_simulation_inputs" : ["br-base-bin-dwarf"],
"common_outputs" : ["/etc/os-release"],
"common_simulation_outputs" : ["uartlog", "memory_stats*.csv'", "TRACEFILE*"],
"post_run_hook" : "gen-all-flamegraphs-fireperf.sh"
}

Note that we are adding TRACEFILE* to common_simulation_outputs, which will copy back all generated trace files
to your workload results directory. The gen-all-flamegraphs-fireperf.sh script will automatically produce a
flame graph for each generated trace.

Lastly, if you have created a new workload definition, make sure you update your config_runtime.yaml to use this
new workload definition.

236 Chapter 12. Debugging and Profiling on the FPGA

FireSim Documentation, Release 1.17.0

12.6.6 Running a simulation

At this point, you can follow the standard FireSim flow to run a workload. Once your workload completes, you will
find trace files with stack traces (as opposed to instruction traces) and generated flame graph SVGs in your workload’s
output directory.

12.6.7 Caveats

The cur