
FireSim Documentation

Sagar Karandikar, Howard Mao,
Donggyu Kim, David Biancolin,

Alon Amid,
Berkeley Architecture Research

Aug 19, 2018

Getting Started:

1 FireSim Basics 3
1.1 Two common use cases: . 3

1.1.1 Single-Node Simulation, in Parallel . 3
1.1.2 Datacenter/Cluster Simulation . 3

1.2 Other Use Cases . 4
1.3 Background/Terminology . 4
1.4 Using FireSim/The FireSim Workflow . 5

2 Initial Setup/Installation 7
2.1 First-time AWS User Setup . 7

2.1.1 Creating an AWS Account . 7
2.1.2 AWS Credit at Berkeley . 7
2.1.3 Requesting Limit Increases . 7

2.2 Configuring Required Infrastructure in Your AWS Account . 8
2.2.1 Select a region . 8
2.2.2 Key Setup . 8
2.2.3 Check your EC2 Instance Limits . 8
2.2.4 Start a t2.nano instance to run the remaining configuration commands 9
2.2.5 Run scripts from the t2.nano . 9
2.2.6 Terminate the t2.nano . 10
2.2.7 Subscribe to the AWS FPGA Developer AMI . 10

2.3 Setting up your Manager Instance . 10
2.3.1 Launching a “Manager Instance” . 10
2.3.2 Setting up the FireSim Repo . 12
2.3.3 Completing Setup Using the Manager . 13

3 Running FireSim Simulations 15
3.1 Running a Single Node Simulation . 15

3.1.1 Building target software . 15
3.1.2 Setting up the manager configuration . 16
3.1.3 Launching a Simulation! . 18

3.2 Running a Cluster Simulation . 23
3.2.1 Returning to a clean configuration . 23
3.2.2 Building target software . 23
3.2.3 Setting up the manager configuration . 24
3.2.4 Launching a Simulation! . 25

i

4 Building Your Own Hardware Designs (FireSim FPGA Images) 33
4.1 Amazon S3 Setup . 33
4.2 Build Recipes . 33
4.3 Running a Build . 34

5 Manager Usage (the firesim command) 35
5.1 Overview . 35

5.1.1 “Inputs” to the Manager . 35
5.1.2 Logging . 35

5.2 Manager Command Line Arguments . 36
5.2.1 --runtimeconfigfile FILENAME . 36
5.2.2 --buildconfigfile FILENAME . 37
5.2.3 --buildrecipesconfigfile FILENAME . 37
5.2.4 --hwdbconfigfile FILENAME . 37
5.2.5 --overrideconfigdata SECTION PARAMETER VALUE 37
5.2.6 TASK . 37

5.3 Manager Tasks . 37
5.3.1 firesim managerinit . 37
5.3.2 firesim buildafi . 38
5.3.3 firesim shareagfi . 38
5.3.4 firesim launchrunfarm . 39
5.3.5 firesim terminaterunfarm . 39
5.3.6 firesim infrasetup . 40
5.3.7 firesim boot . 40
5.3.8 firesim kill . 40
5.3.9 firesim runworkload . 40
5.3.10 firesim runcheck . 41

5.4 Manager Configuration Files . 41
5.4.1 config_runtime.ini . 41
5.4.2 config_build.ini . 44
5.4.3 config_build_recipes.ini . 47
5.4.4 config_hwdb.ini . 49

5.5 Manager Network Topology Definitions (user_topology.py) 51
5.5.1 user_topology.py contents: . 51

5.6 AGFI Metadata/Tagging . 54

6 Workloads 55
6.1 Defining Custom Workloads . 55

6.1.1 Uniform Workload JSON . 55
6.1.2 Non-uniform Workload JSON (explicit job per simulated node) 57

6.2 SPEC 2017 . 59
6.2.1 Intspeed . 60
6.2.2 Intrate . 60

6.3 Running Fedora on FireSim . 61
6.4 ISCA 2018 Experiments . 61

6.4.1 Prerequisites . 61
6.4.2 Building Benchmark Binaries/Rootfses . 61
6.4.3 Figure 5: Ping Latency vs. Configured Link Latency . 61
6.4.4 Figure 6: Network Bandwidth Saturation . 62
6.4.5 Figure 7: Memcached QoS / Thread Imbalance . 62
6.4.6 Figure 8: Simulation Rate vs. Scale . 62
6.4.7 Figure 9: Simulation Rate vs. Link Latency . 62
6.4.8 Running all experiments at once . 63

ii

7 Targets 65
7.1 Restrictions on Target-RTL . 65
7.2 Generating Different Target-RTL . 65

7.2.1 Rocket-based SoCs . 66
7.2.2 BOOM-based SoCs (Beta) . 66
7.2.3 Changing The DRAM Model . 66

8 Debugging & Testing with RTL Simulation 67
8.1 Target-Level Simulation . 68
8.2 MIDAS-Level Simulation . 68

8.2.1 Examples . 68
8.3 FPGA-Level Simulation . 69

8.3.1 Usage . 69

9 Tutorial: Developing New Devices 71
9.1 Getting Started . 71
9.2 Memory-mapped Registers . 72
9.3 DMA and Interrupts . 73

9.3.1 TileLink Client Port . 73
9.3.2 TileLink Protocol and State Machine . 73
9.3.3 Interrupts . 75

9.4 Connecting Devices to Bus . 75
9.4.1 SoC Mixin Traits . 75
9.4.2 Top-Level Design and Configuration . 76

9.5 Running Test Software . 77
9.5.1 Debugging Verilog Simulation . 78

9.6 Creating Simulation Model . 78

10 Supernode 83
10.1 Intro . 83
10.2 Build . 83
10.3 Running simulations . 84
10.4 Work in Progress! . 84

11 Miscellaneous Tips 85
11.1 Add the fsimcluster column to your AWS management console 85
11.2 FPGA Dev AMI Remote Desktop Setup . 85
11.3 Experimental Support for SSHing into simulated nodes and accessing the internet from within simu-

lations . 86

12 Indices and tables 89

iii

iv

FireSim Documentation

New to FireSim? Jump to the FireSim Basics page for more info.

Getting Started: 1

FireSim Documentation

2 Getting Started:

CHAPTER 1

FireSim Basics

FireSim is a cycle-accurate, FPGA-accelerated scale-out computer system simulation platform developed in the Berke-
ley Architecture Research Group in the EECS Department at the University of California, Berkeley.

FireSim is capable of simulating from one to thousands of multi-core compute nodes, derived from silicon-proven
and open target-RTL, with an optional cycle-accurate network simulation tying them together. FireSim runs on FPGAs
in public cloud environments like AWS EC2 F1, removing the high capex traditionally involved in large-scale FPGA-
based simulation.

FireSim is useful both for datacenter architecture research as well as running many single-node architectural exper-
iments in parallel on FPGAs. By harnessing a standardized host platform and providing a large amount of automa-
tion/tooling, FireSim drastically simplifies the process of building and deploying large-scale FPGA-based hardware
simulations.

To learn more, see the FireSim website and the FireSim ISCA 2018 paper.

For a two-minute overview that describes how FireSim simulates a datacenter, see our ISCA 2018 lightning talk on
YouTube.

1.1 Two common use cases:

1.1.1 Single-Node Simulation, in Parallel

In this mode, FireSim allows for simulation of individual Rocket Chip-based nodes without a network, which allows
individual simulations to run at ~150 MHz. The FireSim manager has the ability to automatically distribute jobs to
many parallel simulations, expediting the process of running large workloads like SPEC. For example, users can run
all of SPECInt2017 on Rocket Chip in ~1 day by running the 10 separate workloads in parallel on 10 FPGAs.

1.1.2 Datacenter/Cluster Simulation

In this mode, FireSim also models a cycle-accurate network with parameterizeable bandwidth and link latency, as well
as configurable topology, to accurately model current and future datacenter-scale systems. For example, FireSim has

3

https://fires.im
https://sagark.org/assets/pubs/firesim-isca2018.pdf
https://www.youtube.com/watch?v=4XwoSe5c8lY
https://www.youtube.com/watch?v=4XwoSe5c8lY

FireSim Documentation

been used to simulate 1024 quad-core Rocket Chip-based nodes, interconnected by a 200 Gbps, 2us network. To learn
more about this use case, see our ISCA 2018 paper or two-minute lightning talk.

1.2 Other Use Cases

This release does not support a non-cycle-accurate network as our AWS Compute Blog Post/Demo used. This feature
will be restored in a future release.

If you have other use-cases that we haven’t covered, feel free to contact us!

1.3 Background/Terminology

Fig. 1: FireSim Infrastructure Diagram

FireSim Manager (firesim) This program (available on your path as firesim once we source necessary scripts)
automates the work required to launch FPGA builds and run simulations. Most users will only have to interact
with the manager most of the time. If you’re familiar with tools like Vagrant or Docker, the firesim command
is just like the vagrant and docker commands, but for FPGA simulators instead of VMs/containers.

Manager Instance This is the AWS EC2 instance that you will SSH-into and do work on. This is where you’ll clone
your copy of FireSim and use the FireSim Manager to deploy builds/simulations from.

Build Farm These are instances that are elastically started/terminated by the FireSim manager when you run FPGA
builds. The manager will automatically ship source for builds to these instances and run the Verilog -> FPGA
Image process on them.

4 Chapter 1. FireSim Basics

https://sagark.org/assets/pubs/firesim-isca2018.pdf
https://www.youtube.com/watch?v=4XwoSe5c8lY
https://aws.amazon.com/blogs/compute/bringing-datacenter-scale-hardware-software-co-design-to-the-cloud-with-firesim-and-amazon-ec2-f1-instances/

FireSim Documentation

Run Farm These are a tagged collection of F1 (and M4) instances that the manager automatically launches and
deploys simulations onto. You can launch multiple Run Farms in parallel, each with their own tag, to run
multiple separate simulations in parallel.

To disambiguate between the computers being simulated and the computers doing the simulating, we also define:

Target The design and environment under simulation. Generally, a group of one or more multi-core RISC-V micro-
processors with or without a network between them.

Host The computers executing the FireSim simulation – the Run Farm from above.

We frequently prefix words with these terms. For example, software can run on the simulated RISC-V system (target-
software) or on a host x86 machine (host-software).

1.4 Using FireSim/The FireSim Workflow

The tutorials that follow this page will guide you through the complete flow for getting an example FireSim simulation
up and running. At the end of this tutorial, you’ll have a simulation that simulates a single quad-core Rocket Chip-
based node with a 4 MB last level cache, 16 GB DDR3, and no NIC. After this, you can continue to a tutorial that
shows you how to simulate a globally-cycle-accurate cluster-scale FireSim simulation. The final tutorial will show
you how to build your own FPGA images with customized hardware. After you complete these tutorials, you can look
at the Advanced documentation in the sidebar to the left.

Here’s a high-level outline of what we’ll be doing in our tutorials:

1. Initial Setup/Installation

(a) First-time AWS User Setup: You can skip this if you already have an AWS account/payment method set
up.

(b) Configuring required AWS resources in your account: This sets up the appropriate VPCs/subnets/security
groups required to run FireSim.

(c) Setting up a “Manager Instance” from which you will coordinate building and deploying simulations.

2. Single-node simulation tutorial: This tutorial guides you through the process of running one simulation on a
Run Farm consisting of a single f1.2xlarge, using our pre-built public FireSim AGFIs.

3. Cluster simulation tutorial: This tutorial guides you through the process of running an 8-node cluster simu-
lation on a Run Farm consisting of one f1.16xlarge, using our pre-built public FireSim AGFIs and switch
models.

4. Building your own hardware designs tutorial (Chisel to FPGA Image): This tutorial guides you through the
full process of taking Rocket Chip RTL and any custom RTL plugged into Rocket Chip and producing a FireSim
AGFI to plug into your simulations. This automatically runs Chisel elaboration, FAME-1 Transformation, and
the Vivado FPGA flow.

Generally speaking, you only need to follow step 4 if you’re modifying Chisel RTL or changing non-runtime config-
urable hardware parameters.

Now, hit next to proceed with setup.

1.4. Using FireSim/The FireSim Workflow 5

FireSim Documentation

6 Chapter 1. FireSim Basics

CHAPTER 2

Initial Setup/Installation

This section will guide you through initial setup of your AWS account to support FireSim, as well as cloning/installing
FireSim on your manager instance.

2.1 First-time AWS User Setup

If you’ve never used AWS before and don’t have an account, follow the instructions below to get started.

2.1.1 Creating an AWS Account

First, you’ll need an AWS account. Create one by going to aws.amazon.com and clicking “Sign Up.” You’ll want to
create a personal account. You will have to give it a credit card number.

2.1.2 AWS Credit at Berkeley

If you’re an internal user at Berkeley and affiliated with UCB-BAR or the RISE Lab, see the RISE Lab Wiki for
instructions on getting access to the AWS credit pool. Otherwise, continue with the following section.

2.1.3 Requesting Limit Increases

In our experience, new AWS accounts do not have access to EC2 F1 instances by default. In order to get access, you
should file a limit increase request.

Follow these steps to do so:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html

You’ll probably want to start out with the following requests, depending on your existing limits:

Request 1:

7

https://aws.amazon.com
https://rise.cs.berkeley.edu/wiki/resources/aws
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html

FireSim Documentation

Region: US East (Northern Virginia)
Primary Instance Type: f1.2xlarge
Limit: Instance Limit
New limit value: 1

Request 2:

Region: US East (Northern Virginia)
Primary Instance Type: f1.16xlarge
Limit: Instance Limit
New limit value: 1

This allows you to run one node on the f1.2xlarge or eight nodes on the f1.16xlarge.

For the “Use Case Description”, you should describe your project and write something about hardware simulation and
mention that information about the tool you’re using can be found at: https://fires.im

This process has a human in the loop, so you should submit it ASAP. At this point, you should wait for the response
to this request.

If you’re at Berkeley/UCB-BAR, you also need to wait until your account has been added to the RISE billing pool,
otherwise your personal CC will be charged for AWS usage.

Hit Next below to continue.

2.2 Configuring Required Infrastructure in Your AWS Account

Once we have an AWS Account setup, we need to perform some advance setup of resources on AWS. You will need
to follow these steps even if you already had an AWS account as these are FireSim-specific.

2.2.1 Select a region

Head to the EC2 Management Console. In the top right corner, ensure that the correct region is selected. You should
select one of: us-east-1 (N. Virginia), us-west-2 (Oregon), or eu-west-1 (Ireland), since F1 instances are
only available in those regions.

Once you select a region, it’s useful to bookmark the link to the EC2 console, so that you’re always sent to the console
for the correct region.

2.2.2 Key Setup

In order to enable automation, you will need to create a key named firesim, which we will use to launch all instances
(Manager Instance, Build Farm, Run Farm).

To do so, click “Key Pairs” under “Network & Security” in the left-sidebar. Follow the prompts, name the key
firesim, and save the private key locally as firesim.pem. You can use this key to access all instances from your
local machine. We will copy this file to our manager instance later, so that the manager can also use it.

2.2.3 Check your EC2 Instance Limits

AWS limits access to particular instance types for new/infrequently used accounts to protect their infrastructure.
You should make sure that your account has access to f1.2xlarge, f1.16xlarge, m4.16xlarge, and c4.
4xlarge instances by looking at the “Limits” page in the EC2 panel, which you can access here. The values listed

8 Chapter 2. Initial Setup/Installation

https://fires.im
https://console.aws.amazon.com/ec2/v2/home
https://console.aws.amazon.com/ec2/v2/home#Limits:

FireSim Documentation

on this page represent the maximum number of any of these instances that you can run at once, which will limit the
size of simulations (# of nodes) that you can run. If you need to increase your limits, follow the instructions on the
Requesting Limit Increases page. To follow this guide, you need to be able to run one f1.2xlarge instance and two
c4.4xlarge instances.

2.2.4 Start a t2.nano instance to run the remaining configuration commands

To avoid having to deal with the messy process of installing packages on your local machine, we will spin up a very
cheap t2.nano instance to run a series of one-time aws configuration commands to setup our AWS account for
FireSim. At the end of these instructions, we’ll terminate the t2.nano instance. If you happen to already have
boto3 and the AWS CLI installed on your local machine, you can do this locally.

Launch a t2.nano by following these instructions:

1. Go to the EC2 Management Console and click “Launch Instance”

2. On the AMI selection page, select “Amazon Linux AMI. . . ”, which should be the top option.

3. On the Choose an Instance Type page, select t2.nano.

4. Click “Review and Launch” (we don’t need to change any other settings)

5. On the review page, click “Launch”

6. Select the firesim key pair we created previously, then click Launch Instances.

7. Click on the instance name and note its public IP address.

2.2.5 Run scripts from the t2.nano

SSH into the t2.nano like so:

ssh -i firesim.pem ec2-user@INSTANCE_PUBLIC_IP

Which should present you with something like:

Last login: Mon Feb 12 21:11:27 2018 from 136.152.143.34

__| __|_)
_| (/ Amazon Linux AMI

___|___|___|

https://aws.amazon.com/amazon-linux-ami/2017.09-release-notes/
4 package(s) needed for security, out of 5 available
Run "sudo yum update" to apply all updates.
[ec2-user@ip-172-30-2-66 ~]$

On this machine, run the following:

aws configure
[follow prompts]

See https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#configure-cli-launch-ec2 for more
about aws configure. You should specify the same region that you chose above (one of us-east-1, us-west-2,
eu-west-1) and set the default output format to json.

Again on the t2.nano instance, do the following:

2.2. Configuring Required Infrastructure in Your AWS Account 9

https://console.aws.amazon.com/ec2/v2/home
https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#configure-cli-launch-ec2

FireSim Documentation

sudo yum -y install python-pip
sudo pip install boto3
wget https://raw.githubusercontent.com/firesim/firesim/master/scripts/aws-setup.py
python aws-setup.py

This will create a VPC named firesim and a security group named firesim in your account.

2.2.6 Terminate the t2.nano

At this point, we are finished with the general account configuration. You should terminate the t2.nano instance you
created, since we do not need it anymore (and it shouldn’t contain any important data).

2.2.7 Subscribe to the AWS FPGA Developer AMI

Go to the AWS Marketplace page for the FPGA Developer AMI. Click the button to subscribe to the FPGA Dev AMI
(it should be free) and follow the prompts to accept the EULA (but do not launch any instances).

Now, hit next to continue on to setting up our Manager Instance.

2.3 Setting up your Manager Instance

2.3.1 Launching a “Manager Instance”

Now, we need to launch a “Manager Instance” that acts as a “head” node that we will ssh or mosh into to work from.
Since we will deploy the heavy lifting to separate c4.4xlarge and f1 instances later, the Manager Instance can be
a relatively cheap instance. In this guide, however, we will use a c4.4xlarge, running the AWS FPGA Developer
AMI (be sure to subscribe if you have not done so. See Subscribe to the AWS FPGA Developer AMI).

Head to the EC2 Management Console. In the top right corner, ensure that the correct region is selected.

To launch a manager instance, follow these steps:

1. From the main page of the EC2 Management Console, click Launch Instance. We use an on-demand
instance here, so that your data is preserved when you stop/start the instance, and your data is not lost when
pricing spikes on the spot market.

2. When prompted to select an AMI, search in the Community AMIs tab for “FPGA” and select the option that
starts with FPGA Developer AMI - 1.4.0. DO NOT USE ANY OTHER VERSION.

3. When prompted to choose an instance type, select the instance type of your choosing. A good choice is a
c4.4xlarge.

4. On the “Configure Instance Details” page:

(a) First make sure that the firesim VPC is selected in the drop-down box next to “Network”. Any subnet
within the firesim VPC is fine.

(b) Additionally, check the box for “Protect against accidental termination.” This adds a layer of protection to
prevent your manager instance from being terminated by accident. You will need to disable this setting
before being able to terminate the instance using usual methods.

(c) Also on this page, expand “Advanced Details” and in the resulting text box, paste the following:

10 Chapter 2. Initial Setup/Installation

https://aws.amazon.com/marketplace/pp/B06VVYBLZZ
https://console.aws.amazon.com/ec2/v2/home

FireSim Documentation

#!/bin/bash
echo "machine launch script started" > /home/centos/machine-launchstatus
sudo yum install -y mosh
sudo yum groupinstall -y "Development tools"
sudo yum install -y gmp-devel mpfr-devel libmpc-devel zlib-devel vim git java
→˓java-devel
curl https://bintray.com/sbt/rpm/rpm | sudo tee /etc/yum.repos.d/bintray-sbt-
→˓rpm.repo
sudo yum install -y sbt texinfo gengetopt
sudo yum install -y expat-devel libusb1-devel ncurses-devel cmake
→˓"perl(ExtUtils::MakeMaker)"
deps for poky
sudo yum install -y python34 patch diffstat texi2html texinfo subversion
→˓chrpath git wget
install DTC. it's not available in repos in FPGA AMI
DTCversion=dtc-1.4.4
wget https://git.kernel.org/pub/scm/utils/dtc/dtc.git/snapshot/$DTCversion.
→˓tar.gz
tar -xvf $DTCversion.tar.gz
cd $DTCversion
make -j16
make install
cd ..
rm -rf $DTCversion.tar.gz
rm -rf $DTCversion

get a proper version of git
sudo yum -y remove git
sudo yum -y install epel-release
sudo yum -y install https://centos7.iuscommunity.org/ius-release.rpm
sudo yum -y install git2u

bash completion for manager
sudo yum -y install bash-completion

graphviz for manager
sudo yum -y install graphviz python-devel

these need to match what's in deploy/requirements.txt
sudo pip install fabric==1.14.0
sudo pip install boto3==1.6.2
sudo pip install colorama==0.3.7
sudo pip install argcomplete==1.9.3
sudo pip install graphviz==0.8.3
for some of our workload plotting scripts
sudo pip install matplotlib==2.2.2
sudo pip install pandas==0.22.0

sudo activate-global-python-argcomplete

get a regular prompt
echo "PS1='\u@\H:\w\\$ '" >> /home/centos/.bashrc
echo "machine launch script completed" >> /home/centos/machine-launchstatus

This will pre-install all of the dependencies needed to run FireSim on your instance.

5. On the next page (“Add Storage”), increase the size of the root EBS volume to ~300GB. The default of 150GB
can quickly become tight as you accumulate large Vivado reports/outputs, large waveforms, XSim outputs, and

2.3. Setting up your Manager Instance 11

FireSim Documentation

large root filesystems for simulations. You can get rid of the small (5GB) secondary volume that is added by
default.

6. You can skip the “Add Tags” page, unless you want tags.

7. On the “Configure Security Group” page, select the firesim security group that was automatically created for
you earlier.

8. On the review page, click the button to launch your instance.

Make sure you select the firesim key pair that we setup earlier.

Access your instance

We HIGHLY recommend using mosh instead of ssh or using ssh with a screen/tmux session running on your
manager instance to ensure that long-running jobs are not killed by a bad network connection to your manager instance.
On this instance, the mosh server is installed as part of the setup script we pasted before, so we need to first ssh into
the instance and make sure the setup is complete.

In either case, ssh into your instance (e.g. ssh -i firesim.pem centos@YOUR_INSTANCE_IP) and wait
until the ~/machine-launchstatus file contains all the following text:

centos@ip-172-30-2-140.us-west-2.compute.internal:~$ cat machine-launchstatus
machine launch script started
machine launch script completed!

Once this line appears, exit and re-ssh into the system. If you want to use mosh, mosh back into the system.

Key Setup, Part 2

Now that our manager instance is started, copy the private key that you downloaded from AWS earlier (firesim.
pem) to ~/firesim.pem on your manager instance. This step is required to give the manager access to the instances
it launches for you.

2.3.2 Setting up the FireSim Repo

We’re finally ready to fetch FireSim’s sources. Run:

git clone https://github.com/firesim/firesim
cd firesim
./build-setup.sh fast

This will have initialized submodules and installed the RISC-V tools and other dependencies.

Next, run:

source sourceme-f1-manager.sh

This will have initialized the AWS shell, added the RISC-V tools to your path, and started an ssh-agent that
supplies ~/firesim.pem automatically when you use ssh to access other nodes. Sourcing this the first time will
take some time – however each time after that should be instantaneous. Also, if your firesim.pem key requires a
passphrase, you will be asked for it here and ssh-agent should cache it.

Every time you login to your manager instance to use FireSim, you should ‘‘cd‘‘ into your firesim directory and
source this file again.

12 Chapter 2. Initial Setup/Installation

https://mosh.org/

FireSim Documentation

2.3.3 Completing Setup Using the Manager

The FireSim manager contains a command that will interactively guide you through the rest of the FireSim setup
process. To run it, do the following:

firesim managerinit

This will first prompt you to setup AWS credentials on the instance, which allows the manager to automati-
cally manage build/simulation nodes. See https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#
configure-cli-launch-ec2 for more about these credentials. When prompted, you should specify the same region that
you chose above and set the default output format to json.

Next, it will create initial configuration files, which we will edit in later sections. Finally, it will prompt you for an
email address, which is used to send email notifications upon FPGA build completion and optionally for workload
completion. You can leave this blank if you do not wish to receive any notifications, but this is not recommended.

Now you’re ready to launch FireSim simulations! Hit Next to learn how to run single-node simulations.

2.3. Setting up your Manager Instance 13

https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#configure-cli-launch-ec2
https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#configure-cli-launch-ec2

FireSim Documentation

14 Chapter 2. Initial Setup/Installation

CHAPTER 3

Running FireSim Simulations

These guides will walk you through running two kinds of simulations:

• First, we will simulate a single-node, non-networked target, using a pre-generated hardware image.

• Then, we will simulate an eight-node, networked cluster target, also using a pre-generated hardware image.

Hit next to get started!

3.1 Running a Single Node Simulation

Now that we’ve completed the setup of our manager instance, it’s time to run a simulation! In this section, we will
simulate 1 target node, for which we will need a single f1.2xlarge (1 FPGA) instance.

Make sure you are ssh or mosh’d into your manager instance and have sourced sourceme-f1-manager.sh
before running any of these commands.

3.1.1 Building target software

In these instructions, we’ll assume that you want to boot Linux on your simulated node. To do so, we’ll need to build
our FireSim-compatible RISC-V Linux distro. You can do this like so:

cd firesim/sw/firesim-software
./build.sh

This process will take about 10 to 15 minutes on a c4.4xlarge instance. Once this is completed, you’ll have the
following files:

• firesim/sw/firesim-software/bbl-vmlinux[0-7] - a bootloader + Linux kernel image for the
nodes we will simulate.

• firesim/sw/firesim-software/rootfs[0-7].ext2 - a disk image for each the nodes we will
simulate

15

FireSim Documentation

The fact that there are 8 of these is a relic from the days when we ran FireSim simulations by hand (they are all the
same) – in most cases, only bbl-vmlinux0 and rootfs0.ext2 will used to form base images to either build
more complicated workloads (see the Defining Custom Workloads section) or to copy around for deploying.

3.1.2 Setting up the manager configuration

All runtime configuration options for the manager are set in a file called firesim/deploy/config_runtime.
ini. In this guide, we will explain only the parts of this file necessary for our purposes. You can find full descriptions
of all of the parameters in the Manager Configuration Files section.

If you open up this file, you will see the following default config (assuming you have not modified it):

RUNTIME configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation
→˓of all of these params.

[runfarm]
runfarmtag=mainrunfarm

f1_16xlarges=1
m4_16xlarges=0
f1_2xlarges=0

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=example_8config
no_net_num_nodes=2
linklatency=6405
switchinglatency=10
netbandwidth=200

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-nic-ddr3-llc4mb

[workload]
workloadname=linux-uniform.json
terminateoncompletion=no

We’ll need to modify a couple of these lines.

First, let’s tell the manager to use the correct numbers and types of instances. You’ll notice that in the [runfarm]
section, the manager is configured to launch a Run Farm named mainrunfarm, consisting of one f1.16xlarge
and no m4.16xlarges or f1.2xlarges. The tag specified here allows the manager to differentiate amongst many
parallel run farms (each running a workload) that you may be operating – but more on that later.

Since we only want to simulate a single node, let’s switch to using one f1.2xlarge and no f1.16xlarges. To
do so, change this section to:

[runfarm]
per aws restrictions, this tag cannot be longer than 255 chars
runfarmtag=mainrunfarm
f1_16xlarges=0

(continues on next page)

16 Chapter 3. Running FireSim Simulations

FireSim Documentation

(continued from previous page)

m4_16xlarges=0
f1_2xlarges=1

You’ll see other parameters here, like runinstancemarket, spotinterruptionbehavior, and
spotmaxprice. If you’re an experienced AWS user, you can see what these do by looking at the Manager Config-
uration Files section. Otherwise, don’t change them.

Now, let’s change the [targetconfig] section to model the correct target design. By default, it is set to model an
8-node cluster with a cycle-accurate network. Instead, we want to model a single-node with no network. To do so, we
will need to change a few items in this section:

[targetconfig]
topology=no_net_config
no_net_num_nodes=1
linklatency=6405
switchinglatency=10
netbandwidth=200

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-no-nic-ddr3-llc4mb

Note that we changed three of the parameters here: topology is now set to no_net_config, indicating that
we do not want a network. Then, no_net_num_nodes is set to 1, indicating that we only want to simu-
late one node. Lastly, we changed defaulthwconfig from firesim-quadcore-nic-ddr3-llc4mb to
firesim-quadcore-no-nic-ddr3-llc4mb. Notice the subtle difference in this last option? All we did is
switch to a hardware configuration that does not have a NIC. This hardware configuration models a Quad-core Rocket
Chip with 4 MB of L2 cache and 16 GB of DDR3, and no network interface card.

We will leave the last section ([workload]) unchanged here, since we do want to run Linux on our simulated
system. The terminateoncompletion feature is an advanced feature that you can learn more about in the
Manager Configuration Files section.

As a final sanity check, your config_runtime.ini file should now look like this:

RUNTIME configuration for the FireSim Simulation Manager
See docs/Configuration-Details.rst for documentation of all of these params.

[runfarm]
runfarmtag=mainrunfarm

f1_16xlarges=0
m4_16xlarges=0
f1_2xlarges=1

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=no_net_config
no_net_num_nodes=1
linklatency=6405
switchinglatency=10
netbandwidth=200

(continues on next page)

3.1. Running a Single Node Simulation 17

FireSim Documentation

(continued from previous page)

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-no-nic-ddr3-llc4mb

[workload]
workloadname=linux-uniform.json
terminateoncompletion=no

3.1.3 Launching a Simulation!

Now that we’ve told the manager everything it needs to know in order to run our single-node simulation, let’s actually
launch an instance and run it!

Starting the Run Farm

First, we will tell the manager to launch our Run Farm, as we specified above. When you do this, you will start getting
charged for the running EC2 instances (in addition to your manager).

To do launch your run farm, run:

firesim launchrunfarm

You should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim
→˓launchrunfarm
FireSim Manager. Docs: http://docs.fires.im
Running: launchrunfarm

Waiting for instance boots: f1.16xlarges
Waiting for instance boots: m4.16xlarges
Waiting for instance boots: f1.2xlarges
i-0d6c29ac507139163 booted!
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-19-43-launchrunfarm-
→˓B4Q2ROAK0JN9EDE4.log

The output will rapidly progress to Waiting for instance boots: f1.2xlarges and then take a minute
or two while your f1.2xlarge instance launches. Once the launches complete, you should see the instance id
printed and the instance will also be visible in your AWS EC2 Management console. The manager will tag the in-
stances launched with this operation with the value you specified above as the runfarmtag parameter from the
config_runtime.ini file, which we left set as mainrunfarm. This value allows the manager to tell multiple
Run Farms apart – i.e., you can have multiple independent Run Farms running different workloads/hardware configu-
rations in parallel. This is detailed in the Manager Configuration Files and the firesim launchrunfarm sections – you
do not need to be familiar with it here.

Setting up the simulation infrastructure

The manager will also take care of building and deploying all software components necessary to run your simulation.
The manager will also handle flashing FPGAs. To tell the manager to setup our simulation infrastructure, let’s run:

18 Chapter 3. Running FireSim Simulations

FireSim Documentation

firesim infrasetup

For a complete run, you should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim
→˓infrasetup
FireSim Manager. Docs: http://docs.fires.im
Running: infrasetup

Building FPGA software driver for FireSimNoNIC-FireSimRocketChipQuadCoreConfig-
→˓FireSimDDR3FRFCFSLLC4MBConfig
[172.30.2.174] Executing task 'instance_liveness'
[172.30.2.174] Checking if host instance is up...
[172.30.2.174] Executing task 'infrasetup_node_wrapper'
[172.30.2.174] Copying FPGA simulation infrastructure for slot: 0.
[172.30.2.174] Installing AWS FPGA SDK on remote nodes.
[172.30.2.174] Unloading EDMA Driver Kernel Module.
[172.30.2.174] Copying AWS FPGA EDMA driver to remote node.
[172.30.2.174] Clearing FPGA Slot 0.
[172.30.2.174] Flashing FPGA Slot: 0 with agfi: agfi-0eaa90f6bb893c0f7.
[172.30.2.174] Loading EDMA Driver Kernel Module.
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-32-02-infrasetup-9DJJCX29PF4GAIVL.
→˓log

Many of these tasks will take several minutes, especially on a clean copy of the repo. The console output here contains
the “user-friendly” version of the output. If you want to see detailed progress as it happens, tail -f the latest logfile
in firesim/deploy/logs/.

At this point, the f1.2xlarge instance in our Run Farm has all the infrastructure necessary to run a simulation.

So, let’s launch our simulation!

Running a simulation!

Finally, let’s run our simulation! To do so, run:

firesim runworkload

This command boots up a simulation and prints out the live status of the simulated nodes every 10s. When you do this,
you will initially see output like:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim
→˓runworkload
FireSim Manager. Docs: http://docs.fires.im
Running: runworkload

Creating the directory: /home/centos/firesim-new/deploy/results-workload/2018-05-19--
→˓00-38-52-linux-uniform/
[172.30.2.174] Executing task 'instance_liveness'
[172.30.2.174] Checking if host instance is up...
[172.30.2.174] Executing task 'boot_simulation_wrapper'
[172.30.2.174] Starting FPGA simulation for slot: 0.
[172.30.2.174] Executing task 'monitor_jobs_wrapper'

If you don’t look quickly, you might miss it, since it will get replaced with a live status page:

3.1. Running a Single Node Simulation 19

FireSim Documentation

FireSim Simulation Status @ 2018-05-19 00:38:56.062737
--
This workload's output is located in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/
This run's log is located in:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-
→˓JS5IGTV166X169DZ.log
This status will update every 10s.
--
Instances
--
Instance IP: 172.30.2.174 | Terminated: False
--
Simulated Switches
--
--
Simulated Nodes/Jobs
--
Instance IP: 172.30.2.174 | Job: linux-uniform0 | Sim running: True
--
Summary
--
1/1 instances are still running.
1/1 simulations are still running.
--

This will only exit once all of the simulated nodes have shut down. So, let’s let it run and open another ssh connection
to the manager instance. From there, cd into your firesim directory again and source sourceme-f1-manager.
sh again to get our ssh key setup. To access our simulated system, ssh into the IP address being printed by the status
page, from your manager instance. In our case, from the above output, we see that our simulated system is running
on the instance with IP 172.30.2.174. So, run:

[RUN THIS ON YOUR MANAGER INSTANCE!]
ssh 172.30.2.174

This will log you into the instance running the simulation. Then, to attach to the console of the simulated system, run:

screen -r fsim0

Voila! You should now see Linux booting on the simulated system and then be prompted with a Linux login prompt,
like so:

[truncated Linux boot output]
[0.020000] VFS: Mounted root (ext2 filesystem) on device 254:0.
[0.020000] devtmpfs: mounted
[0.020000] Freeing unused kernel memory: 140K
[0.020000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device
Starting logging: OK
Starting mdev...
mdev: /sys/dev: No such file or directory
modprobe: can't change directory to '/lib/modules': No such file or directory
Initializing random number generator... done.
Starting network: ip: SIOCGIFFLAGS: No such device
ip: can't find device 'eth0'
FAIL
Starting dropbear sshd: OK

(continues on next page)

20 Chapter 3. Running FireSim Simulations

FireSim Documentation

(continued from previous page)

Welcome to Buildroot
buildroot login:

You can ignore the messages about the network – that is expected because we are simulating a design without a NIC.

Now, you can login to the system! The username is root and the password is firesim. At this point, you should be
presented with a regular console, where you can type commands into the simulation and run programs. For example:

Welcome to Buildroot
buildroot login: root
Password:
uname -a
Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018
→˓riscv64 GNU/Linux
#

At this point, you can run workloads as you’d like. To finish off this tutorial, let’s poweroff the simulated system and
see what the manager does. To do so, in the console of the simulated system, run poweroff -f:

Welcome to Buildroot
buildroot login: root
Password:
uname -a
Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018
→˓riscv64 GNU/Linux
poweroff -f

You should see output like the following from the simulation console:

poweroff -f
[12.456000] reboot: Power down
Power off
time elapsed: 468.8 s, simulation speed = 88.50 MHz

*** PASSED *** after 41492621244 cycles
Runs 41492621244 cycles
[PASS] FireSimNoNIC Test
SEED: 1526690334
Script done, file is uartlog

[screen is terminating]

You’ll also notice that the manager polling loop exited! You’ll see output like this from the manager:

FireSim Simulation Status @ 2018-05-19 00:46:50.075885
--
This workload's output is located in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/
This run's log is located in:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-
→˓JS5IGTV166X169DZ.log
This status will update every 10s.
--
Instances
--
Instance IP: 172.30.2.174 | Terminated: False
--

(continues on next page)

3.1. Running a Single Node Simulation 21

FireSim Documentation

(continued from previous page)

Simulated Switches
--
--
Simulated Nodes/Jobs
--
Instance IP: 172.30.2.174 | Job: linux-uniform0 | Sim running: False
--
Summary
--
1/1 instances are still running.
0/1 simulations are still running.
--
FireSim Simulation Exited Successfully. See results in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-
→˓JS5IGTV166X169DZ.log

If you take a look at the workload output directory given in the manager output (in this case, /home/centos/
firesim-new/deploy/results-workload/2018-05-19--00-38-52-linux-uniform/), you’ll
see the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/results-
→˓workload/2018-05-19--00-38-52-linux-uniform$ ls -la */*
-rw-rw-r-- 1 centos centos 797 May 19 00:46 linux-uniform0/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 00:46 linux-uniform0/os-release
-rw-rw-r-- 1 centos centos 7316 May 19 00:46 linux-uniform0/uartlog

What are these files? They are specified to the manager in a configuration file (firesim/deploy/workloads/
linux-uniform.json) as files that we want automatically copied back to our manager after we run a simulation,
which is useful for running benchmarks automatically. The Defining Custom Workloads section describes this process
in detail.

For now, let’s wrap-up our tutorial by terminating the f1.2xlarge instance that we launched. To do so, run:

firesim terminaterunfarm

Which should present you with the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim
→˓terminaterunfarm
FireSim Manager. Docs: http://docs.fires.im
Running: terminaterunfarm

IMPORTANT!: This will terminate the following instances:
f1.16xlarges
[]
m4.16xlarges
[]
f1.2xlarges
['i-0d6c29ac507139163']
Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.

You must type yes then hit enter here to have your instances terminated. Once you do so, you will see:

22 Chapter 3. Running FireSim Simulations

FireSim Documentation

[truncated output from above]
Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.
yes
Instances terminated. Please confirm in your AWS Management Console.
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-51-54-terminaterunfarm-
→˓T9ZAED3LJUQQ3K0N.log

At this point, you should always confirm in your AWS management console that the instance is in the shutting-
down or terminated states. You are ultimately responsible for ensuring that your instances are terminated
appropriately.

Congratulations on running your first FireSim simulation! At this point, you can check-out some of the advanced
features of FireSim in the sidebar to the left (for example, we expect that many people will be interested in the ability
to automatically run the SPEC17 benchmarks: SPEC 2017), or you can continue on with the cluster simulation tutorial.

3.2 Running a Cluster Simulation

Now, let’s move on to simulating a cluster of eight nodes, interconnected by a network with one 8-port Top-of-Rack
(ToR) switch and 200 Gbps, 2𝜇s links. This will require one f1.16xlarge (8 FPGA) instance.

Make sure you are ssh or mosh’d into your manager instance and have sourced sourceme-f1-manager.sh
before running any of these commands.

3.2.1 Returning to a clean configuration

If you already ran the single-node tutorial, let’s return to a clean FireSim manager configuration by doing the following:

cd firesim/deploy
cp sample-backup-configs/sample_config_runtime.ini config_runtime.ini

3.2.2 Building target software

If you already built target software during the single-node tutorial, you can skip to the next part (Setting up the manager
configuration). If you haven’t followed the single-node tutorial, continue with this section.

In these instructions, we’ll assume that you want to boot Linux on each of the nodes in your simulated cluster. To do
so, we’ll need to build our FireSim-compatible RISC-V Linux distro. You can do this like so:

cd firesim/sw/firesim-software
./build.sh

This process will take about 10 to 15 minutes on a c4.4xlarge instance. Once this is completed, you’ll have the
following files:

• firesim/sw/firesim-software/bbl-vmlinux[0-7] - a bootloader + Linux kernel image for the
nodes we will simulate.

• firesim/sw/firesim-software/rootfs[0-7].ext2 - a disk image for each the nodes we will
simulate

The fact that there are 8 of these is a relic from the days when we ran FireSim simulations by hand (they are all the
same) – in most cases, only bbl-vmlinux0 and rootfs0.ext2 will used to form base images to either build
more complicated workloads (see the Defining Custom Workloads section) or to copy around for deploying.

3.2. Running a Cluster Simulation 23

FireSim Documentation

3.2.3 Setting up the manager configuration

All runtime configuration options for the manager are set in a file called firesim/deploy/config_runtime.
ini. In this guide, we will explain only the parts of this file necessary for our purposes. You can find full descriptions
of all of the parameters in the Manager Configuration Files section.

If you open up this file, you will see the following default config (assuming you have not modified it):

RUNTIME configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation
→˓of all of these params.

[runfarm]
runfarmtag=mainrunfarm

f1_16xlarges=1
m4_16xlarges=0
f1_2xlarges=0

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=example_8config
no_net_num_nodes=2
linklatency=6405
switchinglatency=10
netbandwidth=200

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-nic-ddr3-llc4mb

[workload]
workloadname=linux-uniform.json
terminateoncompletion=no

For the 8-node cluster simulation, the defaults in this file are exactly what we want. Let’s outline the important
parameters:

• f1_16xlarges=1: This tells the manager that we want to launch one f1.16xlarge when we call the
launchrunfarm command.

• topology=example_8config: This tells the manager to use the topology named example_8config
which is defined in deploy/runtools/user_topology.py. This topology simulates an 8-node cluster
with one ToR switch.

• linklatency=6405: This models a network with 6405 cycles of link latency. Since we are modeling
processors running at 3.2 Ghz, 1 cycle = 1/3.2 ns, so 6405 cycles is roughly 2 microseconds.

• switchinglatency=10: This models switches with a minimum port-to-port latency of 10 cycles.

• netbandwidth=200: This sets the bandwidth of the NICs to 200 Gbit/s. Currently you can set any integer
value less than this without making hardware modifications.

• defaulthwconfig=firesim-quadcore-nic-ddr3-llc4mb: This tells the manager to use a quad-
core Rocket Chip configuration with 4 MB of L2 and 16 GB of DDR3, with a NIC, for each of the simulated
nodes in the topology.

24 Chapter 3. Running FireSim Simulations

FireSim Documentation

You’ll see other parameters here, like runinstancemarket, spotinterruptionbehavior, and
spotmaxprice. If you’re an experienced AWS user, you can see what these do by looking at the Manager Config-
uration Files section. Otherwise, don’t change them.

As in the single-node tutorial, we will leave the last section ([workload]) unchanged here, since we do want to run
Linux on our simulated system. The terminateoncompletion feature is an advanced feature that you can learn
more about in the Manager Configuration Files section.

As a final sanity check, your config_runtime.ini file should now look like this:

RUNTIME configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation
→˓of all of these params.

[runfarm]
runfarmtag=mainrunfarm

f1_16xlarges=1
m4_16xlarges=0
f1_2xlarges=0

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=example_8config
no_net_num_nodes=2
linklatency=6405
switchinglatency=10
netbandwidth=200

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-nic-ddr3-llc4mb

[workload]
workloadname=linux-uniform.json
terminateoncompletion=no

3.2.4 Launching a Simulation!

Now that we’ve told the manager everything it needs to know in order to run our single-node simulation, let’s actually
launch an instance and run it!

Starting the Run Farm

First, we will tell the manager to launch our Run Farm, as we specified above. When you do this, you will start getting
charged for the running EC2 instances (in addition to your manager).

To do launch your run farm, run:

firesim launchrunfarm

You should expect output like the following:

3.2. Running a Cluster Simulation 25

FireSim Documentation

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim
→˓launchrunfarm
FireSim Manager. Docs: http://docs.fires.im
Running: launchrunfarm

Waiting for instance boots: f1.16xlarges
i-09e5491cce4d5f92d booted!
Waiting for instance boots: m4.16xlarges
Waiting for instance boots: f1.2xlarges
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-05-53-launchrunfarm-
→˓ZGVP753DSU1Y9Q6R.log

The output will rapidly progress to Waiting for instance boots: f1.16xlarges and then take a
minute or two while your f1.16xlarge instance launches. Once the launches complete, you should see the in-
stance id printed and the instance will also be visible in your AWS EC2 Management console. The manager will tag
the instances launched with this operation with the value you specified above as the runfarmtag parameter from the
config_runtime.ini file, which we left set as mainrunfarm. This value allows the manager to tell multiple
Run Farms apart – i.e., you can have multiple independent Run Farms running different workloads/hardware configu-
rations in parallel. This is detailed in the Manager Configuration Files and the firesim launchrunfarm sections – you
do not need to be familiar with it here.

Setting up the simulation infrastructure

The manager will also take care of building and deploying all software components necessary to run your simulation
(including switches for the networked case). The manager will also handle flashing FPGAs. To tell the manager to
setup our simulation infrastructure, let’s run:

firesim infrasetup

For a complete run, you should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim
→˓infrasetup
FireSim Manager. Docs: http://docs.fires.im
Running: infrasetup

Building FPGA software driver for FireSim-FireSimRocketChipQuadCoreConfig-
→˓FireSimDDR3FRFCFSLLC4MBConfig
Building switch model binary for switch switch0
[172.30.2.178] Executing task 'instance_liveness'
[172.30.2.178] Checking if host instance is up...
[172.30.2.178] Executing task 'infrasetup_node_wrapper'
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 0.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 1.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 2.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 3.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 4.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 5.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 6.
[172.30.2.178] Copying FPGA simulation infrastructure for slot: 7.
[172.30.2.178] Installing AWS FPGA SDK on remote nodes.
[172.30.2.178] Unloading EDMA Driver Kernel Module.
[172.30.2.178] Copying AWS FPGA EDMA driver to remote node.
[172.30.2.178] Clearing FPGA Slot 0.

(continues on next page)

26 Chapter 3. Running FireSim Simulations

FireSim Documentation

(continued from previous page)

[172.30.2.178] Clearing FPGA Slot 1.
[172.30.2.178] Clearing FPGA Slot 2.
[172.30.2.178] Clearing FPGA Slot 3.
[172.30.2.178] Clearing FPGA Slot 4.
[172.30.2.178] Clearing FPGA Slot 5.
[172.30.2.178] Clearing FPGA Slot 6.
[172.30.2.178] Clearing FPGA Slot 7.
[172.30.2.178] Flashing FPGA Slot: 0 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 1 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 2 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 3 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 4 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 5 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 6 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Flashing FPGA Slot: 7 with agfi: agfi-09e85ffabe3543903.
[172.30.2.178] Loading EDMA Driver Kernel Module.
[172.30.2.178] Copying switch simulation infrastructure for switch slot: 0.
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-07-33-infrasetup-2Z7EBCBIF2TSI66Q.
→˓log

Many of these tasks will take several minutes, especially on a clean copy of the repo (in particular, f1.16xlarges
usually take a couple of minutes to start, so don’t be alarmed if you’re stuck at Checking if host instance
is up...) . The console output here contains the “user-friendly” version of the output. If you want to see detailed
progress as it happens, tail -f the latest logfile in firesim/deploy/logs/.

At this point, the f1.16xlarge instance in our Run Farm has all the infrastructure necessary to run everything in
our simulation.

So, let’s launch our simulation!

Running a simulation!

Finally, let’s run our simulation! To do so, run:

firesim runworkload

This command boots up the 8-port switch simulation and then starts 8 Rocket Chip FPGA Simulations, then prints out
the live status of the simulated nodes and switch every 10s. When you do this, you will initially see output like:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim
→˓runworkload
FireSim Manager. Docs: http://docs.fires.im
Running: runworkload

Creating the directory: /home/centos/firesim-new/deploy/results-workload/2018-05-19--
→˓06-28-43-linux-uniform/
[172.30.2.178] Executing task 'instance_liveness'
[172.30.2.178] Checking if host instance is up...
[172.30.2.178] Executing task 'boot_switch_wrapper'
[172.30.2.178] Starting switch simulation for switch slot: 0.
[172.30.2.178] Executing task 'boot_simulation_wrapper'
[172.30.2.178] Starting FPGA simulation for slot: 0.
[172.30.2.178] Starting FPGA simulation for slot: 1.
[172.30.2.178] Starting FPGA simulation for slot: 2.
[172.30.2.178] Starting FPGA simulation for slot: 3.

(continues on next page)

3.2. Running a Cluster Simulation 27

FireSim Documentation

(continued from previous page)

[172.30.2.178] Starting FPGA simulation for slot: 4.
[172.30.2.178] Starting FPGA simulation for slot: 5.
[172.30.2.178] Starting FPGA simulation for slot: 6.
[172.30.2.178] Starting FPGA simulation for slot: 7.
[172.30.2.178] Executing task 'monitor_jobs_wrapper'

If you don’t look quickly, you might miss it, because it will be replaced with a live status page once simulations are
kicked-off:

FireSim Simulation Status @ 2018-05-19 06:28:56.087472
--
This workload's output is located in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--06-28-43-linux-uniform/
This run's log is located in:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-28-43-runworkload-
→˓ZHZEJED9MDWNSCV7.log
This status will update every 10s.
--
Instances
--
Instance IP: 172.30.2.178 | Terminated: False
--
Simulated Switches
--
Instance IP: 172.30.2.178 | Switch name: switch0 | Switch running: True
--
Simulated Nodes/Jobs
--
Instance IP: 172.30.2.178 | Job: linux-uniform1 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform0 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform3 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform2 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform5 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform4 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform7 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform6 | Sim running: True
--
Summary
--
1/1 instances are still running.
8/8 simulations are still running.
--

In cycle-accurate networked mode, this will only exit when any ONE of the simulated nodes shuts down. So, let’s let
it run and open another ssh connection to the manager instance. From there, cd into your firesim directory again and
source sourceme-f1-manager.sh again to get our ssh key setup. To access our simulated system, ssh into
the IP address being printed by the status page, from your manager instance. In our case, from the above output, we
see that our simulated system is running on the instance with IP 172.30.2.178. So, run:

[RUN THIS ON YOUR MANAGER INSTANCE!]
ssh 172.30.2.178

This will log you into the instance running the simulation. On this machine, run screen -ls to get the list of all
running simulation components. Attaching to the screens fsim0 to fsim7 will let you attach to the consoles of
any of the 8 simulated nodes. You’ll also notice an additional screen for the switch, however by default there is no
interesting output printed here for performance reasons.

28 Chapter 3. Running FireSim Simulations

FireSim Documentation

For example, if we want to enter commands into node zero, we can attach to its console like so:

screen -r fsim0

Voila! You should now see Linux booting on the simulated node and then be prompted with a Linux login prompt,
like so:

[truncated Linux boot output]
[0.020000] Registered IceNet NIC 00:12:6d:00:00:02
[0.020000] VFS: Mounted root (ext2 filesystem) on device 254:0.
[0.020000] devtmpfs: mounted
[0.020000] Freeing unused kernel memory: 140K
[0.020000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device
Starting logging: OK
Starting mdev...
mdev: /sys/dev: No such file or directory
modprobe: can't change directory to '/lib/modules': No such file or directory
Initializing random number generator... done.
Starting network: OK
Starting dropbear sshd: OK

Welcome to Buildroot
buildroot login:

If you also ran the single-node no-nic simulation you’ll notice a difference in this boot output – here, Linux sees the
NIC and its assigned MAC address and automatically brings up the eth0 interface at boot.

Now, you can login to the system! The username is root and the password is firesim. At this point, you should be
presented with a regular console, where you can type commands into the simulation and run programs. For example:

Welcome to Buildroot
buildroot login: root
Password:
uname -a
Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018
→˓riscv64 GNU/Linux
#

At this point, you can run workloads as you’d like. To finish off this tutorial, let’s poweroff the simulated system and
see what the manager does. To do so, in the console of the simulated system, run poweroff -f:

Welcome to Buildroot
buildroot login: root
Password:
uname -a
Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018
→˓riscv64 GNU/Linux
poweroff -f

You should see output like the following from the simulation console:

poweroff -f
[3.748000] reboot: Power down
Power off
time elapsed: 360.5 s, simulation speed = 37.82 MHz

*** PASSED *** after 13634406804 cycles
Runs 13634406804 cycles

(continues on next page)

3.2. Running a Cluster Simulation 29

FireSim Documentation

(continued from previous page)

[PASS] FireSim Test
SEED: 1526711978
Script done, file is uartlog

[screen is terminating]

You’ll also notice that the manager polling loop exited! You’ll see output like this from the manager:

--
Instances
--
Instance IP: 172.30.2.178 | Terminated: False
--
Simulated Switches
--
Instance IP: 172.30.2.178 | Switch name: switch0 | Switch running: True
--
Simulated Nodes/Jobs
--
Instance IP: 172.30.2.178 | Job: linux-uniform1 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform0 | Sim running: False
Instance IP: 172.30.2.178 | Job: linux-uniform3 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform2 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform5 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform4 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform7 | Sim running: True
Instance IP: 172.30.2.178 | Job: linux-uniform6 | Sim running: True
--
Summary
--
1/1 instances are still running.
7/8 simulations are still running.
--
Teardown required, manually tearing down...
[172.30.2.178] Executing task 'kill_switch_wrapper'
[172.30.2.178] Killing switch simulation for switchslot: 0.
[172.30.2.178] Executing task 'kill_simulation_wrapper'
[172.30.2.178] Killing FPGA simulation for slot: 0.
[172.30.2.178] Killing FPGA simulation for slot: 1.
[172.30.2.178] Killing FPGA simulation for slot: 2.
[172.30.2.178] Killing FPGA simulation for slot: 3.
[172.30.2.178] Killing FPGA simulation for slot: 4.
[172.30.2.178] Killing FPGA simulation for slot: 5.
[172.30.2.178] Killing FPGA simulation for slot: 6.
[172.30.2.178] Killing FPGA simulation for slot: 7.
[172.30.2.178] Executing task 'screens'
Confirming exit...
[172.30.2.178] Executing task 'monitor_jobs_wrapper'
[172.30.2.178] Slot 0 completed! copying results.
[172.30.2.178] Slot 1 completed! copying results.
[172.30.2.178] Slot 2 completed! copying results.
[172.30.2.178] Slot 3 completed! copying results.
[172.30.2.178] Slot 4 completed! copying results.
[172.30.2.178] Slot 5 completed! copying results.
[172.30.2.178] Slot 6 completed! copying results.
[172.30.2.178] Slot 7 completed! copying results.
[172.30.2.178] Killing switch simulation for switchslot: 0.

(continues on next page)

30 Chapter 3. Running FireSim Simulations

FireSim Documentation

(continued from previous page)

FireSim Simulation Exited Successfully. See results in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--06-39-35-linux-uniform/
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-39-35-runworkload-
→˓4CDB78E3A4IA9IYQ.log

In the cluster case, you’ll notice that shutting down ONE simulator causes the whole simulation to be torn down
– this is because we currently do not implement any kind of “disconnect” mechanism to remove one node from a
globally-cycle-accurate simulation.

If you take a look at the workload output directory given in the manager output (in this case, /home/centos/
firesim-new/deploy/results-workload/2018-05-19--06-39-35-linux-uniform/), you’ll
see the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/results-
→˓workload/2018-05-19--06-39-35-linux-uniform$ ls -la */*
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform0/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform0/os-release
-rw-rw-r-- 1 centos centos 7476 May 19 06:45 linux-uniform0/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform1/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform1/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform1/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform2/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform2/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform2/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform3/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform3/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform3/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform4/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform4/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform4/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform5/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform5/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform5/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform6/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform6/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform6/uartlog
-rw-rw-r-- 1 centos centos 797 May 19 06:45 linux-uniform7/memory_stats.csv
-rw-rw-r-- 1 centos centos 125 May 19 06:45 linux-uniform7/os-release
-rw-rw-r-- 1 centos centos 8157 May 19 06:45 linux-uniform7/uartlog
-rw-rw-r-- 1 centos centos 153 May 19 06:45 switch0/switchlog

What are these files? They are specified to the manager in a configuration file (firesim/deploy/workloads/
linux-uniform.json) as files that we want automatically copied back to our manager after we run a simulation,
which is useful for running benchmarks automatically. Note that there is a directory for each simulated node and each
simulated switch in the cluster. The Defining Custom Workloads section describes this process in detail.

For now, let’s wrap-up our tutorial by terminating the f1.16xlarge instance that we launched. To do so, run:

firesim terminaterunfarm

Which should present you with the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim
→˓terminaterunfarm
FireSim Manager. Docs: http://docs.fires.im
Running: terminaterunfarm

(continues on next page)

3.2. Running a Cluster Simulation 31

FireSim Documentation

(continued from previous page)

IMPORTANT!: This will terminate the following instances:
f1.16xlarges
['i-09e5491cce4d5f92d']
m4.16xlarges
[]
f1.2xlarges
[]
Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.

You must type yes then hit enter here to have your instances terminated. Once you do so, you will see:

[truncated output from above]
Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.
yes
Instances terminated. Please confirm in your AWS Management Console.
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--06-50-37-terminaterunfarm-
→˓3VF0Z2KCAKKDY0ZU.log

At this point, you should always confirm in your AWS management console that the instance is in the shutting-
down or terminated states. You are ultimately responsible for ensuring that your instances are terminated
appropriately.

Congratulations on running a cluster FireSim simulation! At this point, you can check-out some of the advanced
features of FireSim in the sidebar to the left. Or, hit next to continue to a tutorial that shows you how to build your
own custom FPGA images.

32 Chapter 3. Running FireSim Simulations

CHAPTER 4

Building Your Own Hardware Designs (FireSim FPGA Images)

This section will guide you through building an AFI image for a FireSim simulation.

4.1 Amazon S3 Setup

During the build process, the build system will need to upload a tar file to Amazon S3 in order to complete the build
process using Amazon’s backend scripts (which convert the Vivado-generated tar into an AFI). The manager will
create this bucket for you automatically, you just need to specify a name.

So, choose a bucket name, e.g. firesim-yourname. Bucket names must be globally unique. If you choose one
that’s already taken, the manager will notice and complain when you tell it to build an AFI. To set your bucket name,
open deploy/config_build.ini in your editor and under the [afibuild] header, replace

s3bucketname=firesim-yournamehere

with your own bucket name, e.g.:

s3bucketname=firesim-sagar

4.2 Build Recipes

In the deploy/config_build.ini file, you will notice that the [builds] section currently contains several
lines, which indicates to the build system that you want to run all of these builds in parallel, with the parameters
listed in the relevant section of the deploy/config_build_recipes.ini file. Here you can set parameters
of the simulated system, and also select the type of instance on which the Vivado build will be deployed. From our
experimentation, there are diminishing returns using anything above a c4.4xlarge, so we default to that.

To start out, let’s build a simple design, firesim-singlecore-no-nic-lbp. This is a design that has one core,
no nic, and uses the latency-bandwidth pipe memory model. To do so, comment out all of the other build entries in
deploy/config_build.ini, besides the one we want.. So, you should end up with something like this (a line
beginning with a # is a comment):

33

FireSim Documentation

[builds]
this section references builds defined in config_build_recipes.ini
if you add a build here, it will be built when you run buildafi
#firesim-singlecore-nic-lbp
firesim-singlecore-no-nic-lbp
#firesim-quadcore-nic-lbp
#firesim-quadcore-no-nic-lbp
#firesim-quadcore-nic-ddr3-llc4mb
#firesim-quadcore-no-nic-ddr3-llc4mb

4.3 Running a Build

Now, we can run a build like so:

firesim buildafi

This will run through the entire build process, taking the Chisel RTL and producing an AFI/AGFI that runs on the
FPGA. This whole process will usually take a few hours. When the build completes, you will see a directory
in deploy/results-build/, named after your build parameter settings, that contains AGFI information (the
AGFI_INFO file) and all of the outputs of the Vivado build process (in the cl_firesim subdirectory). Addition-
ally, the manager will print out a path to a log file that describes everything that happened, in-detail, during this run
(this is a good file to send us if you encounter problems). If you provided the manager with your email address, you
will also receive an email upon build completion, that should look something like this:

Fig. 1: Build Completion Email

Now that you know how to generate your own FPGA image, you can modify the target-design to add your own
features, then build a FireSim-compatible FPGA image automatically! To learn more advanced FireSim features, you
can choose a link under the “Advanced Docs” section to the left.

34 Chapter 4. Building Your Own Hardware Designs (FireSim FPGA Images)

CHAPTER 5

Manager Usage (the firesim command)

5.1 Overview

When you source sourceme-f1-manager.sh in your copy of the firesim repo, you get access to a new command,
firesim, which is the FireSim simulation manager. If you’ve used tools like Vagrant or Docker, the firesim
program is to FireSim what vagrant and docker are to Vagrant and Docker respectively. In essence, firesim
lets us manage the entire lifecycle of FPGA simulations, just like vagrant and docker do for VMs and containers
respectively.

5.1.1 “Inputs” to the Manager

The manager gets configuration information from several places:

• Command Line Arguments, consisting of:

– Paths to configuration files to use

– A task to run

– Arguments to the task

• Configuration Files

• Topology definitions for networked simulations (user_topology.py)

The following sections detail these inputs. Hit Next to continue.

5.1.2 Logging

The manager produces detailed logs when you run any command, which is useful to share with the FireSim developers
for debugging purposes in case you encounter issues. The logs contain more detailed output than the manager sends to
stdout/stderr during normal operation, so it’s also useful if you want to take a peek at the detailed commands manager
is running to facilitate builds and simulations. Logs are stored in firesim/deploy/logs/.

35

FireSim Documentation

5.2 Manager Command Line Arguments

The manager provides built-in help output for the command line arguments it supports if you run firesim --help

usage: firesim [-h] [-c RUNTIMECONFIGFILE] [-b BUILDCONFIGFILE]
[-r BUILDRECIPESCONFIGFILE] [-a HWDBCONFIGFILE]
[-x OVERRIDECONFIGDATA] [-f TERMINATESOMEF116]
[-g TERMINATESOMEF12] [-m TERMINATESOMEM416] [-q]

{managerinit,buildafi,launchrunfarm,infrasetup,boot,kill,
→˓terminaterunfarm,runworkload,shareagfi,runcheck}

FireSim Simulation Manager.

positional arguments:
{managerinit,buildafi,launchrunfarm,infrasetup,boot,kill,terminaterunfarm,

→˓runworkload,shareagfi,runcheck}
Management task to run.

optional arguments:
-h, --help show this help message and exit
-c RUNTIMECONFIGFILE, --runtimeconfigfile RUNTIMECONFIGFILE

Optional custom runtime/workload config file. Defaults
to config_runtime.ini.

-b BUILDCONFIGFILE, --buildconfigfile BUILDCONFIGFILE
Optional custom build config file. Defaults to
config_build.ini.

-r BUILDRECIPESCONFIGFILE, --buildrecipesconfigfile BUILDRECIPESCONFIGFILE
Optional custom build recipe config file. Defaults to
config_build_recipes.ini.

-a HWDBCONFIGFILE, --hwdbconfigfile HWDBCONFIGFILE
Optional custom HW database config file. Defaults to
config_hwdb.ini.

-x OVERRIDECONFIGDATA, --overrideconfigdata OVERRIDECONFIGDATA
Override a single value from one of the the RUNTIME
e.g.: --overrideconfigdata "targetconfig linklatency
6405".

-f TERMINATESOMEF116, --terminatesomef116 TERMINATESOMEF116
Only used by terminatesome. Terminates this many of
the previously launched f1.16xlarges.

-g TERMINATESOMEF12, --terminatesomef12 TERMINATESOMEF12
Only used by terminatesome. Terminates this many of
the previously launched f1.2xlarges.

-m TERMINATESOMEM416, --terminatesomem416 TERMINATESOMEM416
Only used by terminatesome. Terminates this many of
the previously launched m4.16xlarges.

-q, --forceterminate For terminaterunfarm, force termination without
prompting user for confirmation. Defaults to False

On this page, we will go through some of these options – others are more complicated, so we will give them their own
section on the following pages.

5.2.1 --runtimeconfigfile FILENAME

This lets you specify a custom runtime config file. By default, config_runtime.ini is used. See con-
fig_runtime.ini for what this config file does.

36 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation

5.2.2 --buildconfigfile FILENAME

This lets you specify a custom build config file. By default, config_build.ini is used. See config_build.ini for
what this config file does.

5.2.3 --buildrecipesconfigfile FILENAME

This lets you specify a custom build recipes config file. By default, config_build_recipes.ini is used. See
config_build_recipes.ini for what this config file does.

5.2.4 --hwdbconfigfile FILENAME

This lets you specify a custom hardware database config file. By default, config_hwdb.ini is used. See con-
fig_hwdb.ini for what this config file does.

5.2.5 --overrideconfigdata SECTION PARAMETER VALUE

This lets you override a single value from the runtime config file. For example, if you want to use a link latency
of 3003 cycles for a particular run (and your config_runtime.ini file specifies differently), you can pass
--overrideconfigdata targetconfig linklatency 6405 to the manager. This can be used with any
task that uses the runtime config.

5.2.6 TASK

This is the only required/positional command line argument to the manager. It tells the manager what it should be
doing. See the next section for a list of tasks and what they do. Some tasks also take other command line arguments,
which are specified with those tasks.

5.3 Manager Tasks

This page outlines all of the tasks that the FireSim manager supports.

5.3.1 firesim managerinit

This is a setup command that does the following:

• Run aws configure, prompt for credentials

• Replace the default config files (config_runtime.ini, config_build.ini,
config_build_recipes.ini, and config_hwdb.ini) with clean example versions.

• Prompt the user for email address and subscribe them to notifications for their own builds.

You can re-run this whenever you want to get clean configuration files – you can just hit enter when prompted for aws
configure credentials and your email address, and both will keep your previously specified values.

If you run this command by accident and didn’t mean to overwrite your configuration files, you’ll find backed-up
versions in firesim/deploy/sample-backup-configs/backup*.

5.3. Manager Tasks 37

FireSim Documentation

5.3.2 firesim buildafi

This command builds a FireSim AGFI (FPGA Image) from the Chisel RTL for the configurations that you spec-
ify. The process of defining configurations to build is explained in the documentation for config_build.ini and con-
fig_build_recipes.ini.

For each config, the build process entails:

1. [Locally] Run the elaboration process for your hardware configuration

2. [Locally] FAME-1 transform the design with MIDAS

3. [Locally] Attach simulation models (I/O widgets, memory model, etc.)

4. [Locally] Emit Verilog to run through the AWS FPGA Flow

5. Launch an FPGA Dev AMI build instance for each configuration you want built.

6. [Local/Remote] Prep build instances, copy generated verilog for hardware configuration to buidl instance.

7. [Remote] Run Vivado Synthesis and P&R for the configuration

8. [Local/Remote] Copy back all output generated by Vivado, including the final tar file

9. [Local/AWS Infra] Submit the tar file to the AWS backend for conversion to an AFI

10. [Local] Wait for the AFI to become available, then notify the user of completion by email.

This process happens in parallel for all of the builds you specify. The command will exit when all builds are completed
(but you will get notified as INDIVIDUAL builds complete).

It is highly recommended that you either run this command in a ‘‘screen‘‘ or use ‘‘mosh‘‘ to access the build
instance. Builds will not finish if the manager is killed due to disconnection to the instance.

When you run a build for a particular configuration, a directory named
LAUNCHTIME-CONFIG_TRIPLET-BUILD_NAME is created in firesim/deploy/results-build/.
This directory will contain:

• AGFI_INFO: Describes the state of the AFI being built, while the manager is running. Upon build completion,
this contains the AGFI/AFI that was produced, along with its metadata.

• cl_firesim:: This directory is essentially the Vivado project that built the FPGA image, in the state it was
in when the Vivado build process completed. This contains reports, stdout from the build, and the final tar file
produced by Vivado.

• cl_firesim_generated.sv: This is a copy of the generated verilog used to produce this build. You can
also find a copy inside cl_firesim.

5.3.3 firesim shareagfi

This command allows you to share AGFIs that you have already built (that are listed in config_hwdb.ini) with
other users. It will take the named hardware configurations that you list in the [agfistoshare] section of
config_build.ini, grab the respective AGFIs for each from config_hwdb.ini, and share them across all F1
regions with the users listed in the [sharewithaccounts] section of config_build.ini.

You must own the AGFIs in order to do this – this will NOT let you share AGFIs that someone else owns and gave
you access to.

38 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation

5.3.4 firesim launchrunfarm

This command launches a Run Farm on which you run simulations. Run Farms consist of f1.16xlarge, f1.
2xlarge, and m4.16xlarge instances. Before you run the command, you define the number of each that you
want in config_runtime.ini.

A launched Run Farm is tagged with a runfarmtag from config_runtime.ini, which is used to disambiguate
multiple parallel Run Farms; that is, you can have many Run Farms running, each running a different experiment at
the same time, each with its own unique runfarmtag. One convenient feature to add to your AWS management
panel is the column for fsimcluster, which contains the runfarmtag value. You can see how to do that in the
Add the fsimcluster column to your AWS management console section.

The other options in the [runfarm] section, runinstancemarket, spotinterruptionbehavior,
and spotmaxprice define how instances in the Run Farm are launched. See the documentation for
config_runtime.ini for more details.

ERRATA: One current requirement is that you must define a target config in the [targetconfig] section of
config_runtime.ini that does not require more resources than the Run Farm you are trying to launch. Thus,
you should also setup your [targetconfig] parameters before trying to launch the corresponding Run Farm. This
requirement will be removed in the future.

Once you setup your configuration and call firesim launchrunfarm, the command will launch the requested
numbers and types of instances. If all succeeds, you will see the command print out instance IDs for the correct
number/types of launched instances (you do not need to pay attention to these or record them). If an error occurs, it
will be printed to console.

Once you run this command, your Run Farm will continue to run until you call ‘‘firesim terminaterunfarm‘‘.
This means you will be charged for the running instances in your Run Farm until you call ‘‘terminaterunfarm‘‘.
You are responsible for ensuring that instances are only running when you want them to be by checking the
AWS EC2 Management Panel.

5.3.5 firesim terminaterunfarm

This command terminates some or all of the instances in the Run Farm defined in your config_runtime.ini
file, depending on the command line arguments you supply. By default, running firesim terminaterunfarm
will terminate ALL instances with the specified runfarmtag. When you run this command, it will prompt for
confirmation that you want to terminate the listed instances. If you respond in the affirmative, it will move forward
with the termination.

If you do not want to have to confirm the termination (e.g. you are using this command in a script), you can give the
command the --forceterminate command line argument. For example, the following will TERMINATE ALL
INSTANCES IN THE RUN FARM WITHOUT PROMPTING FOR CONFIRMATION:

firesim terminaterunfarm --forceterminate

There a few additional commandline arguments that let you terminate only some of the instances in a particular Run
Farm: --terminatesomef116 INT, --terminatesomef12 INT, and --terminatesomem416 INT,
which will terminate ONLY as many of each type of instance as you specify.

Here are some examples:

[start with 2 f1.16xlarges, 2 f1.2xlarges, 2 m4.16xlarges]

firesim terminaterunfarm --terminatesomef116 1 --forceterminate

[now, we have: 1 f1.16xlarges, 2 f1.2xlarges, 2 m4.16xlarges]

5.3. Manager Tasks 39

FireSim Documentation

[start with 2 f1.16xlarges, 2 f1.2xlarges, 2 m4.16xlarges]

firesim terminaterunfarm --terminatesomef116 1 --terminatesomef12 2 --forceterminate

[now, we have: 1 f1.16xlarges, 0 f1.2xlarges, 2 m4.16xlarges]

Once you call ‘‘launchrunfarm‘‘, you will be charged for running instances in your Run Farm until you call
‘‘terminaterunfarm‘‘. You are responsible for ensuring that instances are only running when you want them to
be by checking the AWS EC2 Management Panel.

5.3.6 firesim infrasetup

Once you have launched a Run Farm and setup all of your configuration options, the infrasetup command will
build all components necessary to run the simulation and deploy those components to the machines in the Run Farm.
Here is a rough outline of what the command does:

• Constructs the internal representation of your simulation. This is a tree of components in the simulation (simu-
lated server blades, switches)

• For each type of server blade, query the AWS AFI API to get the build-triplet needed to construct the software
simulation driver, then build each driver

• For each type of switch in the simulation, generate the switch model binary

• For each host instance in the Run Farm, collect information about all the resources necessary to run a simulation
on that host instance, then copy files and flash FPGAs with the required AGFIs.

Details about setting up your simulation configuration can be found in config_runtime.ini.

Once you run a simulation, you should re-run ‘‘firesim infrasetup‘‘ before starting another one, even if it is the
same exact simulation on the same Run Farm.

You can see detailed output from an example run of infrasetup in the Running a Single Node Simulation and
Running a Cluster Simulation Tutorials.

5.3.7 firesim boot

Once you have run firesim infrasetup, this command will actually start simulations. It begins by launching
all switches (if they exist in your simulation config), then launches all server blade simulations. This simply launches
simulations and then exits – it does not perform any monitoring.

This command is useful if you want to launch a simulation, then plan to interact with the simulation by-hand (i.e. by
directly interacting with the console).

5.3.8 firesim kill

Given a simulation configuration and simulations running on a Run Farm, this command force-terminates all compo-
nents of the simulation. Importantly, this does not allow any outstanding changes to the filesystem in the simulated
systems to be committed to the disk image.

5.3.9 firesim runworkload

This command is the standard tool that lets you launch simulations, monitor the progress of workloads running on
them, and collect results automatically when the workloads complete. To call this command, you must have first
called firesim infrasetup to setup all required simulation infrastructure on the remote nodes.

40 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation

This command will first create a directory in firesim/deploy/results-workload/ named as
LAUNCH_TIME-WORKLOADNAME, where results will be completed as simulations complete. This command will
then automatically call firesim boot to start simulations. Then, it polls all the instances in the Run Farm every
10 seconds to determine the state of the simulated system. If it notices that a simulation has shutdown (i.e. the simula-
tion disappears from the output of screen -ls), it will automatically copy back all results from the simulation, as
defined in the workload configuration (see the Defining Custom Workloads section).

For non-networked simulations, it will wait for ALL simulations to complete (copying back results as each workload
completes), then exit.

For globally-cycle-accurate networked simulations, the global simulation will stop when any single node powers off.
Thus, for these simulations, runworkload will copy back results from all nodes and force them to terminate by
calling kill when ANY SINGLE ONE of them shuts down cleanly.

A simulation shuts down cleanly when the workload running on the simulator calls poweroff.

5.3.10 firesim runcheck

This command is provided to let you debug configuration options without launching instances. In addition to the output
produced at command line/in the log, you will find a pdf diagram of the topology you specify, annotated with infor-
mation about the workloads, hardware configurations, and abstract host mappings for each simulation (and optionally,
switch) in your design. These diagrams are located in firesim/deploy/generated-topology-diagrams/
, named after your topology.

Here is an example of such a diagram (click to expand/zoom):

Fig. 1: Example diagram for an 8-node cluster with one ToR switch

5.4 Manager Configuration Files

This page contains a centralized reference for all of the configuration options in config_runtime.ini,
config_build.ini, config_build_recipes.ini, and config_hwdb.ini.

5.4.1 config_runtime.ini

Here is a sample of this configuration file:

RUNTIME configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation
→˓of all of these params.

[runfarm]
runfarmtag=mainrunfarm

f1_16xlarges=1
m4_16xlarges=0
f1_2xlarges=0

(continues on next page)

5.4. Manager Configuration Files 41

FireSim Documentation

(continued from previous page)

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=example_8config
no_net_num_nodes=2
linklatency=6405
switchinglatency=10
netbandwidth=200

This references a section from config_hwconfigs.ini
In homogeneous configurations, use this to set the hardware config deployed
for all simulators
defaulthwconfig=firesim-quadcore-nic-ddr3-llc4mb

[workload]
workloadname=linux-uniform.json
terminateoncompletion=no

Below, we outline each section and parameter in detail.

[runfarm]

The [runfarm] options below allow you to specify the number, types, and other characteristics of instances in your
FireSim Run Farm, so that the manager can automatically launch them, run workloads on them, and terminate them.

runfarmtag

Use runfarmtag to differentiate between different Run Farms in FireSim. Having multiple config_runtime.
ini files with different runfarmtag values allows you to run many experiments at once from the same manager
instance.

The instances launched by the launchrunfarm command will be tagged with this value. All later operations done
by the manager rely on this tag, so you should not change it unless you are done with your current Run Farm.

Per AWS restrictions, this tag can be no longer than 255 characters.

f1_16xlarges, m4_16xlarges, f1_2xlarges

Set these three values respectively based on the number and types of instances you need. While we could automate
this setting, we choose not to, so that users are never surprised by how many instances they are running.

Note that these values are ONLY used to launch instances. After launch, the manager will query the AWS API to find
the instances of each type that have the runfarmtag set above assigned to them.

runinstancemarket

You can specify either spot or ondemand here, to use one of those markets on AWS.

42 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation

spotinterruptionbehavior

When runinstancemarket=spot, this value determines what happens to an instance if it receives the interrup-
tion signal from AWS. You can specify either hibernate, stop, or terminate.

spotmaxprice

When runinstancemarket=spot, this value determines the max price you are willing to pay per instance, in
dollars. You can also set it to ondemand to set your max to the on-demand price for the instance.

[targetconfig]

The [targetconfig] options below allow you to specify the high-level configuration of the target you are sim-
ulating. You can change these parameters after launching a Run Farm (assuming you have the correct number of
instances), but in many cases you will need to re-run the infrasetup command to make sure the correct simulation
infrastructure is available on your instances.

topology

This field dictates the network topology of the simulated system. Some examples:

no_net_config: This runs N (see no_net_num_nodes below) independent simulations, without a network
simulation. You can currently only use this option if you build one of the NoNIC hardware configs of FireSim.

example_8config: This requires a single f1.16xlarge, which will simulate 1 ToR switch attached to 8 simu-
lated servers.

example_16config: This requires two f1.16xlarge instances and one m4.16xlarge instance, which will
simulate 2 ToR switches, each attached to 8 simulated servers, with the two ToR switches connected by a root switch.

example_64config: This requires eight f1.16xlarge instances and one m4.16xlarge instance, which will
simulate 8 ToR switches, each attached to 8 simulated servers (for a total of 64 nodes), with the eight ToR switches
connected by a root switch.

Additional configurations are available in deploy/runtools/user_topology.py and more can be added
there. See the Manager Network Topology Definitions (user_topology.py) section for more info.

no_net_num_nodes

This determines the number of simulated nodes when you are using topology=no_net_config.

linklatency

In a networked simulation, this allows you to specify the link latency of the simulated network in CYCLES. For
example, 6405 cycles is roughly 2 microseconds at 3.2 GHz. A current limitation is that this value (in cycles) must be
a multiple of 7. Furthermore, you must not exceed the buffer size specified in the NIC’s simulation widget.

switchinglatency

In a networked simulation, this specifies the minimum port-to-port switching latency of the switch models, in CY-
CLES.

5.4. Manager Configuration Files 43

FireSim Documentation

netbandwidth

In a networked simulation, this specifies the maximum output bandwidth that a NIC is allowed to produce as an integer
in Gbit/s. Currently, this must be a number between 1 and 200, allowing you to model NICs between 1 and 200 Gbit/s.

defaulthwconfig

This sets the server configuration launched by default in the above topologies. Heterogeneous configurations can
be achieved by manually specifying different names within the topology itself, but all the example_Nconfig
configurations are homogeneous and use this value for all nodes.

You should set this to one of the hardware configurations you have defined already in config_hwdb.ini. You
should set this to the NAME (section title) of the hardware configuration from config_hwdb.ini, NOT the actual
agfi itself (NOT something like agfi-XYZ...).

[workload]

This section defines the software that will run on the simulated system.

workloadname

This selects a workload to run across the set of simulated nodes. A workload consists of a series of jobs that need to
be run on simulated nodes (one job per node).

Workload definitions are located in firesim/deploy/workloads/*.json.

Some sample workloads:

linux-uniform.json: This runs the default FireSim Linux distro on as many nodes as you specify when setting
the [targetconfig] parameters.

spec17-intrate.json: This runs SPECint 2017’s rate benchmarks. In this type of workload, you should launch
EXACTLY the correct number of nodes necessary to run the benchmark. If you specify fewer nodes, the manager will
warn that not all jobs were assigned to a simulation. If you specify too many simulations and not enough jobs, the
manager will not launch the jobs.

Others can be found in the aforementioned directory.

terminateoncompletion

Set this to no if you want your Run Farm to keep running once the workload has completed. Set this to yes if you
want your Run Farm to be TERMINATED after the workload has completed and results have been copied off.

5.4.2 config_build.ini

Here is a sample of this configuration file:

BUILDTIME/AGFI management configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation
→˓of all of these params.

[afibuild]

(continues on next page)

44 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation

(continued from previous page)

s3bucketname=firesim-yournamehere
buildinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[builds]
this section references builds defined in config_build_recipes.ini
if you add a build here, it will be built when you run buildafi
firesim-singlecore-no-nic-lbp
firesim-singlecore-nic-lbp
firesim-quadcore-no-nic-lbp
firesim-quadcore-nic-lbp
firesim-quadcore-no-nic-ddr3-llc4mb
firesim-quadcore-nic-ddr3-llc4mb
fireboom-singlecore-no-nic-lbp
fireboom-singlecore-no-nic-ddr3-llc4mb
fireboom-singlecore-nic-lbp
fireboom-singlecore-nic-ddr3-llc4mb

[agfistoshare]
firesim-singlecore-no-nic-lbp
firesim-singlecore-nic-lbp
firesim-quadcore-no-nic-lbp
firesim-quadcore-nic-lbp
firesim-quadcore-no-nic-ddr3-llc4mb
firesim-quadcore-nic-ddr3-llc4mb
fireboom-singlecore-no-nic-lbp
fireboom-singlecore-no-nic-ddr3-llc4mb
fireboom-singlecore-nic-lbp
fireboom-singlecore-nic-ddr3-llc4mb

[sharewithaccounts]
somebodysname=123456789012

Below, we outline each section and parameter in detail.

[afibuild]

This exposes options for AWS resources used in the process of building FireSim AGFIs (FPGA Images).

s3bucketname

This is used behind the scenes in the AGFI creation process. You will only ever need to access this bucket manually if
there is a failure in AGFI creation in Amazon’s backend.

Naming rules: this must be all lowercase and you should stick to letters and numbers.

The first time you try to run a build, the FireSim manager will try to create the bucket you name here. If the name is
unavailable, it will complain and you will need to change this name. Once you choose a working name, you should
never need to change it.

In general, firesim-yournamehere is a good choice.

5.4. Manager Configuration Files 45

FireSim Documentation

buildinstancemarket

You can specify either spot or ondemand here, to use one of those markets on AWS.

spotinterruptionbehavior

When buildinstancemarket=spot, this value determines what happens to an instance if it receives the inter-
ruption signal from AWS. You can specify either hibernate, stop, or terminate.

spotmaxprice

When buildinstancemarket=spot, this value determines the max price you are willing to pay per instance, in
dollars. You can also set it to ondemand to set your max to the on-demand price for the instance.

[builds]

In this section, you can list as many build entries as you want to run for a particular call to the buildafi command
(see config_build_recipes.ini below for how to define a build entry). For example, if we want to run the
builds named [awesome-firesim-config] and [quad-core-awesome-firesim-config], we would
write:

[builds]
awesome-firesim-config
quad-core-awesome-firesim-config

[agfistoshare]

This is used by the shareagfi command to share the specified agfis with the users specified in the next
([sharewithaccounts]) section. In this section, you should specify the section title (i.e. the name you made up)
for a hardware configuration in config_hwdb.ini. For example, to share the hardware config:

[firesim-quadcore-nic-ddr3-llc4mb]
this is a comment that describes my favorite configuration!
agfi=agfi-0a6449b5894e96e53
deploytripletoverride=None
customruntimeconfig=None

you would use:

[agfistoshare]
firesim-quadcore-nic-ddr3-llc4mb

[sharewithaccounts]

A list of AWS account IDs that you want to share the AGFIs listed in [agfistoshare] with when calling the
manager’s shareagfi command. You should specify names in the form usersname=AWSACCTID. The left-
hand-side is just for human readability, only the actual account IDs listed here matter.

46 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation

5.4.3 config_build_recipes.ini

Here is a sample of this configuration file:

Build-time design configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation
→˓of all of these params.

this file contains sections that describe hardware designs that /can/ be built.
edit config_build.ini to actually "turn on" a config to be built when you run
buildafi

[firesim-singlecore-nic-lbp]
DESIGN=FireSim
TARGET_CONFIG=FireSimRocketChipSingleCoreConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-singlecore-no-nic-lbp]
DESIGN=FireSimNoNIC
TARGET_CONFIG=FireSimRocketChipSingleCoreConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-quadcore-nic-lbp]
DESIGN=FireSim
TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-quadcore-no-nic-lbp]
DESIGN=FireSimNoNIC
TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-quadcore-nic-ddr3-llc4mb]
DESIGN=FireSim
TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimDDR3FRFCFSLLC4MBConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-quadcore-no-nic-ddr3-llc4mb]
DESIGN=FireSimNoNIC
TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimDDR3FRFCFSLLC4MBConfig
instancetype=c4.4xlarge
deploytriplet=None

BOOM-based targets
[fireboom-singlecore-no-nic-lbp]
DESIGN=FireBoomNoNIC
TARGET_CONFIG=FireSimBoomConfig

(continues on next page)

5.4. Manager Configuration Files 47

FireSim Documentation

(continued from previous page)

PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[fireboom-singlecore-no-nic-ddr3-llc4mb]
DESIGN=FireBoomNoNIC
TARGET_CONFIG=FireSimBoomConfig
PLATFORM_CONFIG=FireSimDDR3FRFCFSLLC4MBConfig
instancetype=c4.4xlarge
deploytriplet=None

[fireboom-singlecore-nic-lbp]
DESIGN=FireBoom
TARGET_CONFIG=FireSimBoomConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[fireboom-singlecore-nic-ddr3-llc4mb]
DESIGN=FireBoom
TARGET_CONFIG=FireSimBoomConfig
PLATFORM_CONFIG=FireSimDDR3FRFCFSLLC4MBConfig
instancetype=c4.4xlarge
deploytriplet=None

Below, we outline each section and parameter in detail.

Build definition sections, e.g. [awesome-firesim-config]

In this file, you can specify as many build definition sections as you want, each with a header like
[awesome-firesim-config] (i.e. a nice, short name you made up). Such a section must contain the following
fields:

DESIGN

This specifies the basic target design that will be built. Unless you are defining a custom system, this should either be
FireSim, for systems with a NIC, or FireSimNoNIC, for systems without a NIC. These are defined in firesim/
sim/src/main/scala/Targets.scala.

TARGET_CONFIG

This specifies the hardware configuration of the target being simulation. Some examples include
FireSimRocketChipConfig and FireSimRocketChipQuadCoreConfig. These are defined in
firesim/sim/src/main/scala/TargetConfigs.scala.

PLATFORM_CONFIG

This specifies hardware parameters of the simulation environment - for example, selecting between a Latency-
Bandwidth Pipe or DDR3 memory models. These are defined in firesim/sim/src/main/scala/
SimConfigs.scala.

48 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation

instancetype

This defines the type of instance that the build will run on. Generally, running on a c4.4xlarge is sufficient. In our
experience, using more powerful instances than this provides little gain.

deploytriplet

This allows you to override the deploytriplet stored with the AGFI. Otherwise, the
DESIGN/TARGET_CONFIG/PLATFORM_CONFIG you specify above will be used. See the AGFI Tagging
section for more details. Most likely, you should leave this set to None. This is usually only used if you have
proprietary RTL that you bake into an FPGA image, but don’t want to share with users of the simulator.

5.4.4 config_hwdb.ini

Here is a sample of this configuration file:

Build-time design configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager-Configuration-Files.rst for documentation
→˓of all of these params.

this file contains sections that describe hardware designs that /can/ be built.
edit config_build.ini to actually "turn on" a config to be built when you run
buildafi

[firesim-singlecore-nic-lbp]
DESIGN=FireSim
TARGET_CONFIG=FireSimRocketChipSingleCoreConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-singlecore-no-nic-lbp]
DESIGN=FireSimNoNIC
TARGET_CONFIG=FireSimRocketChipSingleCoreConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-quadcore-nic-lbp]
DESIGN=FireSim
TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-quadcore-no-nic-lbp]
DESIGN=FireSimNoNIC
TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-quadcore-nic-ddr3-llc4mb]
DESIGN=FireSim

(continues on next page)

5.4. Manager Configuration Files 49

FireSim Documentation

(continued from previous page)

TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimDDR3FRFCFSLLC4MBConfig
instancetype=c4.4xlarge
deploytriplet=None

[firesim-quadcore-no-nic-ddr3-llc4mb]
DESIGN=FireSimNoNIC
TARGET_CONFIG=FireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimDDR3FRFCFSLLC4MBConfig
instancetype=c4.4xlarge
deploytriplet=None

BOOM-based targets
[fireboom-singlecore-no-nic-lbp]
DESIGN=FireBoomNoNIC
TARGET_CONFIG=FireSimBoomConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[fireboom-singlecore-no-nic-ddr3-llc4mb]
DESIGN=FireBoomNoNIC
TARGET_CONFIG=FireSimBoomConfig
PLATFORM_CONFIG=FireSimDDR3FRFCFSLLC4MBConfig
instancetype=c4.4xlarge
deploytriplet=None

[fireboom-singlecore-nic-lbp]
DESIGN=FireBoom
TARGET_CONFIG=FireSimBoomConfig
PLATFORM_CONFIG=FireSimConfig
instancetype=c4.4xlarge
deploytriplet=None

[fireboom-singlecore-nic-ddr3-llc4mb]
DESIGN=FireBoom
TARGET_CONFIG=FireSimBoomConfig
PLATFORM_CONFIG=FireSimDDR3FRFCFSLLC4MBConfig
instancetype=c4.4xlarge
deploytriplet=None

This file tracks hardware configurations that you can deploy as simulated nodes in FireSim. Each such configura-
tion contains a name for easy reference in higher-level configurations, defined in the section header, an agfi, which
represents the FPGA image, a custom runtime config, if one is needed, and a deploy triplet override if one is necessary.

When you build a new AGFI, you should put the default version of it in this file so that it can be referenced from your
other configuration files.

The following is an example section from this file - you can add as many of these as necessary:

[firesim-quadcore-nic-ddr3-llc4mb]
this is a comment that describes my favorite configuration!
agfi=agfi-0a6449b5894e96e53
deploytripletoverride=None
customruntimeconfig=None

50 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation

[NAME_GOES_HERE]

In this example, firesim-quadcore-nic-ddr3-llc4mb is the name that will be used to reference this hard-
ware design in other configuration locations. The following items describe this hardware configuration:

agfi

This represents the AGFI (FPGA Image) used by this hardware configuration.

deploytripletoverride

This is an advanced feature - under normal conditions, you should leave this set to None, so that the manager uses the
configuration triplet that is automatically stored with the AGFI at build time. Advanced users can set this to a different
value to build and use a different driver when deploying simulations. Since the driver depends on logic now hardwired
into the FPGA bitstream, drivers cannot generally be changed without requiring FPGA recompilation.

customruntimeconfig

This is an advanced feature - under normal conditions, you can use the default parameters generated automati-
cally by the simulator by setting this field to None. If you want to customize runtime parameters for certain
parts of the simulation (e.g. the DRAM model’s runtime parameters), you can place a custom config file in sim/
custom-runtime-configs/. Then, set this field to the relative name of the config. For example, sim/
custom-runtime-configs/GREATCONFIG.conf becomes customruntimeconfig=GREATCONFIG.
conf.

Add more hardware config sections, like [NAME_GOES_HERE_2]

You can add as many of these entries to config_hwdb.ini as you want, following the format discussed above (i.e.
you provide agfi, deploytripletoverride, or customruntimeconfig).

5.5 Manager Network Topology Definitions (user_topology.py)

Custom network topologies are specified as Python snippets that construct a tree. You can see examples of these in
firesim/deploy/runtools/user_topology.py, shown below. Better documentation of this API will be
available once it stabilizes.

Fundamentally, you create a list of roots, which consists of switch or server nodes, then construct a tree by adding
downlinks to these roots. Since links are bi-directional, adding a downlink from node A to node B implicitly adds an
uplink from B to A.

You can add additional topology generation methods here, then use them in config_runtime.ini.

5.5.1 user_topology.py contents:

""" Define your additional topologies here. The FireSimTopology class inherits
from UserToplogies and thus can instantiate your topology. """

from runtools.firesim_topology_elements import *
(continues on next page)

5.5. Manager Network Topology Definitions (user_topology.py) 51

FireSim Documentation

(continued from previous page)

class UserTopologies(object):
""" A class that just separates out user-defined/configurable topologies
from the rest of the boilerplate in FireSimTopology() """

def example_1config(self):
self.roots = [FireSimSwitchNode()]
servers = [FireSimServerNode() for y in range(1)]
self.roots[0].add_downlinks(servers)

def example_2config(self):
self.roots = [FireSimSwitchNode()]
servers = [FireSimServerNode() for y in range(2)]
self.roots[0].add_downlinks(servers)

def example_4config(self):
self.roots = [FireSimSwitchNode()]
servers = [FireSimServerNode() for y in range(4)]
self.roots[0].add_downlinks(servers)

def example_8config(self):
self.roots = [FireSimSwitchNode()]
servers = [FireSimServerNode() for y in range(8)]
self.roots[0].add_downlinks(servers)

def example_16config(self):
self.roots = [FireSimSwitchNode()]
level2switches = [FireSimSwitchNode() for x in range(2)]
servers = [[FireSimServerNode() for y in range(8)] for x in range(2)]

for root in self.roots:
root.add_downlinks(level2switches)

for l2switchNo in range(len(level2switches)):
level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

def example_32config(self):
self.roots = [FireSimSwitchNode()]
level2switches = [FireSimSwitchNode() for x in range(4)]
servers = [[FireSimServerNode() for y in range(8)] for x in range(4)]

for root in self.roots:
root.add_downlinks(level2switches)

for l2switchNo in range(len(level2switches)):
level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

def example_64config(self):
self.roots = [FireSimSwitchNode()]
level2switches = [FireSimSwitchNode() for x in range(8)]
servers = [[FireSimServerNode() for y in range(8)] for x in range(8)]

for root in self.roots:
root.add_downlinks(level2switches)

for l2switchNo in range(len(level2switches)):
(continues on next page)

52 Chapter 5. Manager Usage (the firesim command)

FireSim Documentation

(continued from previous page)

level2switches[l2switchNo].add_downlinks(servers[l2switchNo])

def example_128config(self):
self.roots = [FireSimSwitchNode()]
level1switches = [FireSimSwitchNode() for x in range(2)]
level2switches = [[FireSimSwitchNode() for x in range(8)] for x in range(2)]
servers = [[[FireSimServerNode() for y in range(8)] for x in range(8)] for x

→˓in range(2)]

self.roots[0].add_downlinks(level1switches)

for switchno in range(len(level1switches)):
level1switches[switchno].add_downlinks(level2switches[switchno])

for switchgroupno in range(len(level2switches)):
for switchno in range(len(level2switches[switchgroupno])):

level2switches[switchgroupno][switchno].add_
→˓downlinks(servers[switchgroupno][switchno])

def example_256config(self):
self.roots = [FireSimSwitchNode()]
level1switches = [FireSimSwitchNode() for x in range(4)]
level2switches = [[FireSimSwitchNode() for x in range(8)] for x in range(4)]
servers = [[[FireSimServerNode() for y in range(8)] for x in range(8)] for x

→˓in range(4)]

self.roots[0].add_downlinks(level1switches)

for switchno in range(len(level1switches)):
level1switches[switchno].add_downlinks(level2switches[switchno])

for switchgroupno in range(len(level2switches)):
for switchno in range(len(level2switches[switchgroupno])):

level2switches[switchgroupno][switchno].add_
→˓downlinks(servers[switchgroupno][switchno])

def dual_example_8config(self):
""" two separate 8-node clusters for experiments, e.g. memcached mutilate. """
self.roots = [FireSimSwitchNode(), FireSimSwitchNode()]
servers = [FireSimServerNode() for y in range(8)]
servers2 = [FireSimServerNode() for y in range(8)]
self.roots[0].add_downlinks(servers)
self.roots[1].add_downlinks(servers2)

def triple_example_8config(self):
""" three separate 8-node clusters for experiments, e.g. memcached mutilate. "

→˓""
self.roots = [FireSimSwitchNode(), FireSimSwitchNode(), FireSimSwitchNode()]
servers = [FireSimServerNode() for y in range(8)]
servers2 = [FireSimServerNode() for y in range(8)]
servers3 = [FireSimServerNode() for y in range(8)]
self.roots[0].add_downlinks(servers)
self.roots[1].add_downlinks(servers2)
self.roots[2].add_downlinks(servers3)

def no_net_config(self):
self.roots = [FireSimServerNode() for x in range(self.no_net_num_nodes)]

5.5. Manager Network Topology Definitions (user_topology.py) 53

FireSim Documentation

5.6 AGFI Metadata/Tagging

When you build an AGFI in FireSim, the AGFI description stored by AWS is populated with metadata that helps the
manager decide how to deploy a simulation. The important metadata is listed below, along with how each field is set
and used:

• firesim-buildtriplet: This always reflects the triplet combination used to BUILD the AGFI.

• firesim-deploytriplet: This reflects the triplet combination that is used to DEPLOY the AGFI. By
default, this is the same as firesim-buildtriplet. In certain cases however, your users may not have
access to a particular configuration, but a simpler configuration may be sufficient for building a compatible
software driver (e.g. if you have proprietary RTL in your FPGA image that doesn’t interface with the outside
system). In this case, you can specify a custom deploytriplet at build time. If you do not do so, the manager will
automatically set this to be the same as firesim-buildtriplet.

• firesim-commit: This is the commit hash of the version of FireSim used to build this AGFI. If the AGFI
was created from a dirty copy of the FireSim repo, “-dirty” will be appended to the commit hash.

54 Chapter 5. Manager Usage (the firesim command)

CHAPTER 6

Workloads

This section describes workload definitions in FireSim.

6.1 Defining Custom Workloads

Workloads in FireSim consist of a series of Jobs that are assigned to be run on individual simulations. Currently, we
require that a Workload defines either:

• A single type of job, that is run on as many simulations as specfied by the user. These workloads are usually
suffixed with -uniform, which indicates that all nodes in the workload run the same job. An example of such
a workload is firesim/deploy/workloads/linux-uniform.json.

• Several different jobs, in which case there must be exactly as many jobs as there are running simulated nodes.
An example of such a workload is firesim/deploy/workloads/ping-latency.json.

FireSim supports can take these workload definitions and perform two functions:

• Building workloads using firesim/deploy/workloads/gen-benchmark-rootfs.py

• Deploying workloads using the manager

In the following subsections, we will go through the two aforementioned example workload configurations, describing
how these two functions use each part of the json file inline.

ERRATA: You will notice in the following json files the field “workloads” this should really be named “jobs” – we
will fix this in a future release.

6.1.1 Uniform Workload JSON

firesim/deploy/workloads/linux-uniform.json is an example of a “uniform” style workload, where
each simulated node runs the same software configuration.

Let’s take a look at this file:

55

FireSim Documentation

{
"benchmark_name" : "linux-uniform",
"common_bootbinary" : "bbl-vmlinux",
"common_rootfs" : "rootfs.ext2",
"common_outputs" : ["/etc/os-release"],
"common_simulation_outputs" : ["uartlog", "memory_stats.csv"]

}

There is also a corresponding directory named after this workload/file:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/workloads/
→˓linux-uniform$ ls -la
total 4
drwxrwxr-x 2 centos centos 42 May 17 21:58 .
drwxrwxr-x 13 centos centos 4096 May 18 17:14 ..
lrwxrwxrwx 1 centos centos 41 May 17 21:58 bbl-vmlinux -> ../../../sw/firesim-
→˓software/bbl-vmlinux0
lrwxrwxrwx 1 centos centos 41 May 17 21:58 rootfs.ext2 -> ../../../sw/firesim-
→˓software/rootfs0.ext2

We will elaborate on this later.

Looking at the JSON file, you’ll notice that this is a relatively simple workload definition.

In this “uniform” case, the manager will name simulations after the benchmark_name field, appending a number
for each simulation using the workload (e.g. linux-uniform0, linux-uniform1, and so on). It is standard
pratice to keep benchmark_name, the json filename, and the above directory name the same. In this case, we have
set all of them to linux-uniform.

Next, the common_bootbinary field represents the binary that the simulations in this workload are expected
to boot from. The manager will copy this binary for each of the nodes in the simulation (each gets its own
copy). The common_bootbinary path is relative to the workload’s directory, in this case firesim/deploy/
workloads/linux-uniform. You’ll notice in the above output from ls -la that this is actually just a symlink
to bbl-vmlinux0 that is built by the FireSim Linux distro in firesim/sw/firesim-software.

Similarly, the common_rootfs field represents the disk image that the simulations in this workload are expected
to boot from. The manager will copy this root filesystem image for each of the nodes in the simulation (each gets
its own copy). The common_rootfs path is relative to the workload’s directory, in this case firesim/deploy/
workloads/linux-uniform. You’ll notice in the above output from ls -la that this is actually just a symlink
to rootfs0.ext2 that is built by the FireSim Linux distro in firesim/sw/firesim-software.

The common_outputs field is a list of outputs that the manager will copy out of the root filesystem image AFTER
a simulation completes. In this simple example, when a workload running on a simulated cluster with firesim
runworkload completes, /etc/os-release will be copied out from each rootfs and placed in the job’s output
directory within the workload’s output directory (See the firesim runworkload section). You can add multiple paths
here.

The common_simulation_outputs field is a list of outputs that the manager will copy off of the simulation
host machine AFTER a simulation completes. In this example, when a workload running on a simulated cluster with
firesim runworkload completes, the uartlog (an automatically generated file that contains the full console
output of the simulated system) and memory_stats.csv files will be copied out of the simulation’s base directory
on the host instance and placed in the job’s output directory within the workload’s output directory (see the firesim
runworkload section). You can add multiple paths here.

ERRATA: “Uniform” style workloads currently do not support being automatically built – you can currently hack
around this by building the rootfs as a single-node non-uniform workload, then deleting the workloads field of the
JSON to make the manager treat it as a uniform workload. This will be fixed in a future release.

56 Chapter 6. Workloads

FireSim Documentation

6.1.2 Non-uniform Workload JSON (explicit job per simulated node)

Now, we’ll look at the ping-latency workload, which explicitly defines a job per simulated node.

{
"common_bootbinary" : "bbl-vmlinux",
"benchmark_name" : "ping-latency",
"deliver_dir" : "/",
"common_args" : [],
"common_files" : ["bin/pinglatency.sh"],
"common_outputs" : [],
"common_simulation_outputs" : ["uartlog"],
"no_post_run_hook": "",
"workloads" : [
{

"name": "pinger",
"files": [],
"command": "pinglatency.sh && poweroff -f",
"simulation_outputs": [],
"outputs": []

},
{

"name": "pingee",
"files": [],
"command": "while true; do sleep 1000; done",
"simulation_outputs": [],
"outputs": []

},
{

"name": "idler-1",
"files": [],
"command": "while true; do sleep 1000; done",
"simulation_outputs": [],
"outputs": []

},
{

"name": "idler-2",
"files": [],
"command": "while true; do sleep 1000; done",
"simulation_outputs": [],
"outputs": []

},
{

"name": "idler-3",
"files": [],
"command": "while true; do sleep 1000; done",
"simulation_outputs": [],
"outputs": []

},
{

"name": "idler-4",
"files": [],
"command": "while true; do sleep 1000; done",
"simulation_outputs": [],
"outputs": []

},
{

"name": "idler-5",

(continues on next page)

6.1. Defining Custom Workloads 57

FireSim Documentation

(continued from previous page)

"files": [],
"command": "while true; do sleep 1000; done",
"simulation_outputs": [],
"outputs": []

},
{

"name": "idler-6",
"files": [],
"command": "while true; do sleep 1000; done",
"simulation_outputs": [],
"outputs": []

}
]

}

Additionally, let’s take a look at the state of the ping-latency directory AFTER the workload is built:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/workloads/ping-
→˓latency$ ls -la
total 15203216
drwxrwxr-x 3 centos centos 4096 May 18 07:45 .
drwxrwxr-x 13 centos centos 4096 May 18 17:14 ..
lrwxrwxrwx 1 centos centos 41 May 17 21:58 bbl-vmlinux -> ../../../sw/
→˓firesim-software/bbl-vmlinux0
-rw-rw-r-- 1 centos centos 7 May 17 21:58 .gitignore
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-1.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-2.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-3.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-4.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:45 idler-5.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:46 idler-6.ext2
drwxrwxr-x 3 centos centos 16 May 17 21:58 overlay
-rw-r--r-- 1 centos centos 1946009600 May 18 07:44 pingee.ext2
-rw-r--r-- 1 centos centos 1946009600 May 18 07:44 pinger.ext2
-rw-rw-r-- 1 centos centos 2236 May 17 21:58 ping-latency-graph.py

First, let’s identify some of these files:

• bbl-vmlinux: Just like in the linux-uniform case, this workload just uses the default Linux binary
generated in firesim-software

• .gitignore: This just ignores the generated rootfses, which we’ll learn about below.

• idler-[1-6].ext2, pingee.ext2, pinger.ext2: These are rootfses that are generated from the json
script above. We’ll learn how to do this shortly.

Additionally, let’s look at the overlay subdirectory:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/workloads/ping-
→˓latency/overlay$ ls -la */*
-rwxrwxr-x 1 centos centos 249 May 17 21:58 bin/pinglatency.sh

This is a file that’s actually committed to the repo, that runs the benchmark we want to run on one of our simulated
systems. We’ll see how this is used soon.

Now, let’s take a look at how we got here. First, let’s review some of the new fields present in this JSON file:

• common_files: This is an array of files that will be included in ALL of the job rootfses when they’re built.
This is relative to a path that we’ll pass to the script that generates rootfses.

58 Chapter 6. Workloads

FireSim Documentation

• workloads: This time, you’ll notice that we have this array, which is populated by objects that represent
individual jobs. Each job has some additional fields:

– name: In this case, jobs are each assigned a name manually. These names MUST BE UNIQUE within a
particular workload.

– files: Just like common_files, but specific to this job.

– command: This is the command that will be run automatically immediately when the simulation running
this job boots up. This is usually the command that starts the workload we want.

– simulation_outputs: Just like common_simulation_outputs, but specific to this job.

– outputs: Just like common_outputs, but specific to this job.

In this example, we specify one node that boots up and runs the pinglatency.sh benchmark, then powers off
cleanly and 7 nodes that just idle waiting to be pinged.

Given this JSON description, our existing pinglatency.sh script in the overlay directory, and the base rootfses
generated in firesim-software, the following command will automatically generate all of the rootfses that you
see in the ping-latency directory.

[from the workloads/ directory]
python gen-benchmark-rootfs.py -w ping-latency.json -r -b ../../sw/firesim-software/
→˓rootfs0.ext2 -s ping-latency/overlay

Notice that we tell this script where the json file lives, where the base rootfs image is, and where we expect to find
files that we want to include in the generated disk images. This script will take care of the rest and we’ll end up with
idler-[1-6].ext2, pingee.ext2, and pinger.ext2!

You’ll notice a Makefile in the workloads/ directory – it contains many similar commands for all of the workloads
included with FireSim.

Once you generate the rootfses for this workload, you can run it with the manager by setting
workload=ping-latency.json in config_runtime.ini. The manager will automatically look for the
generated rootfses (based on workload and job names that it reads from the json) and distribute work appropriately.

Just like in the uniform case, it will copy back the results that we specify in the json file. We’ll end up with a directory
in firesim/deploy/results-workload/ named after the workload name, with a subdirectory named after
each job in the workload, which will contain the output files we want.

6.2 SPEC 2017

SPEC2017 is supported using the firesim-2017 branch of Speckle, which provides the tooling required to cross-
compile SPEC for RISCV. These instructions presuppose you’ve have a license for, and have installed SPEC on your
machine either EC2 or locally. Additionally, your SPEC environment must be setup; SPEC_DIR must be set. If
you are building binaries on a different machine, you should be able to trivially copy Speckle’s generated overlay
directories to EC2.

Some notes:

• Benchmarks use reference inputs. train or test inputs can be used by changing the Speckle invocation in
the Makefile.

• You may need to increase the size of the RootFS in buildroot in firesim/sw/firesim-software.

• No support for fp{rate, speed} benchmarks yet.

6.2. SPEC 2017 59

FireSim Documentation

6.2.1 Intspeed

The intspeed workload definition splits the xz benchmark into two jobs (these are two independent inputs) to achieve
better load balance across the simulations (9T dynamic instructions becomes 4T and 5T.)

To Build Binaries And RootFSes:

cd firesim/deploy/workloads/
make spec2017-intspeed

Run Resource requirements:

f1_16xlarges=0
m4_16xlarges=0
f1_2xlarges=11

To Run:

firesim launchrunfarm -c workloads/spec17-intspeed.ini
firesim infrasetup -c workloads/spec17-intspeed.ini
firesim runworkload -c workloads/spec17-intspeed.ini
firesim terminaterunfarm -c workloads/spec17-intspeed.ini

On a single-core rocket-based SoC with a DDR3 + 256 KiB LLC model, with a 160 MHz host clock, the longest
benchmarks (xz, mcf) complete in about 1 day. All other benchmarks finish in under 15 hours.

6.2.2 Intrate

By default, the intrate workload definition spins up four copies of each benchmark, which may be entirely inappro-
priate for your target machine. This can be changed by modifying the json.

To Build Binaries and RootFSes:

cd firesim/deploy/workloads/
make spec2017-intrate

Run Resource Requirements:

f1_16xlarges=0
m4_16xlarges=0
f1_2xlarges=10

To Run:

firesim launchrunfarm -c workloads/spec17-intrate.ini
firesim infrasetup -c workloads/spec17-intrate.ini
firesim runworkload -c workloads/spec17-intrate.ini
firesim terminaterunfarm -c workloads/spec17-intrate.ini

Simulation times are host and target dependent. For reference, on a four-core rocket-based SoC with a DDR3 + 1
MiB LLC model, with a 160 MHz host clock, the longest benchmarks complete in about 30 hours when running four
copies.

60 Chapter 6. Workloads

FireSim Documentation

6.3 Running Fedora on FireSim

You can boot Fedora disk images pulled from upstream on FireSim simulations. These instructions assume you’ve
already run through the tutorials.

Fedora currently requires some tweaks to the Linux configuration. To rebuild Linux with this configuration, first
head to sw/firesim-software and replace the linux-config-firesim file with deploy/workloads/
fedora-uniform/linux-config-firesim and then re-run ./build.sh in sw/firesim-software.
This will build a copy of bbl-vmlinux that is compatible with Fedora.

Next, head to deploy/workloads and run make fedora-uniform. This will download the latest version of
the disk image and apply some patches to it to ensure it functions correctly on FireSim.

Finally, you can change your workload to fedora-uniform.json to boot Fedora on your simulations.

6.4 ISCA 2018 Experiments

This page contains descriptions of the experiments in our ISCA 2018 paper and instructions for reproducing them on
your own simulations.

One important difference between the configuration used in the ISCA 2018 paper and the open-source release of
FireSim is that the ISCA paper used a proprietary L2 cache design that is not open-source. Instead, the open-source
FireSim uses an LLC model that models the behavior of having an L2 cache as part of the memory model. Even with
the LLC model, you should be able to see the same trends in these experiments, but exact numbers may vary.

Each section below describes the resources necessary to run the experiment. Some of these experiments require a
large number of instances – you should make sure you understand the resource requirements before you run one of the
scripts.

Compatiblity: These were last tested with commit bba9dea4811a2445f22809ef226cf00971674758 of
FireSim.

6.4.1 Prerequisites

These guides assume that you have previously followed the single-node/cluster-scale experiment guides in the FireSim
documentation. Note that these are advanced experiments, not introductory tutorials.

6.4.2 Building Benchmark Binaries/Rootfses

We include scripts to automatically build all of the benchmark rootfs images that will be used below. To build them,
make sure you have already run ./build.sh in firesim/sw/firesim-software, then run:

cd firesim/deploy/workloads/
make allpaper

6.4.3 Figure 5: Ping Latency vs. Configured Link Latency

Resource requirements:

f1_16xlarges=1
m4_16xlarges=0
f1_2xlarges=0

6.3. Running Fedora on FireSim 61

https://sagark.org/assets/pubs/firesim-isca2018.pdf

FireSim Documentation

To Run:

cd firesim/deploy/workloads/
./run-ping-latency.sh withlaunch

6.4.4 Figure 6: Network Bandwidth Saturation

Resource requirements:

f1_16xlarges=2
m4_16xlarges=1
f1_2xlarges=0

To Run:

cd firesim/deploy/workloads/
./run-bw-test.sh withlaunch

6.4.5 Figure 7: Memcached QoS / Thread Imbalance

Resource requirements:

f1_16xlarges=3
m4_16xlarges=0
f1_2xlarges=0

To Run:

cd firesim/deploy/workloads/
./run-memcached-thread-imbalance.sh withlaunch

6.4.6 Figure 8: Simulation Rate vs. Scale

Resource requirements:

f1_16xlarges=32
m4_16xlarges=5
f1_2xlarges=0

To Run:

cd firesim/deploy/workloads/
./run-simperf-test-scale.sh withlaunch

Notes: Excludes supernode since it is still in beta and not merged on master.

6.4.7 Figure 9: Simulation Rate vs. Link Latency

Resource requirements:

62 Chapter 6. Workloads

FireSim Documentation

f1_16xlarges=1
m4_16xlarges=0
f1_2xlarges=0

To Run:

cd firesim/deploy/workloads/
./run-simperf-test-latency.sh withlaunch

Notes: Excludes supernode since it is still in beta and not merged on master.

6.4.8 Running all experiments at once

This script simply executes all of the above scripts in parallel. One caveat is that the bw-test script currently cannot
run in parallel with the others, since it requires patching the switches. This will be resolved in a future release.

cd firesim/deploy/workloads/
./run-all.sh

6.4. ISCA 2018 Experiments 63

FireSim Documentation

64 Chapter 6. Workloads

CHAPTER 7

Targets

FireSim generates SoC models by transforming RTL emitted by a Chisel generator, such as the Rocket SoC generator.
Subject to conditions outlined in Restrictions on Target-RTL, if it can be generated by Chisel, it can be simulated in
FireSim.

7.1 Restrictions on Target-RTL

Current limitations in MIDAS place the following restrictions on the (FIR)RTL that can be transformed and thus used
in FireSim:

1. The RTL must not contain multiple clock domains.

2. The RTL must not contain multi-cycle paths.

3. The RTL must not contain black boxes, with the exception of Rocket Chip’s async reset register.

4. Asynchronous reset must only be implemented using Rocket Chip’s black box async reset. These are replaced
with synchronously reset registers using a FIRRTL transformation.

7.2 Generating Different Target-RTL

FireSim provides Rocket Chip-derived RTL generators for four target-design classes (set with the make variable
DESIGN, see sim/src/main/scala/Targets.scala). Like any other Rocket Chip-derived generator, a dif-
ferent parameterization is selected with a Chisel configuration (make variable TARGET_CONFIG, see sim/src/
main/scala/TargetConfigs.scala). Since I/O and DRAM models are not generated by Rocket Chip but
by MIDAS, their parameterization is captured in a second Chisel configuration (make variable PLATFORM_CONFIG,
see sim/src/main/scala/SimConfigs.scala).

We give examples of generating different targets using these three variables in the sections that follow.

65

FireSim Documentation

7.2.1 Rocket-based SoCs

Two design classes use Rocket scalar in-order pipelines.

Single core, Rocket pipeline (default)

make DESIGN=FireSim TARGET_CONFIG=FireSimRocketChipConfig

Single-core, Rocket pipeline, no network interface

make DESIGN=FireSimNoNIC TARGET_CONFIG=FireSimRocketChipConfig

Quad-core, Rocket pipeline

make DESIGN=FireSim TARGET_CONFIG=FireSimRocketChipQuadCoreConfig

7.2.2 BOOM-based SoCs (Beta)

Two design classes use BOOM (Berkeley Out-of-Order Machine) superscalar out-of-order pipelines.

Single-core BOOM

make DESIGN=FireBoom TARGET_CONFIG=FireSimBoomConfig

Single-core BOOM, no network interface

make DESIGN=FireBoomNoNIC TARGET_CONFIG=FireSimBoomConfig

7.2.3 Changing The DRAM Model

MIDAS can generate a space of different DRAM model instances: we give some typical ones here. These targets use
the Makefile-defined defaults of DESIGN=FireSim TARGET_CONFIG=FireSimRocketChipConfig.

Quad-rank DDR3 first-come first-served memory access scheduler

make PLATFORM_CONFIG=FireSimDDR3FCFSConfig

Quad-rank DDR3 first-ready, first-come first-served memory access scheduler

make PLATFORM_CONFIG=FireSimDDR3FRFCFSConfig

As above, but with an 4 MiB (max capacity) last-level-cache model

make PLATFORM_CONFIG=FireSimDDR3FRFCFSLLC4MBConfig

66 Chapter 7. Targets

https://github.com/ucb-bar/riscv-boom

CHAPTER 8

Debugging & Testing with RTL Simulation

Simulation of a single FireSim node using software RTL simulators like Verilator, Synopsys VCS, or XSIM, is the
most productive way to catch bugs before generating an AGFI.

FireSim provides flows to do RTL simulation at three different levels of the design/abstraction hierarchy. Ordered
from least to most detailed, they are:

• Target-Level: This simulates just the RTL of the target-design (Rocket Chip). There are no host-level features
being simulated. Supported simulators: VCS, Verilator.

• MIDAS-Level: This simulates the target-design after it’s been transformed by MIDAS. The target- and host-
clock are decoupled. FPGA-hosted simulation models are present. Abstract models for host-FPGA provided
services, like DRAM, memory-mapped IO, and PCIS are used here. Supported simulators: VCS, Verilator.

• FPGA-Level: This is a complete simulation of the design that will passed to the FPGA tools, including clock-
domain crossings, width adapters, PLLS, FPGA-periphery blocks like DRAM and PCI-E controllers. This
leverages the simulation flow provided by AWS. Supported simulators: VCS, Vivado XSIM.

Generally, MIDAS-level simulations are only slightly slower than simulating at target-RTL. Moving to FPGA-Level
is very expensive. This illustrated in the chart below.

Level Waves VCS Verilator XSIM
Target Off 4.8 kHz 6.2 kHz N/A
Target On 0.8 kHz 4.8 kHz N/A
MIDAS Off 3.8 kHz 2.0 kHz N/A
MIDAS On 2.9 kHz 1.0 kHz N/A
FPGA On 2.3 Hz N/A 0.56 Hz

Notes: Default configurations of a single-core Rocket Chip instance running rv64ui-v-add. Frequencies are given
in target-Hz. Presently, the default compiler flags passed to Verilator and VCS differ from level to level. Hence,
these numbers are only intended to ball park simulation speeds with FireSim’s out-of-the-box settings, not provide a
scientific comparison between simulators.

67

FireSim Documentation

8.1 Target-Level Simulation

This is described in Debugging Verilog Simulation, as part of the Developing New Devices tutorial.

8.2 MIDAS-Level Simulation

MIDAS-level simulations are run out of the firesim/sim directory. Currently, FireSim lacks support
for MIDAS-level simulation of the NIC since DMA_PCIS is not yet supported. So here we’ll be setting
DESIGN=FireSimNoNIC. To compile a simulator, type:

[in firesim/sim]
make <verilator|vcs>

To compile a simulator with full-visibility waveforms, type:

make <verilator|vcs>-debug

As part of target-generation, Rocket Chip emits a make fragment with recipes for run-
ning suites of assembly tests. MIDAS puts this in firesim/sim/generated-src/f1/
<DESIGN>-<TARGET_CONFIG>-<PLATFORM_CONFIG>/firesim.d. Make sure your $RISCV environment
variable is set by sourcing firesim/source-me*.sh or firesim/env.sh, and type:

make run-<asm|bmark>-tests EMUL=<vcs|verilator>

To run only a single test, the make target is the full path to the output. Specifically:

make EMUL=<vcs|verilator> $PWD/output/f1/<DESIGN>-<TARGET_CONFIG>-<PLATFORM_CONFIG>/
→˓<RISCV-TEST-NAME>.<vpd|out>

A .vpd target will use (and, if required, build) a simulator with waveform dumping enabled, whereas a .out target
will use the faster waveform-less simulator.

8.2.1 Examples

Run all RISCV-tools assembly and benchmark tests on a verilated simulator.

[in firesim/sim]
make DESIGN=FireSimNoNIC
make DESIGN=FireSimNoNIC -j run-asm-tests
make DESIGN=FireSimNoNIC -j run-bmark-tests

Run rv64ui-p-simple (a single assembly test) on a verilated simulator.

make DESIGN=FireSimNoNIC
make $(pwd)/output/f1/FireSimNoNIC-FireSimRocketChipConfig-FireSimConfig/rv64ui-p-
→˓simple.out

Run rv64ui-p-simple (a single assembly test) on a VCS simulator with waveform dumping.

make DESIGN=FireSimNoNIC vcs-debug
make EMUL=vcs $(pwd)/output/f1/FireSimNoNIC-FireSimRocketChipConfig-FireSimConfig/
→˓rv64ui-p-simple.vpd

68 Chapter 8. Debugging & Testing with RTL Simulation

FireSim Documentation

8.3 FPGA-Level Simulation

Like MIDAS-level simulation, there is currently no support for DMA_PCIS, so we’ll restrict ourselves to instances
without a NIC by setting DESIGN=FireSimNoNIC. As with MIDAS-level simulations, FPGA-level simulations run
out of firesim/sim.

Since FPGA-level simulation is up to 1000x slower than MIDAS-level simulation, FPGA-level simulation should only
be used in two cases:

1. MIDAS-level simulation of the simulation is working, but running the simulator on the FPGA is not.

2. You’ve made changes to the AWS Shell/IP/cl_firesim.sv in aws-fpga and want to test them.

FPGA-level simulation consists of two components:

1. A FireSim-f1 driver that talks to a simulated DUT instead of the FPGA

2. The DUT, a simulator compiled with either XSIM or VCS, that receives commands from the aforementioned
FireSim-f1 driver

8.3.1 Usage

To run a simulation you need to make both the DUT and driver targets by typing:

make xsim
make xsim-dut <VCS=1> & # Launch the DUT
make run-xsim SIM_BINARY=<PATH/TO/BINARY/FOR/TARGET/TO/RUN> # Launch the driver

Once both processes are running, you should see:

opening driver to xsim
opening xsim to driver

This indicates that the DUT and driver are successfully communicating. Eventually, the DUT will print a commit trace
Rocket Chip. There will be a long pause (minutes, possibly an hour, depending on the size of the binary) after the first
100 instructions, as the program is being loaded into FPGA DRAM.

XSIM is used by default, and will work on EC2 instances with the FPGA developer AMI. If you have a license, setting
VCS=1 will use VCS to compile the DUT (4x faster than XSIM). Berkeley users running on the Millennium machines
should be able to source firesim/scripts/setup-vcsmx-env.sh to setup their environment for VCS-based
FPGA-level simulation.

The waveforms are dumped in the FPGA build directories(firesim/platforms/f1/aws-fpga/hdk/cl/
developer_designs/cl_<DESIGN>-<TARGET_CONFIG>-<PLATFORM_CONFIG>).

For XSIM:

<BUILD_DIR>/verif/sim/vivado/test_firesim_c/tb.wdb

And for VCS:

<BUILD_DIR>/verif/sim/vcs/test_firesim_c/test_null.vpd

When finished, be sure to kill any lingering processes if you interrupted simulation prematurely.

8.3. FPGA-Level Simulation 69

FireSim Documentation

70 Chapter 8. Debugging & Testing with RTL Simulation

CHAPTER 9

Tutorial: Developing New Devices

9.1 Getting Started

In this tutorial, we will show you how to design a new memory-mapped IO device, test it in simulation, and then build
and run it on FireSim.

To start with, you will need to clone a copy of FireChip, the repository that aggregates all the target RTL for FireSim.
FireSim already contains FireChip as a submodule under target-design/firechip, but it makes patches to the
codebase so that it will work with the FPGA tools. Therefore, you will need to clone a clean copy if you want to use
FireChip standalone.

Go to https://github.com/firesim/firechip and click the “Fork” button to fork the repository to your own account. Now
clone the new repo to your local machine and initialize the submodules.

$ git clone https://github.com/yourusername/firechip.git
$ cd firechip
$ git submodule update --init
$ cd rocket-chip
$ git submodule update --init
$ cd ..

You will not need to install the riscv-tools again because you’ll just be reusing the one in firesim. So make sure to go
into firesim and source sourceme-f1-full.sh before you run the rest of the commands in this tutorial.

Now that everything is checked out, you can build the VCS simulator and run the regression tests to make sure
everything is working.

$ cd vsim # or "cd verisim" for verilator
$ make # builds the DefaultExampleConfig
$ make run-regression-tests

If everything is set up correctly, you should see a bunch of *.out files in the output/ directory. If you open these
up, they should all say “Completed after XXXXX cycles” at the end and not have any error messages.

71

https://github.com/firesim/firechip

FireSim Documentation

9.2 Memory-mapped Registers

In this tutorial, we will create a device which pulls in data from an externally-connected input stream and writes the
data to memory. We’ll create our device in the file src/main/scala/example/InputStream.scala. The
first thing we need to do is set up some memory-mapped control registers that the CPU can use to communicate with
the device. The easiest way to do this is by creating a TLRegisterNode, which provides a regmap method that
can be used to generate the hardware for reading and writing to RTL registers.

class InputStream(
address: BigInt,
val beatBytes: Int = 8)
(implicit p: Parameters) extends LazyModule {

val device = new SimpleDevice("input-stream", Seq("example,input-stream"))
val regnode = TLRegisterNode(
address = Seq(AddressSet(address, 0x3f)),
device = device,
beatBytes = beatBytes)

lazy val module = new InputStreamModuleImp(this)
}

We want to specify or override three arguments in the TLRegisterNode constructor. The first is the address of the
device in the memory map. The address is specified as an AddressSet containing two values, a base address and
a mask. The system bus will route all addresses that match the base address on the bits not set in the mask. In this
case, we set the mask to 0x3f, which sets the lower six bits. This means that a 64 byte region starting from the base
address will be routed to this device.

The second argument to TLRegisterNode is a SimpleDevice object, which provides the name and compatibil-
ity of the device table entry that will be created for the peripheral. We won’t show how this is used in this tutorial, but
it will be important if you want to create a Linux kernel driver for the device.

The third argument to TLRegisterNode is beatBytes, which specifies the width of the TileLink interface. We
will just pass this through from a class argument.

We want the device to be able to write a specified amount of bytes to a specified location in memory, so we’ll provide
addr and len registers. We will also want a running register for the CPU to signal that the device should start
operation and a complete register for the device to signal to the CPU that it has completed.

class InputStreamModuleImp(outer: InputStream) extends LazyModuleImp(outer) {
val addrBits = 64
val w = 64
val io = IO(new Bundle {

// Not used yet
val in = Flipped(Decoupled(UInt(w.W)))

}
val addr = Reg(UInt(addrBits.W))
val len = Reg(UInt(addrBits.W))
val running = RegInit(false.B)
val complete = RegInit(false.B)

outer.regnode.regmap(
0x00 -> Seq(RegField(addrBits, addr)),
0x08 -> Seq(RegField(addrBits, len)),
0x10 -> Seq(RegField(1, running)),
0x18 -> Seq(RegField(1, complete)))

}

72 Chapter 9. Tutorial: Developing New Devices

FireSim Documentation

The arguments to regmap should be a series of mappings from address offsets to sequences of RegField objects.
The RegField constructor takes two arguments, the width of the register field and the RTL register itself.

9.3 DMA and Interrupts

9.3.1 TileLink Client Port

In order to move data from the external input stream to memory, we need to perform direct memory access (DMA).
We can achieve this by giving the device a TLClientNode. Once we add it, the LazyModule will now look like this:

class InputStream(
address: BigInt,
val beatBytes: Int = 8,
val maxInflight: Int = 4)
(implicit p: Parameters) extends LazyModule {

val device = new SimpleDevice("input-stream", Seq("example,input-stream"))
val regnode = TLRegisterNode(
address = Seq(AddressSet(address, 0x3f)),
device = device,
beatBytes = beatBytes)

val dmanode = TLClientNode(Seq(TLClientPortParameters(
Seq(TLClientParameters(
name = "input-stream",
sourceId = IdRange(0, maxInflight))))))

lazy val module = new InputStreamModuleImp(this)
}

For our TLClientNode, we only need a single port, so we specify a single set of TLClientPortParameters
and TLClientParameters. We override two arguments in the TLClientParameters constructor. The name
is the name of the port and sourceId indicates the range of transaction IDs that can be used in memory requests. The
lower bound is inclusive, and the upper bound is exclusive, so this device can use source IDs from 0 to maxInflight
- 1.

9.3.2 TileLink Protocol and State Machine

In the module implementation, we can now implement a state machine that sends write requests to memory. We first
call outer.dmanode.out to get a sequence of output port tuples. Since we only have one port, we can just pull out the
first element of this sequence. For each port, we get a pair of objects. The first is the physical TileLink port, which we
can connect to RTL. The second is a TLEdge object, which we can use to get extra metadata about the tilelink port
(like the number of address and data bits).

class InputStreamModuleImp(outer: InputStream) extends LazyModuleImp(outer) {
val (tl, edge) = outer.dmanode.out(0)
val addrBits = edge.bundle.addressBits
val w = edge.bundle.dataBits
val beatBytes = (w / 8)

val io = IO(new Bundle {
val in = Flipped(Decoupled(UInt(w.W)))

})

(continues on next page)

9.3. DMA and Interrupts 73

FireSim Documentation

(continued from previous page)

val addr = Reg(UInt(addrBits.W))
val len = Reg(UInt(addrBits.W))
val running = RegInit(false.B)
val complete = RegInit(false.B)

val s_idle :: s_issue :: s_wait :: Nil = Enum(3)
val state = RegInit(s_idle)

val nXacts = outer.maxInflight
val xactBusy = RegInit(0.U(nXacts.W))
val xactOnehot = PriorityEncoderOH(~xactBusy)
val canIssue = (state === s_issue) && !xactBusy.andR

io.in.ready := canIssue && tl.a.ready
tl.a.valid := canIssue && io.in.valid
tl.a.bits := edge.Put(
fromSource = OHToUInt(xactOnehot),
toAddress = addr,
lgSize = log2Ceil(beatBytes).U,
data = io.in.bits)._2

tl.d.ready := running && xactBusy.orR

xactBusy := (xactBusy |
Mux(tl.a.fire(), xactOnehot, 0.U(nXacts.W))) &
~Mux(tl.d.fire(), UIntToOH(tl.d.bits.source), 0.U)

when (state === s_idle && running) {
assert(addr(log2Ceil(beatBytes)-1,0) === 0.U,

s"InputStream base address not aligned to ${beatBytes} bytes")
assert(len(log2Ceil(beatBytes)-1,0) === 0.U,

s"InputStream length not aligned to ${beatBytes} bytes")
state := s_issue

}

when (io.in.fire()) {
addr := addr + beatBytes.U
len := len - beatBytes.U
when (len === beatBytes.U) { state := s_wait }

}

when (state === s_wait && !xactBusy.orR) {
running := false.B
complete := true.B
state := s_idle

}

outer.regnode.regmap(
0x00 -> Seq(RegField(addrBits, addr)),
0x08 -> Seq(RegField(addrBits, len)),
0x10 -> Seq(RegField(1, running)),
0x18 -> Seq(RegField(1, complete)))

}

The state machine starts in the s_idle state. In this state, the CPU should set the addr and len registers and then
set the running register to 1. The state machine then moves into the s_issue state, in which it forwards data from
the in decoupled interface to memory through the TileLink A channel.

74 Chapter 9. Tutorial: Developing New Devices

FireSim Documentation

We construct the A channel requests using the Put method in the TLEdge object we extracted earlier. The Put
method takes a unique source ID in fromSource, the address to write to in toAddress, the base-2 logarithm of
the size in bytes in lgSize, and the data to be written in data.

The source field must observe some constraints. There can only be one transaction with each distinct source ID in
flight at a given time. Once you send a request on the A channel with a specific source ID, you cannot send another
until after you’ve received the response for it on the D channel.

Once all requests have been sent on the A channel, the state machine transitions to the s_wait state to wait for the
remaining responses on the D channel. Once the responses have all returned, the state machine sets running to false
and completed to true. The CPU can poll the completed register to check if the operation has finished.

9.3.3 Interrupts

For long-running operations, we would like to have the device notify the CPU through an interrupt. To add an interrupt
to the device, we need to create an IntSourceNode in the lazy module.

val intnode = IntSourceNode(IntSourcePortSimple(resources = device.int))

Then, in the module implementation, we can connect the complete register to the interrupt line. That way, the CPU
will get interrupted once the state machine completes. It can clear the interrupt by writing a 0 to the complete
register.

val (interrupt, _) = outer.intnode.out(0)

interrupt(0) := complete

9.4 Connecting Devices to Bus

9.4.1 SoC Mixin Traits

Now that we have finished designing our peripheral device, we need to hook it up into the SoC. To do this, we first
need to create two traits: one for the lazy module and one for the module implementation. The lazy module trait is the
following.

trait HasPeripheryInputStream { this: BaseSubsystem =>
private val portName = "input-stream"
val streamWidth = pbus.beatBytes * 8
val inputstream = LazyModule(new InputStream(0x10017000, pbus.beatBytes))
pbus.toVariableWidthSlave(Some(portName)) { inputstream.regnode }
sbus.fromPort(Some(portName))() := inputstream.dmanode
ibus.fromSync := inputstream.intnode

}

We add the line this: BaseSubsystem => to indicate that this trait will eventually be mixed into a class that
extends BaseSubsystem, which contains the definition of the system bus sbus, peripheral bus pbus, and interrupt
bus ibus. We instantiate the InputStream lazy module and give it the base address 0x10017000. We connect
the pbus into the register node, DMA node to the sbus, and interrupt node to the ibus.

The module implementation trait is as follows:

trait HasPeripheryInputStreamModuleImp extends LazyModuleImp {
val outer: HasPeripheryInputStream

(continues on next page)

9.4. Connecting Devices to Bus 75

FireSim Documentation

(continued from previous page)

val stream_in = IO(Flipped(Decoupled(UInt(outer.streamWidth.W))))
outer.inputstream.module.io.in <> stream_in

def connectFixedInput(data: Seq[BigInt]) {
val fixed = Module(new FixedInputStream(data, outer.streamWidth))
stream_in <> fixed.io.out

}
}

Since the interrupts and memory ports have already been connected in the lazy module trait, the module implemen-
tation trait only needs to create the external decoupled interface and connect that to the InputStream module
implementation.

The connectFixedInput method will be used by the test harness to connect an input stream model that just sends
a pre-specified stream of data.

9.4.2 Top-Level Design and Configuration

We can now mix these traits into the SoC design. Open up src/main/scala/example/Top.scala and add
the following:

class ExampleTopWithInputStream(implicit p: Parameters) extends ExampleTop
with HasPeripheryInputStream {

override lazy val module = new ExampleTopWithInputStreamModule(this)
}

class ExampleTopWithInputStreamModule(outer: ExampleTopWithInputStream)
extends ExampleTopModuleImp(outer)
with HasPeripheryInputStreamModuleImp

We can then build a simulation using our new SoC by adding a configuration to src/main/scala/example/
Configs.scala. This configuration will cause the test harness to instantiate an SoC with the InputStream
device and then connect a fixed input stream model to it.

class WithFixedInputStream extends Config((site, here, up) => {
case BuildTop => (clock: Clock, reset: Bool, p: Parameters) => {
val top = Module(LazyModule(new ExampleTopWithInputStream()(p)).module)
top.connectFixedInput(Seq(

BigInt("1002abcd", 16),
BigInt("34510204", 16),
BigInt("10329999", 16),
BigInt("92101222", 16)))

top
}

})

class FixedInputStreamConfig extends Config(
new WithFixedInputStream ++ new BaseExampleConfig)

We can now compile the simulation using VCS.

cd vsim
make CONFIG=FixedInputStreamConfig

76 Chapter 9. Tutorial: Developing New Devices

FireSim Documentation

This will produce a simv-example-FixedInputStreamConfig executable that can be used to run tests. We
will discuss how to write and run those tests in the next section.

If you don’t have VCS installed and want to use verilator instead, the commands are similar.

cd verisim
make CONFIG=FixedInputStreamConfig

This creates an executable called simulator-example-FixedInputStreamConfig.

9.5 Running Test Software

To test our input stream device, we want to write an application that uses the device to write data into memory, then
reads the data and prints it out.

In project-template, test software is placed in the tests/ directory, which includes a Makefile and library code for
developing a baremetal program. We’ll create a new file at tests/input-stream.c with the following code:

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

#include "mmio.h"

#define N 4
#define INPUTSTREAM_BASE 0x10017000L
#define INPUTSTREAM_ADDR (INPUTSTREAM_BASE + 0x00)
#define INPUTSTREAM_LEN (INPUTSTREAM_BASE + 0x08)
#define INPUTSTREAM_RUNNING (INPUTSTREAM_BASE + 0x10)
#define INPUTSTREAM_COMPLETE (INPUTSTREAM_BASE + 0x18)

uint64_t values[N];

int main(void)
{

reg_write64(INPUTSTREAM_ADDR, (uint64_t) values);
reg_write64(INPUTSTREAM_LEN, N * sizeof(uint64_t));
asm volatile ("fence");
reg_write64(INPUTSTREAM_RUNNING, 1);

while (reg_read64(INPUTSTREAM_COMPLETE) == 0) {}
reg_write64(INPUTSTREAM_COMPLETE, 0);

for (int i = 0; i < N; i++)
printf("%016lx\n", values[i]);

return 0;
}

This program statically allocates an array for the data to be written to. It then sets the addr and len registers, executes
a fence instruction to make sure they are committed, and then sets the running register. It then continuously polls
the complete register until it sees a non-zero value, at which point it knows the data has been written to memory
and is safe to read back.

To compile this program, add “input-stream” to the PROGRAMS list in tests/Makefile and run make from the
tests directory.

9.5. Running Test Software 77

FireSim Documentation

To run the program, return to the vsim/ directory and run the simulator executable, passing the newly compiled
input-stream.riscv executable as an argument.

$ cd vsim
$./simv-example-FixedInputStreamConfig ../tests/input-stream.riscv

The program should print out

000000001002abcd
0000000034510204
0000000010329999
0000000092101222

For verilator, the command is the following:

$ cd verisim
$./simulator-example-FixedInputStreamConfig ../tests/input-stream.riscv

9.5.1 Debugging Verilog Simulation

If there is a bug in your hardware, one way to diagnose the issue is to generate a waveform from the simulation so that
you can introspect into the design and see what values signals take over time.

In VCS, you can accomplish this with the +vcdplusfile flag, which will generate a VPD file that can be viewed
in DVE. To use this flag, you will need to build the debug version of the simulator executable.

$ cd vsim
$ make CONFIG=FixedInputStreamConfig debug
$./simv-example-FixedInputStreamConfig-debug +max-cycles=50000 +vcdplusfile=input-
→˓stream.vpd ../tests/input-stream.riscv
$ dve -full64 -vpd input-stream.vpd

The +max-cycles flag is used to set a timeout for the simulation. This is useful in the case the program hangs
without completing.

If you are using verilator, you can generate a VCD file that can be viewed in an open source waveform viewer like
GTKwave.

$ cd verisim
$ make CONFIG=FixedInputStreamConfig debug
$./simulator-example-FixedInputStreamConfig-debug +max-cycles=50000 -vinput-stream.
→˓vcd ../tests/input-stream.riscv
$ gtkwave -o input-stream.vcd

9.6 Creating Simulation Model

So far, we’ve been using a fixed input stream model to test our device. But, ideally, we’d like an input stream that is
defined by a software model and configurable at runtime. We’d like to put the input data in a file and pass it in as a
command-line argument. We can’t do that in Chisel. We’ll have to create the model in Verilog and call out to C++
using the Verilog DPI-C API.

First, how do we include Verilog code in a Chisel codebase? We can do this using the Chisel BlackBox class. BlackBox
modules can be used like regular Chisel modules and have defined IO ports, but the internal implementation is left to
Verilog.

78 Chapter 9. Tutorial: Developing New Devices

FireSim Documentation

class SimInputStream(w: Int) extends BlackBox(Map("DATA_BITS" -> IntParam(w))) {
val io = IO(new Bundle {
val clock = Input(Clock())
val reset = Input(Bool())
val out = Decoupled(UInt(w.W))

})
}

One key difference in the IO bundle definition is that the implicit clock and reset signals must be explicitly
defined in a BlackBox. The BlackBox class also takes a map that defines parameters that will be passed to the verilog
implementation. To connect the BlackBox in the test harness, we should create a connectSimInput method in the
HasPeripheryInputStreamModuleImp trait.

def connectSimInput(clock: Clock, reset: Bool) {
val sim = Module(new SimInputStream(outer.streamWidth))
sim.io.clock := clock
sim.io.reset := reset
stream_in <> sim.io.out

}

We then add a new configuration class in src/main/scala/example/Configs.scala that calls the
connectSimInput method.

class WithSimInputStream extends Config((site, here, up) => {
case BuildTop => (clock: Clock, reset: Bool, p: Parameters) => {
val top = Module(LazyModule(new ExampleTopWithInputStream()(p)).module)
top.connectSimInput(clock, reset)
top

}
})

class SimInputStreamConfig extends Config(
new WithSimInputStream ++ new BaseExampleConfig)

Now we need to create the verilog implementation of the SimInputStream module. Make a new directory src/
main/resources and add vsrc and csrc subdirectories under it.

$ mkdir -p src/main/resources/{vsrc,csrc}

In the vsrc directory, create a file called SimInputStream.v and add the following code.

import "DPI-C" function void input_stream_init
(

input string filename,
input int data_bits

);

import "DPI-C" function void input_stream_tick
(

output bit out_valid,
input bit out_ready,
output longint out_bits

);

module SimInputStream #(DATA_BITS=64) (
input clock,
input reset,

(continues on next page)

9.6. Creating Simulation Model 79

FireSim Documentation

(continued from previous page)

output out_valid,
input out_ready,
output [DATA_BITS-1:0] out_bits

);

bit __out_valid;
longint __out_bits;
string filename;
int data_bits;

reg __out_valid_reg;
reg [DATA_BITS-1:0] __out_bits_reg;

initial begin
data_bits = DATA_BITS;
if ($value$plusargs("instream=%s", filename)) begin

input_stream_init(filename, data_bits);
end

end

always @(posedge clock) begin
if (reset) begin

__out_valid = 0;
__out_bits = 0;

__out_valid_reg <= 0;
__out_bits_reg <= 0;

end else begin
input_stream_tick(

__out_valid,
out_ready,
__out_bits);

__out_valid_reg <= __out_valid;
__out_bits_reg <= __out_bits;

end
end

assign out_valid = __out_valid_reg;
assign out_bits = __out_bits_reg;

endmodule

The verilog defines its inputs and outputs to match the definition in the Chisel BlackBox. But most of the implementa-
tion is left to C++ through the DPI functions input_stream_init and input_stream_tick. We define these
functions in a SimInputStream.cc file in the csrc directory.

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>

class InputStream {
public:
InputStream(const char *filename, int nbytes);
~InputStream(void);

bool out_valid() { return !complete; }

(continues on next page)

80 Chapter 9. Tutorial: Developing New Devices

FireSim Documentation

(continued from previous page)

uint64_t out_bits() { return data; }
void tick(bool out_ready);

private:
void read_next(void);
bool complete;
FILE *file;
int nbytes;
uint64_t data;

};

InputStream::InputStream(const char *filename, int nbytes)
{

this->nbytes = nbytes;
this->file = fopen(filename, "r");
if (this->file == NULL) {

fprintf(stderr, "Could not open %s\n", filename);
abort();

}

read_next();
}

InputStream::~InputStream(void)
{

fclose(this->file);
}

void InputStream::read_next(void)
{

int res;

this->data = 0;

res = fread(&this->data, this->nbytes, 1, this->file);
if (res < 0) {

perror("fread");
abort();

}

this->complete = (res == 0);
}

void InputStream::tick(bool out_ready)
{

int res;

if (out_valid() && out_ready)
read_next();

}

InputStream *stream = NULL;

extern "C" void input_stream_init(const char *filename, int data_bits)
{

stream = new InputStream(filename, data_bits/8);
}

(continues on next page)

9.6. Creating Simulation Model 81

FireSim Documentation

(continued from previous page)

extern "C" void input_stream_tick(
unsigned char *out_valid,
unsigned char out_ready,
long long *out_bits)

{
stream->tick(out_ready);

*out_valid = stream->out_valid();

*out_bits = stream->out_bits();
}

In the C++ file, we implement an InputStream class that takes a file name as its argument. It opens the file
and reads nbytes from it for every ready-valid handshake. The input_stream_init function constructs an
InputStream class and assigns it to a global pointer. The input_stream_tick function updates the state by
calling the tick method, passing in the inputs from verilog. It then assigns values to the verilog outputs.

You can now build this new configuration in VCS.

$ cd vsim
$ make CONFIG=SimInputStreamConfig

Now create a file that can be used as the input stream data. Just getting random bytes from /dev/urandom would
work. Pass this to your simulation through the +instream= flag, and you should see the data get printed out in the
input-stream.riscv test.

$ dd if=/dev/urandom of=instream.img bs=32 count=1
$ hexdump instream.img
0000000 189b f12a 1cc1 9eb5 b65d bbef 96b6 4949
0000010 f8c8 636c 76fe 15f3 0665 0ef9 8c5d 3011
0000020
$./simv-example-SimInputStreamConfig +instream=instream.img ../tests/input-stream.
→˓riscv
9eb51cc1f12a189b
494996b6bbefb65d
15f376fe636cf8c8
30118c5d0ef90665

82 Chapter 9. Tutorial: Developing New Devices

CHAPTER 10

Supernode

Supernode support is currently in beta. Supernode is designed to improve FPGA resource utilization for smaller
designs and allow realistic rack topology simulation (32 simulated nodes) using a single f1.16xlarge instance.
The supernode beta can be found on the supernode-beta branch of the FireSim repository. Supernode requires
slight changes in build and runtime configurations. More details about supernode can be found in the FireSim ISCA
2018 Paper.

10.1 Intro

Supernode packs 4 identical designs into a single FPGA, and utilizes all 4 DDR channels available for each FPGA on
AWS F1 instances. It currently does so by generating a wrapper top level target which encapsualtes the four simulated
target nodes. The packed nodes are treated as 4 separate nodes, are assigned their own individual MAC addresses, and
can perform any action a single node could: run different programs, interact with each other over the network, utilize
different block device images, etc.

10.2 Build

The Supernode beta can be found on the supernode-beta branch of the FireSim repo. Here, we outline some of
the changes between supernode and regular simulations. The Supernode target wrapper can be found in firesim/
sim/src/main/scala/SimConfigs.scala. For example:

class SupernodeFireSimRocketChipConfig extends Config(
new WithNumNodes(4) ++
new FireSimRocketChipConfig)

In this example, SupernodeFireSimRocketChipConfig is the wrapper, while
FireSimRocketChipConfig is the target node configuration. Therefore, if we want to simulate a differ-
ent target configuration, we will generate a new Supernode wrapper, with the new target configuration. For
example:

83

https://sagark.org/assets/pubs/firesim-isca2018.pdf
https://sagark.org/assets/pubs/firesim-isca2018.pdf

FireSim Documentation

class SupernodeFireSimRocketChipQuadCoreConfig extends Config(
new WithNumNodes(4) ++
new FireSimRocketChipQuadCoreConfig)

Next, when defining the build recipe, we must remmber to use the supernode configuration: The DESIGN pa-
rameter should always be set to SupernodeTop, while the TARGET_CONFIG parameter should be set to the
wrapper configuration that was defined in firesim/sim/src/main/scala/SimConfigs.scala. The
PLATFORM_CONFIG can be selected the same as in regular FireSim configurations. For example:

DESIGN=SupernodeTop
TARGET_CONFIG=SupernodeFireSimRocketChipQuadCoreConfig
PLATFORM_CONFIG=FireSimDDR3FRFCFSLLC4MBConfig
instancetype=c4.4xlarge
deploytriplet=None

We currently do not provide pre-built AGFIs for supernode. You must build your own, using the supplied samples on
the supernode-beta branch.

10.3 Running simulations

Running FireSim in supernode mode follows the same process as in “regular” mode. Currently, the only difference
is that the standard input and standard output of the simulated nodes are written to files in the dispatched simulation
directory, rather than the main simulation screen.

Here are some important pieces that you can use to run an example 32-node config on a single f1.16xlarge. Better
documentation will be available later:

• Sample runtime config: https://github.com/firesim/firesim/blob/supernode-beta/deploy/sample-backup-configs/
sample_config_runtime.ini

• Sample topology definition: https://github.com/firesim/firesim/blob/supernode-beta/deploy/runtools/user_
topology.py#L33

10.4 Work in Progress!

We are currently working on restructuring supernode support to support a wider-variety of use cases. More documen-
tation will follow once we complete this rewrite.

84 Chapter 10. Supernode

https://github.com/firesim/firesim/blob/supernode-beta/deploy/sample-backup-configs/sample_config_runtime.ini
https://github.com/firesim/firesim/blob/supernode-beta/deploy/sample-backup-configs/sample_config_runtime.ini
https://github.com/firesim/firesim/blob/supernode-beta/deploy/runtools/user_topology.py#L33
https://github.com/firesim/firesim/blob/supernode-beta/deploy/runtools/user_topology.py#L33

CHAPTER 11

Miscellaneous Tips

11.1 Add the fsimcluster column to your AWS management con-
sole

Once you’ve deployed a simulation once with the manager, the AWS management console will allow you to add a
custom column that will allow you to see at-a-glance which FireSim run farm an instance belongs to.

To do so, click the gear in the top right of the AWS management console. From there, you should see a checkbox for
fsimcluster. Enable it to see the column.

11.2 FPGA Dev AMI Remote Desktop Setup

To Remote Desktop into your manager instance, you must do the following:

curl https://s3.amazonaws.com/aws-fpga-developer-ami/1.4.0/Scripts/setup_gui.sh -o /
→˓home/centos/src/scripts/setup_gui.sh
sudo sed -i 's/enabled=0/enabled=1/g' /etc/yum.repos.d/CentOS-CR.repo
/home/centos/src/scripts/setup_gui.sh

The former two commands are required due to AWS FPGA Dev AMI 1.3.5 incompatibilities. See

https://forums.aws.amazon.com/message.jspa?messageID=848073#848073

and

https://forums.aws.amazon.com/ann.jspa?annID=5710

85

https://forums.aws.amazon.com/message.jspa?messageID=848073#848073
https://forums.aws.amazon.com/ann.jspa?annID=5710

FireSim Documentation

11.3 Experimental Support for SSHing into simulated nodes and ac-
cessing the internet from within simulations

This is assuming that you are simulating a 1-node networked cluster. These instructions will let you both ssh into the
simulated node and access the outside internet from within the simulated node:

1. Set your config files to simulate a 1-node networked cluster (example_1config)

2. Run firesim launchrunfarm && firesim infrasetup and wait for them to complete

3. cd to firesim/target-design/switch/

4. Go into the newest directory that is prefixed with switch0-

5. Edit the switchconfig.h file so that it looks like this:

// THIS FILE IS MACHINE GENERATED. SEE deploy/buildtools/switchmodelconfig.py

#ifdef NUMCLIENTSCONFIG
#define NUMPORTS 2
#endif
#ifdef PORTSETUPCONFIG
ports[0] = new ShmemPort(0);
ports[1] = new SSHPort(1);
#endif

#ifdef MACPORTSCONFIG
uint16_t mac2port[3] {1, 2, 0};
#endif

6. Run make then cp switch switch0

7. Run scp switch0 YOUR_RUN_FARM_INSTANCE_IP:switch_slot_0/switch0

8. On the RUN FARM INSTANCE, run:

sudo ip tuntap add mode tap dev tap0 user $USER
sudo ip link set tap0 up
sudo ip addr add 172.16.0.1/16 dev tap0
sudo ifconfig tap0 hw ether 8e:6b:35:04:00:00
sudo sysctl -w net.ipv6.conf.tap0.disable_ipv6=1

9. Run firesim runworkload. Confirm that the node has booted to the login prompt in the fsim0 screen.

10. To ssh into the simulated machine, you will need to first ssh onto the Run Farm instance, then ssh into the
IP address of the simulated node (172.16.0.2), username root, password firesim. You should also prefix with
TERM=linux to get backspace to work correctly: So:

ssh YOUR_RUN_FARM_INSTANCE_IP
from within the run farm instance:
TERM=linux ssh root@172.16.0.2

11. To also be able to access the internet from within the simulation, run the following on the RUN FARM INSTANCE:

sudo sysctl -w net.ipv4.ip_forward=1
export EXT_IF_TO_USE=$(ifconfig -a | sed 's/[\t].*//;/^\(lo:\|\)$/d' | sed 's/[\t].
→˓*//;/^\(tap0:\|\)$/d' | sed 's/://g')
sudo iptables -A FORWARD -i $EXT_IF_TO_USE -o tap0 -m state --state RELATED,
→˓ESTABLISHED -j ACCEPT

(continues on next page)

86 Chapter 11. Miscellaneous Tips

FireSim Documentation

(continued from previous page)

sudo iptables -A FORWARD -i tap0 -o $EXT_IF_TO_USE -j ACCEPT
sudo iptables -t nat -A POSTROUTING -o $EXT_IF_TO_USE -j MASQUERADE

12. Then run the following in the simulation:

route add default gw 172.16.0.1 eth0
echo "nameserver 8.8.8.8" >> /etc/resolv.conf
echo "nameserver 8.8.4.4" >> /etc/resolv.conf

At this point, you will be able to access the outside internet, e.g. ping google.com or wget google.com.

11.3. Experimental Support for SSHing into simulated nodes and accessing the internet from
within simulations

87

FireSim Documentation

88 Chapter 11. Miscellaneous Tips

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

89

	FireSim Basics
	Two common use cases:
	Single-Node Simulation, in Parallel
	Datacenter/Cluster Simulation

	Other Use Cases
	Background/Terminology
	Using FireSim/The FireSim Workflow

	Initial Setup/Installation
	First-time AWS User Setup
	Creating an AWS Account
	AWS Credit at Berkeley
	Requesting Limit Increases

	Configuring Required Infrastructure in Your AWS Account
	Select a region
	Key Setup
	Check your EC2 Instance Limits
	Start a t2.nano instance to run the remaining configuration commands
	Run scripts from the t2.nano
	Terminate the t2.nano
	Subscribe to the AWS FPGA Developer AMI

	Setting up your Manager Instance
	Launching a “Manager Instance”
	Setting up the FireSim Repo
	Completing Setup Using the Manager

	Running FireSim Simulations
	Running a Single Node Simulation
	Building target software
	Setting up the manager configuration
	Launching a Simulation!

	Running a Cluster Simulation
	Returning to a clean configuration
	Building target software
	Setting up the manager configuration
	Launching a Simulation!

	Building Your Own Hardware Designs (FireSim FPGA Images)
	Amazon S3 Setup
	Build Recipes
	Running a Build

	Manager Usage (the firesim command)
	Overview
	“Inputs” to the Manager
	Logging

	Manager Command Line Arguments
	--runtimeconfigfile FILENAME
	--buildconfigfile FILENAME
	--buildrecipesconfigfile FILENAME
	--hwdbconfigfile FILENAME
	--overrideconfigdata SECTION PARAMETER VALUE
	TASK

	Manager Tasks
	firesim managerinit
	firesim buildafi
	firesim shareagfi
	firesim launchrunfarm
	firesim terminaterunfarm
	firesim infrasetup
	firesim boot
	firesim kill
	firesim runworkload
	firesim runcheck

	Manager Configuration Files
	config_runtime.ini
	config_build.ini
	config_build_recipes.ini
	config_hwdb.ini

	Manager Network Topology Definitions (user_topology.py)
	user_topology.py contents:

	AGFI Metadata/Tagging

	Workloads
	Defining Custom Workloads
	Uniform Workload JSON
	Non-uniform Workload JSON (explicit job per simulated node)

	SPEC 2017
	Intspeed
	Intrate

	Running Fedora on FireSim
	ISCA 2018 Experiments
	Prerequisites
	Building Benchmark Binaries/Rootfses
	Figure 5: Ping Latency vs. Configured Link Latency
	Figure 6: Network Bandwidth Saturation
	Figure 7: Memcached QoS / Thread Imbalance
	Figure 8: Simulation Rate vs. Scale
	Figure 9: Simulation Rate vs. Link Latency
	Running all experiments at once

	Targets
	Restrictions on Target-RTL
	Generating Different Target-RTL
	Rocket-based SoCs
	BOOM-based SoCs (Beta)
	Changing The DRAM Model

	Debugging & Testing with RTL Simulation
	Target-Level Simulation
	MIDAS-Level Simulation
	Examples

	FPGA-Level Simulation
	Usage

	Tutorial: Developing New Devices
	Getting Started
	Memory-mapped Registers
	DMA and Interrupts
	TileLink Client Port
	TileLink Protocol and State Machine
	Interrupts

	Connecting Devices to Bus
	SoC Mixin Traits
	Top-Level Design and Configuration

	Running Test Software
	Debugging Verilog Simulation

	Creating Simulation Model

	Supernode
	Intro
	Build
	Running simulations
	Work in Progress!

	Miscellaneous Tips
	Add the fsimcluster column to your AWS management console
	FPGA Dev AMI Remote Desktop Setup
	Experimental Support for SSHing into simulated nodes and accessing the internet from within simulations

	Indices and tables

