FireSim Documentation

Sagar Karandikar, Howard Mao,
Donggyu Kim, David Biancolin,
Alon Amid,

Berkeley Architecture Research

Nov 15, 2018

Getting Started:

1 FireSim Basics 3
.1 TWO COMMON USE CASES: . + « ¢ v v e v v e e e et e e e e e e et e e e e e e e e e e e 3
1.1.1 Single-Node Simulation, in Parallel 3

1.1.2 Datacenter/Cluster Simulation e 3

1.2 Other Use Cases v v v v vt ettt e e e e e e e e e 4
1.3 Background/Terminology L e e e e 4
1.4 Using FireSim/The FireSim Workflow o . . 5
2 Initial Setup/Installation 7
2.1 First-time AWS User Setup o o v o e e e e e e e e e e e e e 7
2.1.1 Creatingan AWS ACCOUNE o o v v it i e e e e e e e e e e e e e e e 7

2.1.2 AWSCreditatBerkeley 7

2.1.3 Requesting Limit Increases e 7

2.2 Configuring Required Infrastructure in Your AWS Account 8
22,1 SelectareZiono e e e e e e e e e 8

222 KeySetup o . e e e e e e e 8

223 Check your EC2 Instance Limits 8

224 Start a t2.nano instance to run the remaining configuration commands 9

225 Runscriptsfromthet2.nano o o e 9

22.6 Terminatethe t2.nano oL e e e e e e 10

2.277 Subscribe to the AWS FPGA Developer AMI 10

2.3 Setting up your Manager Instance Lo e e e e e 10
2.3.1 Launching a “Manager Instance™ 10

2.3.2 Settingupthe FireSimRepo 12

2.3.3 Completing Setup Using the Manager 13

3 Running FireSim Simulations 15
3.1 Running a Single Node Simulation e 15
3.1.1 Building target software 15

3.1.2 Setting up the manager configuration Lo 16

3.1.3 Launching a Simulation! e 18

3.2 Running a Cluster Simulation L e e e e e e e e 23
3.2.1 Returning to a clean configurationo 23

3.2.2 Building target software 23

3.2.3 Setting up the manager configuration Lol 24

3.2.4 Launching a Simulation! L e e 26

4 Building Your Own Hardware Designs (FireSim FPGA Images)

4.1 Amazon S3SEtup e e e e e e e e e
42 BuildRecipes. o o . e e e e e e e e e
43 RunningaBuild
Manager Usage (the firesim command)
5.1 OVEIVIEW . . o o oo e e e e e
5.1.1 “Inputs” to the Manager
S5.1.2 0 LoggIng oL e e e e
5.2 Manager Command Line Arguments e
5.2.1 ——runtimeconfigfile FILENAME i v i vt vttt et
522 —-buildconfigfile FILENAME i v v v v v ittt et e e e e
523 —-buildrecipesconfigfile FILENAME o vt v v i v v v
524 ——hwdbconfigfile FILENAME v v v v vttt e e e e e e e e e e e e
52.5 —-overrideconfigdata SECTIONPARAMETERVALUE
52,6 TASK .+ i e e e e
5.3 Manager Tasks oL e e e e e e e
5.3.1 firesim managerinito e e e
532 firesim buildafi. e
533 firesim shareagfi i i i i i i i e e e e e e e e
534 firesim launchrunfarM. o v i vt i i v it et e e e e e e
535 firesim terminaterunfarm e
53.6 firesim infrasetup v i i i i i it e e e e e e e e
5.37 firesim DoOL e e e e e
53.8 firesim K111 . . . o i i i e e e e e e e e e
539 firesim runworkload it e e e e e e e e e e e
53.10 firesim runcheck e
5.4 Manager Configuration Files L e e
54.1 config_runtime.ini e e e
54.2 config_bulld.ini @ e e e e e e e
543 config_build_recipes.ini e e
544 config_hwdb.ind i i i e e e e e e e
5.5 Manager Network Topology Definitions (user_topology .PY) . « « v v v v v v v v v v v v v v u
5.5.1 user_topology.py CONENLS: . . . o v v v v v v vt e e e e e e e e e e e e e e
5.6 AGFI Metadata/Tagging e
Workloads
6.1 Defining Custom Workloads e
6.1.1 Uniform Workload JSON e
6.1.2 Non-uniform Workload JSON (explicit job per simulatednode)
6.2 SPEC2017 o e
6.2.1 Intspeed e e e e e e
6.2.2 Intrate e e e e e
6.3 Running Fedoraon FireSim L e
6.3.1 Building a FireSim-compatible Fedoralmage
6.3.2 Testing or customizing the target software using QEMU
6.3.3 Booting Fedoraon FireSim e
6.4 ISCA 2018 EXPeriments v v v v v vt et e e e e e e e e e e e e e e e
6.4.1 Prerequisites
6.4.2 Building Benchmark Binaries/Rootfses
6.4.3 Figure 5: Ping Latency vs. Configured Link Latency
6.4.4 Figure 6: Network Bandwidth Saturation
6.4.5 Figure 7: Memcached QoS / Thread Imbalance
6.4.6 Figure 8: Simulation Rate vs. Scale L .

33
33
33
34

35
35
35
35
36
36
37
37
37
37
37
37
37
38
38
39
39
40
40
40
40
41
41
41
45
47
49
51
52
57

7

10

11

6.4.7 Figure 9: Simulation Rate vs. Link Latency

6.4.8 Running all experiments at once

Targets
7.1 Restrictions on Target-RTL e
7.2 Generating Different Target-RTL e e
7.3 Rocket Chip Generator-based SoCs (firesim project) o v i
7.3.1 Rocket-based SOCS o L e e e
7.3.2 BOOM-based SOCS o o e e e e
7.3.3 Changing The DRAM Model i
7.4 Midas Examples (midasexamples project) o it i h e e e e e e e e e e e
T4 1 Examples o e e e e e e e e e
Debugging
8.1 Debugging & Testing with RTL Simulation
8.1.1 Target-Level Simulation e
8.1.2 MIDAS-Level Simulation 0 e e e
8.1.3 FPGA-Level Simulation e
8.1.4 ScalaTests o v i i e e e e e e
8.2 Debugging Using FPGA Integrated Logic Analyzers (ILA)
8.2.1 Annotating Signals e e e e e e e e
822 UsingtheILAatRuntime
8.3 Debugging Using TracerV e e e
8.3.1 Building a Design with TracerV L
8.3.2 Enabling Tracingat Runtime ittt
8.3.3 Imterpreting the Trace Result e
8.4 Assertion Synthesis L e e e e
8.4.1 Enabling Assertion Synthesis o e
8.4.2 Runtime Behavior. e
8.4.3 Related Publications e
Tutorial: Developing New Devices
0.1 Getting Started e e e
9.2 Memory-mapped Registers e e
9.3 DMA and INterrupts o v i e e e e e e e e e e e e e e e e e e
9.3.1 TileLink Client Port e e
9.3.2 TileLink Protocol and State Machine L ..
933 INterrupts o e e e e e e e e e e e
9.4 Connecting Devicesto Bus e
9.4.1 SoCMixin Traits o v i i e e e e e e e e e e
9.4.2 Top-Level Design and Configuration vt vt
9.5 Running Test Software L e
9.5.1 Debugging Verilog Simulation o
9.6 Creating Simulation Model e
Supernode
10.1 Intro o o e e e e e
10.2 Build o e e e
10.3 Running simulations ot it e e e e e e e e e e e e e e e e
10.4 Work in Progress! e e e e e

Miscellaneous Tips
11.1 Addthe fsimcluster column to your
11.2 FPGA Dev AMI Remote Desktop Setup

AWS managementconsole

69
69
69
70
70
70
71
71
71

73
73
74
74
75
76
76
76
77
77
77
78
78
78
78
78
79

81
81
82
83
83
83
85
85
85
86
87
88
89

93
93
93
94
94

95
95
95

11.3 Experimental Support for SSHing into simulated nodes and accessing the internet from within simu-

Jations e e e e 96

11.4 Navigating the FireSim Codebase e 97

12 FireSim Asked Questions 99
12.1 T just bumped the FireSim repository to a newer commit and simulations aren’t running. What is

COINZ ONT .« . v o vt it e e e e e e e e e e e e e e e e e e 99

13 Indices and tables 101

FireSim Documentation

New to FireSim? Jump to the FireSim Basics page for more info.

Getting Started: 1

FireSim Documentation

2 Getting Started:

CHAPTER 1

FireSim Basics

FireSim is a cycle-accurate, FPGA-accelerated scale-out computer system simulation platform developed in the Berke-
ley Architecture Research Group in the EECS Department at the University of California, Berkeley.

FireSim is capable of simulating from one to thousands of multi-core compute nodes, derived from silicon-proven
and open target-RTL, with an optional cycle-accurate network simulation tying them together. FireSim runs on FPGAs
in public cloud environments like AWS EC2 F1, removing the high capex traditionally involved in large-scale FPGA-
based simulation.

FireSim is useful both for datacenter architecture research as well as running many single-node architectural exper-
iments in parallel on FPGAs. By harnessing a standardized host platform and providing a large amount of automa-
tion/tooling, FireSim drastically simplifies the process of building and deploying large-scale FPGA-based hardware
simulations.

To learn more, see the FireSim website and the FireSim ISCA 2018 paper.

For a two-minute overview that describes how FireSim simulates a datacenter, see our ISCA 2018 lightning talk on
YouTube.

1.1 Two common use cases:

1.1.1 Single-Node Simulation, in Parallel

In this mode, FireSim allows for simulation of individual Rocket Chip-based nodes without a network, which allows
individual simulations to run at ~150 MHz. The FireSim manager has the ability to automatically distribute jobs to
many parallel simulations, expediting the process of running large workloads like SPEC. For example, users can run
all of SPECInt2017 on Rocket Chip in ~1 day by running the 10 separate workloads in parallel on 10 FPGAs.

1.1.2 Datacenter/Cluster Simulation

In this mode, FireSim also models a cycle-accurate network with parameterizeable bandwidth and link latency, as well
as configurable topology, to accurately model current and future datacenter-scale systems. For example, FireSim has

https://fires.im
https://sagark.org/assets/pubs/firesim-isca2018.pdf
https://www.youtube.com/watch?v=4XwoSe5c8lY
https://www.youtube.com/watch?v=4XwoSe5c8lY

FireSim Documentation

been used to simulate 1024 quad-core Rocket Chip-based nodes, interconnected by a 200 Gbps, 2us network. To learn
more about this use case, see our ISCA 2018 paper or two-minute lightning talk.

1.2 Other Use Cases

This release does not support a non-cycle-accurate network as our AWS Compute Blog Post/Demo used. This feature
will be restored in a future release.

If you have other use-cases that we haven’t covered, feel free to contact us!

1.3 Background/Terminology

Fig. 1: FireSim Infrastructure Diagram

FireSim Manager (firesim) This program (available on your path as £ i resim once we source necessary scripts)
automates the work required to launch FPGA builds and run simulations. Most users will only have to interact
with the manager most of the time. If you’re familiar with tools like Vagrant or Docker, the firesim command
is just like the vagrant and docker commands, but for FPGA simulators instead of VMs/containers.

Manager Instance This is the AWS EC2 instance that you will SSH-into and do work on. This is where you’ll clone
your copy of FireSim and use the FireSim Manager to deploy builds/simulations from.

Build Farm These are instances that are elastically started/terminated by the FireSim manager when you run FPGA
builds. The manager will automatically ship source for builds to these instances and run the Verilog -> FPGA
Image process on them.

4 Chapter 1. FireSim Basics

https://sagark.org/assets/pubs/firesim-isca2018.pdf
https://www.youtube.com/watch?v=4XwoSe5c8lY
https://aws.amazon.com/blogs/compute/bringing-datacenter-scale-hardware-software-co-design-to-the-cloud-with-firesim-and-amazon-ec2-f1-instances/

FireSim Documentation

Run Farm These are a tagged collection of F1 (and M4) instances that the manager automatically launches and
deploys simulations onto. You can launch multiple Run Farms in parallel, each with their own tag, to run
multiple separate simulations in parallel.

To disambiguate between the computers being simulated and the computers doing the simulating, we also define:

Target The design and environment under simulation. Generally, a group of one or more multi-core RISC-V micro-
processors with or without a network between them.

Host The computers executing the FireSim simulation — the Run Farm from above.

We frequently prefix words with these terms. For example, software can run on the simulated RISC-V system (farget-
software) or on a host x86 machine (host-software).

1.4 Using FireSim/The FireSim Workflow

The tutorials that follow this page will guide you through the complete flow for getting an example FireSim simulation
up and running. At the end of this tutorial, you’ll have a simulation that simulates a single quad-core Rocket Chip-
based node with a 4 MB last level cache, 16 GB DDR3, and no NIC. After this, you can continue to a tutorial that
shows you how to simulate a globally-cycle-accurate cluster-scale FireSim simulation. The final tutorial will show
you how to build your own FPGA images with customized hardware. After you complete these tutorials, you can look
at the Advanced documentation in the sidebar to the left.

Here’s a high-level outline of what we’ll be doing in our tutorials:
1. Initial Setup/Installation

(a) First-time AWS User Setup: You can skip this if you already have an AWS account/payment method set
up.

(b) Configuring required AWS resources in your account: This sets up the appropriate VPCs/subnets/security
groups required to run FireSim.

(c) Setting up a “Manager Instance” from which you will coordinate building and deploying simulations.

2. Single-node simulation tutorial: This tutorial guides you through the process of running one simulation on a
Run Farm consisting of a single £1.2x1arge, using our pre-built public FireSim AGFIs.

3. Cluster simulation tutorial: This tutorial guides you through the process of running an 8-node cluster simu-
lation on a Run Farm consisting of one £1.16xlarge, using our pre-built public FireSim AGFIs and switch
models.

4. Building your own hardware designs tutorial (Chisel to FPGA Image): This tutorial guides you through the
full process of taking Rocket Chip RTL and any custom RTL plugged into Rocket Chip and producing a FireSim
AGFI to plug into your simulations. This automatically runs Chisel elaboration, FAME-1 Transformation, and
the Vivado FPGA flow.

Generally speaking, you only need to follow step 4 if you’re modifying Chisel RTL or changing non-runtime config-
urable hardware parameters.

Now, hit next to proceed with setup.

1.4. Using FireSim/The FireSim Workflow 5

FireSim Documentation

6 Chapter 1. FireSim Basics

CHAPTER 2

Initial Setup/Installation

This section will guide you through initial setup of your AWS account to support FireSim, as well as cloning/installing
FireSim on your manager instance.

2.1 First-time AWS User Setup

If you’ve never used AWS before and don’t have an account, follow the instructions below to get started.

2.1.1 Creating an AWS Account

First, you’ll need an AWS account. Create one by going to aws.amazon.com and clicking “Sign Up.” You’ll want to
create a personal account. You will have to give it a credit card number.

2.1.2 AWS Credit at Berkeley

If you’re an internal user at Berkeley and affiliated with UCB-BAR or the RISE Lab, see the RISE Lab Wiki for
instructions on getting access to the AWS credit pool. Otherwise, continue with the following section.

2.1.3 Requesting Limit Increases

In our experience, new AWS accounts do not have access to EC2 F1 instances by default. In order to get access, you
should file a limit increase request.

Follow these steps to do so:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html

You’ll probably want to start out with the following requests, depending on your existing limits:

Request 1:

https://aws.amazon.com
https://rise.cs.berkeley.edu/wiki/resources/aws
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html

FireSim Documentation

Region: US East (Northern Virginia)
Primary Instance Type: fl.2xlarge

Limit: Instance Limit

New limit value: 1

Request 2:

Region: US East (Northern Virginia)
Primary Instance Type: fl.lé6xlarge

Limit: Instance Limit

New limit value: 1

This allows you to run one node on the £1.2xlarge or eight nodes on the f1.16xlarge.

For the “Use Case Description”, you should describe your project and write something about hardware simulation and
mention that information about the tool you’re using can be found at: https://fires.im

This process has a human in the loop, so you should submit it ASAP. At this point, you should wait for the response
to this request.

If you’re at Berkeley/UCB-BAR, you also need to wait until your account has been added to the RISE billing pool,
otherwise your personal CC will be charged for AWS usage.

Hit Next below to continue.

2.2 Configuring Required Infrastructure in Your AWS Account

Once we have an AWS Account setup, we need to perform some advance setup of resources on AWS. You will need
to follow these steps even if you already had an AWS account as these are FireSim-specific.

2.2.1 Select a region

Head to the EC2 Management Console. In the top right corner, ensure that the correct region is selected. You should
select one of: us—east-1 (N. Virginia), us—west-2 (Oregon), or eu-west—1 (Ireland), since F1 instances are
only available in those regions.

Once you select a region, it’s useful to bookmark the link to the EC2 console, so that you’re always sent to the console
for the correct region.

2.2.2 Key Setup

In order to enable automation, you will need to create a key named f i resim, which we will use to launch all instances
(Manager Instance, Build Farm, Run Farm).

To do so, click “Key Pairs” under “Network & Security” in the left-sidebar. Follow the prompts, name the key
firesim, and save the private key locally as firesim.pem. You can use this key to access all instances from your
local machine. We will copy this file to our manager instance later, so that the manager can also use it.

2.2.3 Check your EC2 Instance Limits

AWS limits access to particular instance types for new/infrequently used accounts to protect their infrastructure.
You should make sure that your account has access to £1.2xlarge, f1.1l6xlarge, m4.1l6xlarge, and c4.
4xlarge instances by looking at the “Limits” page in the EC2 panel, which you can access here. The values listed

8 Chapter 2. Initial Setup/Installation

https://fires.im
https://console.aws.amazon.com/ec2/v2/home
https://console.aws.amazon.com/ec2/v2/home#Limits:

FireSim Documentation

on this page represent the maximum number of any of these instances that you can run at once, which will limit the
size of simulations (# of nodes) that you can run. If you need to increase your limits, follow the instructions on the
Requesting Limit Increases page. To follow this guide, you need to be able to run one £1.2x1large instance and two
c4.4xlarge instances.

2.2.4 Start a t2.nano instance to run the remaining configuration commands

To avoid having to deal with the messy process of installing packages on your local machine, we will spin up a very
cheap t2.nano instance to run a series of one-time aws configuration commands to setup our AWS account for
FireSim. At the end of these instructions, we’ll terminate the t2 .nano instance. If you happen to already have
boto3 and the AWS CLI installed on your local machine, you can do this locally.

Launch a £ 2 . nano by following these instructions:
1. Go to the EC2 Management Console and click “Launch Instance”
On the AMI selection page, select “Amazon Linux AML. ..”, which should be the top option.
On the Choose an Instance Type page, select t 2 . nano.
Click “Review and Launch” (we don’t need to change any other settings)
On the review page, click “Launch”

Select the firesim key pair we created previously, then click Launch Instances.

A o

Click on the instance name and note its public IP address.

2.2.5 Run scripts from the t2.nano

SSH into the £ 2 . nano like so:

ssh -1 firesim.pem ec2-user@INSTANCE_PUBLIC_IP

Which should present you with something like:

Last login: Mon Feb 12 21:11:27 2018 from 136.152.143.34

_| (/ Amazon Linux AMI

https://aws.amazon.com/amazon—-linux-ami/2017.09-release-notes/
4 package (s) needed for security, out of 5 available

Run "sudo yum update" to apply all updates.
[ec2-user@ip-172-30-2-66 ~]$

On this machine, run the following:

aws configure
[follow prompts]

See https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#configure-cli-launch-ec2 for more
about aws configure. You should specify the same region that you chose above (one of us—east-1, us-west-2,
eu-west—1) and set the default output format to json.

Again on the t 2 . nano instance, do the following:

2.2. Configuring Required Infrastructure in Your AWS Account 9

https://console.aws.amazon.com/ec2/v2/home
https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#configure-cli-launch-ec2

FireSim Documentation

sudo yum -y install python-pip

sudo pip install boto3

wget https://raw.githubusercontent.com/firesim/firesim/master/scripts/aws—setup.py
python aws—setup.py

This will create a VPC named firesim and a security group named firesim in your account.

2.2.6 Terminate the t2.nano

At this point, we are finished with the general account configuration. You should terminate the t2.nano instance you
created, since we do not need it anymore (and it shouldn’t contain any important data).

2.2.7 Subscribe to the AWS FPGA Developer AMI

Go to the AWS Marketplace page for the FPGA Developer AMI. Click the button to subscribe to the FPGA Dev AMI
(it should be free) and follow the prompts to accept the EULA (but do not launch any instances).

Now, hit next to continue on to setting up our Manager Instance.

2.3 Setting up your Manager Instance

2.3.1 Launching a “Manager Instance”

Now, we need to launch a “Manager Instance” that acts as a “head” node that we will ssh or mosh into to work from.
Since we will deploy the heavy lifting to separate c4 . 4x1large and f£1 instances later, the Manager Instance can be
a relatively cheap instance. In this guide, however, we will use a c4 . 4x1arge, running the AWS FPGA Developer
AMI (be sure to subscribe if you have not done so. See Subscribe to the AWS FPGA Developer AMI).

Head to the EC2 Management Console. In the top right corner, ensure that the correct region is selected.
To launch a manager instance, follow these steps:

1. From the main page of the EC2 Management Console, click Launch Instance. We use an on-demand
instance here, so that your data is preserved when you stop/start the instance, and your data is not lost when
pricing spikes on the spot market.

2. When prompted to select an AMI, search in the Community AMIs tab for “FPGA” and select the option that
starts with FPGA Developer AMI - 1.4.0. DO NOT USE ANY OTHER VERSION.

3. When prompted to choose an instance type, select the instance type of your choosing. A good choice is a
cd.4xlarge.

4. On the “Configure Instance Details” page:

(a) First make sure that the firesim VPC is selected in the drop-down box next to “Network”. Any subnet
within the firesim VPC is fine.

(b) Additionally, check the box for “Protect against accidental termination.” This adds a layer of protection to
prevent your manager instance from being terminated by accident. You will need to disable this setting
before being able to terminate the instance using usual methods.

(c) Also on this page, expand “Advanced Details” and in the resulting text box, paste the following:

10 Chapter 2. Initial Setup/Installation

https://aws.amazon.com/marketplace/pp/B06VVYBLZZ
https://console.aws.amazon.com/ec2/v2/home

FireSim Documentation

#!/bin/bash

echo "machine launch script started" > /home/centos/machine-launchstatus
sudo yum install -y mosh

sudo yum groupinstall -y "Development tools"

sudo yum install -y gmp-devel mpfr-devel libmpc-devel zlib-devel vim git java,,
—Jjava-devel

curl https://bintray.com/sbt/rpm/rpm | sudo tee /etc/yum.repos.d/bintray-sbt-
—Irpm.repo

sudo yum install -y sbt texinfo gengetopt

sudo yum install -y expat-devel libusbl-devel ncurses-devel cmake

—"perl (ExtUtils: :MakeMaker)"

deps for poky

sudo yum install -y python34 patch diffstat texi2html texinfo subversion
—chrpath git wget

deps for gemu

sudo yum install -y gtk3-devel

install DTC. it's not available in repos in FPGA AMI

DTCversion=dtc-1.4.4

wget https://git.kernel.org/pub/scm/utils/dtc/dtc.git/snapshot/$DTCversion.
—tar.gz

tar —-xvf $DTCversion.tar.gz

cd $DTCversion

make —-7j16
make install
cd

rm -rf $DTCversion.tar.gz
rm —-rf $DTCversion

get a proper version of git

sudo yum -y remove git

sudo yum -y install epel-release

sudo yum -y install https://centos7.iuscommunity.org/ius-release.rpm
sudo yum -y install git2u

install verilator

git clone http://git.veripool.org/git/verilator

cd verilator/

git checkout v4.002

autoconf && ./configure && make -jl6 && sudo make install
cd

bash completion for manager
sudo yum -y install bash-completion

graphviz for manager
sudo yum -y install graphviz python-devel

these need to match what's in deploy/requirements.txt
sudo pip install fabric==1.14.0

sudo pip install boto3==1.6.2

sudo pip install colorama==0.3.7

sudo pip install argcomplete==1.9.3

sudo pip install graphviz==0.8.3

for some of our workload plotting scripts

sudo pip install matplotlib==2.2.2

sudo pip install pandas==0.22.0

(continues on next page)

2.3. Setting up your Manager Instance 11

FireSim Documentation

(continued from previous page)

sudo activate-global-python-argcomplete

get a regular prompt
echo "PS1="\u@\H:\w\\$ '" >> /home/centos/.bashrc
echo "machine launch script completed" >> /home/centos/machine-launchstatus

This will pre-install all of the dependencies needed to run FireSim on your instance.

5. On the next page (“Add Storage”), increase the size of the root EBS volume to ~300GB. The default of 150GB
can quickly become tight as you accumulate large Vivado reports/outputs, large waveforms, XSim outputs, and
large root filesystems for simulations. You can get rid of the small (5GB) secondary volume that is added by
default.

6. You can skip the “Add Tags” page, unless you want tags.

7. On the “Configure Security Group” page, select the £ iresim security group that was automatically created for
you earlier.

8. On the review page, click the button to launch your instance.

Make sure you select the £i1 resim key pair that we setup earlier.

Access your instance

We HIGHLY recommend using mosh instead of ssh or using ssh with a screen/tmux session running on your
manager instance to ensure that long-running jobs are not killed by a bad network connection to your manager instance.
On this instance, the mosh server is installed as part of the setup script we pasted before, so we need to first ssh into
the instance and make sure the setup is complete.

In either case, ssh into your instance (e.g. ssh -1 firesim.pem centos@YOUR_INSTANCE_IP) and wait
until the ~/machine-launchstatus file contains all the following text:

centos@ip-172-30-2-140.us-west-2.compute.internal:~$ cat machine-launchstatus
machine launch script started
machine launch script completed!

Once this line appears, exit and re-ssh into the system. If you want to use mosh, mosh back into the system.

Key Setup, Part 2
Now that our manager instance is started, copy the private key that you downloaded from AWS earlier (firesim.

pem)to ~/firesim.pem on your manager instance. This step is required to give the manager access to the instances
it launches for you.

2.3.2 Setting up the FireSim Repo

We’re finally ready to fetch FireSim’s sources. Run:

git clone https://github.com/firesim/firesim
cd firesim
./build-setup.sh fast

This will have initialized submodules and installed the RISC-V tools and other dependencies.

Next, run:

12 Chapter 2. Initial Setup/Installation

https://mosh.org/

FireSim Documentation

source sourceme-fl-manager.sh

This will have initialized the AWS shell, added the RISC-V tools to your path, and started an ssh-agent that
supplies ~/firesim.pem automatically when you use ssh to access other nodes. Sourcing this the first time will
take some time — however each time after that should be instantaneous. Also, if your firesim.pem key requires a
passphrase, you will be asked for it here and ssh-agent should cache it.

Every time you login to your manager instance to use FireSim, you should ‘‘cd‘‘ into your firesim directory and
source this file again.

2.3.3 Completing Setup Using the Manager

The FireSim manager contains a command that will interactively guide you through the rest of the FireSim setup
process. To run it, do the following:

firesim managerinit

This will first prompt you to setup AWS credentials on the instance, which allows the manager to automati-
cally manage build/simulation nodes. See https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#
configure-cli-launch-ec2 for more about these credentials. When prompted, you should specify the same region that
you chose above and set the default output format to json.

Next, it will create initial configuration files, which we will edit in later sections. Finally, it will prompt you for an
email address, which is used to send email notifications upon FPGA build completion and optionally for workload
completion. You can leave this blank if you do not wish to receive any notifications, but this is not recommended.

Now you’re ready to launch FireSim simulations! Hit Next to learn how to run single-node simulations.

2.3. Setting up your Manager Instance 13

https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#configure-cli-launch-ec2
https://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html#configure-cli-launch-ec2

FireSim Documentation

14 Chapter 2. Initial Setup/Installation

CHAPTER 3

Running FireSim Simulations

These guides will walk you through running two kinds of simulations:
* First, we will simulate a single-node, non-networked target, using a pre-generated hardware image.
* Then, we will simulate an eight-node, networked cluster target, also using a pre-generated hardware image.

Hit next to get started!

3.1 Running a Single Node Simulation

Now that we’ve completed the setup of our manager instance, it’s time to run a simulation! In this section, we will
simulate 1 target node, for which we will need a single £1.2xlarge (1 FPGA) instance.

Make sure you are ssh or mosh’d into your manager instance and have sourced sourceme-fl-manager.sh
before running any of these commands.

3.1.1 Building target software

In these instructions, we’ll assume that you want to boot Linux on your simulated node. To do so, we’ll need to build
our FireSim-compatible RISC-V Linux distro. For this tutorial, we will use a simple buildroot-based distribution. You
can do this like so:

cd firesim/sw/firesim-software
./sw-manager.py -c br-disk.json build

This process will take about 10 to 15 minutes on a c4.4x1large instance. Once this is completed, you’ll have the
following files:

e firesim/sw/firesim-software/images/br-disk-bin - a bootloader + Linux kernel image for
the nodes we will simulate.

e firesim/sw/firesim-software/images/br-disk.img - a disk image for each the nodes we will
simulate

15

FireSim Documentation

These files will be used to form base images to either build more complicated workloads (see the Defining Custom
Workloads section) or to copy around for deploying.

3.1.2 Setting up the manager configuration

All runtime configuration options for the manager are set in a file called firesim/deploy/config_runtime.
ini. In this guide, we will explain only the parts of this file necessary for our purposes. You can find full descriptions
of all of the parameters in the Manager Configuration Files section.

If you open up this file, you will see the following default config (assuming you have not modified it):

RUNTIME configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager—-Configuration-Files.rst for documentation,,
—~of all of these params.

[runfarm]
runfarmtag=mainrunfarm

fl_l6xlarges=1
m4_lé6xlarges=0
fl_2xlarges=0

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=example_8config
no_net_num_nodes=2
linklatency=6405
switchinglatency=10
netbandwidth=200
profileinterval=-1

This references a section from config _hwconfigs.ini

In homogeneous configurations, use this to set the hardware config deployed
for all simulators

defaulthwconfig=firesim-quadcore-nic-ddr3-1lc4mb

[tracing]
enable=no
startcycle=0
endcycle=-1

[workload]
workloadname=linux-uniform. json
terminateoncompletion=no

We’ll need to modify a couple of these lines.

First, let’s tell the manager to use the correct numbers and types of instances. You’ll notice that in the [runfarm]
section, the manager is configured to launch a Run Farm named mainrunfarm, consisting of one £1.16xlarge
andnomd.l6xlargesor £1.2xlarges. The tag specified here allows the manager to differentiate amongst many
parallel run farms (each running a workload) that you may be operating — but more on that later.

Since we only want to simulate a single node, let’s switch to using one £1.2xlarge andno £1.16xlarges. To
do so, change this section to:

16 Chapter 3. Running FireSim Simulations

FireSim Documentation

[runfarm]

per aws restrictions, this tag cannot be longer than 255 chars
runfarmtag=mainrunfarm

fl_16xlarges=0

m4_lo6xlarges=0

fl_2xlarges=1

You'll see other parameters here, like runinstancemarket, spotinterruptionbehavior, and
spotmaxprice. If you're an experienced AWS user, you can see what these do by looking at the Manager Config-
uration Files section. Otherwise, don’t change them.

Now, let’s change the [targetconfig] section to model the correct target design. By default, it is set to model an
8-node cluster with a cycle-accurate network. Instead, we want to model a single-node with no network. To do so, we
will need to change a few items in this section:

[targetconfig]
topology=no_net_config
no_net_num_nodes=1
linklatency=6405
switchinglatency=10
netbandwidth=200

This references a section from config hwconfigs.ini

In homogeneous configurations, use this to set the hardware config deployed
for all simulators

defaulthwconfig=firesim-quadcore-no-nic-ddr3-1lcdmb

Note that we changed three of the parameters here: topology is now set to no_net_config, indicating that
we do not want a network. Then, no_net_num_nodes is set to 1, indicating that we only want to simu-
late one node. Lastly, we changed defaulthwconfig from firesim-quadcore-nic-ddr3-11lc4mb to
firesim-quadcore-no-nic-ddr3-11lc4mb. Notice the subtle difference in this last option? All we did is
switch to a hardware configuration that does not have a NIC. This hardware configuration models a Quad-core Rocket
Chip with 4 MB of L2 cache and 16 GB of DDR3, and no network interface card.

We will leave the last section ([workload]) unchanged here, since we do want to run the buildroot-based Linux
on our simulated system. The terminateoncompletion feature is an advanced feature that you can learn more
about in the Manager Configuration Files section.

As a final sanity check, your config_runtime. ini file should now look like this:

RUNTIME configuration for the FireSim Simulation Manager
See docs/Configuration-Details.rst for documentation of all of these params.

[runfarm]
runfarmtag=mainrunfarm

fl_l6xlarges=0
m4_l6xlarges=0
fl_2xlarges=1

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=no_net_config
no_net_num_nodes=1

(continues on next page)

3.1. Running a Single Node Simulation 17

FireSim Documentation

(continued from previous page)

linklatency=6405
switchinglatency=10
netbandwidth=200

This references a section from config hwconfigs.ini

In homogeneous configurations, use this to set the hardware config deployed
for all simulators

defaulthwconfig=firesim-quadcore-no-nic-ddr3-11lc4mb

[workload]
workloadname=linux-uniform. json
terminateoncompletion=no

Attention: [Advanced wusers] Simulating BOOM instead of Rocket Chip: If you
would like to simulate a single-core BOOM as a target, set defaulthwconfig to
fireboom-singlecore-no-nic-ddr3-11lcédmb.

3.1.3 Launching a Simulation!

Now that we’ve told the manager everything it needs to know in order to run our single-node simulation, let’s actually
launch an instance and run it!

Starting the Run Farm

First, we will tell the manager to launch our Run Farm, as we specified above. When you do this, you will start getting
charged for the running EC2 instances (in addition to your manager).

To do launch your run farm, run:

firesim launchrunfarm

You should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim_
—launchrunfarm

FireSim Manager. Docs: http://docs.fires.im

Running: launchrunfarm

Waiting for instance boots: fl.l6xlarges

Waiting for instance boots: m4.l6xlarges

Waiting for instance boots: fl.2xlarges

1-0d6c29ac507139163 booted!

The full log of this run is:
/home/centos/firesim—new/deploy/logs/2018-05-19--00-19-43-1launchrunfarm-
—~B4Q2ROAK0JN9EDE4 . 1og

The output will rapidly progresstoWaiting for instance boots: fl.2xlarges and then take a minute
or two while your £1.2xlarge instance launches. Once the launches complete, you should see the instance id
printed and the instance will also be visible in your AWS EC2 Management console. The manager will tag the in-
stances launched with this operation with the value you specified above as the runfarmtag parameter from the
config_runtime.ini file, which we left set as mainrunfarm. This value allows the manager to tell multiple

18 Chapter 3. Running FireSim Simulations

https://github.com/ucb-bar/riscv-boom

FireSim Documentation

Run Farms apart — i.e., you can have multiple independent Run Farms running different workloads/hardware configu-
rations in parallel. This is detailed in the Manager Configuration Files and the firesim launchrunfarm sections — you
do not need to be familiar with it here.

Setting up the simulation infrastructure

The manager will also take care of building and deploying all software components necessary to run your simulation.
The manager will also handle flashing FPGAs. To tell the manager to setup our simulation infrastructure, let’s run:

firesim infrasetup

For a complete run, you should expect output like the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim
—infrasetup

FireSim Manager. Docs: http://docs.fires.im

Running: infrasetup

Building FPGA software driver for FireSimNoNIC-FireSimRocketChipQuadCoreConfig-
—FireSimDDR3FRFCFSLLC4MBConfig
[172.30.2.174] Executing task 'instance_liveness'

[172.30.2.174] Checking if host instance is up...

[172.30.2.174] Executing task 'infrasetup_node_wrapper'

[172.30.2.174] Copying FPGA simulation infrastructure for slot: 0.
[172.30.2.174] Installing AWS FPGA SDK on remote nodes.

[172.30.2.174] Unloading EDMA Driver Kernel Module.

[172.30.2.174] Copying AWS FPGA EDMA driver to remote node.
[172.30.2.174] Clearing FPGA Slot O.

[172.30.2.174] Flashing FPGA Slot: 0 with agfi: agfi-0eaa90f6bb893c0f7.
[172.30.2.174] Loading EDMA Driver Kernel Module.

The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-32-02-infrasetup-9DJJCX29PF4GAIVL.
—log

Many of these tasks will take several minutes, especially on a clean copy of the repo. The console output here contains
the “user-friendly” version of the output. If you want to see detailed progress as it happens, tail -f the latest logfile
in firesim/deploy/logs/.

At this point, the £1.2x1arge instance in our Run Farm has all the infrastructure necessary to run a simulation.
So, let’s launch our simulation!

Running a simulation!

Finally, let’s run our simulation! To do so, run:

firesim runworkload

This command boots up a simulation and prints out the live status of the simulated nodes every 10s. When you do this,
you will initially see output like:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim
—runworkload

FireSim Manager. Docs: http://docs.fires.im

Running: runworkload

(continues on next page)

3.1. Running a Single Node Simulation 19

FireSim Documentation

(continued from previous page)

Creating the directory: /home/centos/firesim-new/deploy/results-workload/2018-05-19--
—00-38-52-1inux-uniform/
[172.30.2.174] Executing task 'instance_liveness'

[172.30.2.174] Checking if host instance is up...
[172.30.2.174] Executing task 'boot_simulation_wrapper'
[172.30.2.174] Starting FPGA simulation for slot: 0.
[172.30.2.174] Executing task 'monitor_jobs_wrapper'

If you don’t look quickly, you might miss it, since it will get replaced with a live status page:

FireSim Simulation Status @ 2018-05-19 00:38:56.062737

This workload's output is located in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/
This run's log is located in:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-
—JS5IGTV166X169DZ.log

This status will update every 10s.

1/1 instances are still running.
1/1 simulations are still running.

This will only exit once all of the simulated nodes have shut down. So, let’s let it run and open another ssh connection
to the manager instance. From there, cd into your firesim directory again and source sourceme-fl-manager.
sh again to get our ssh key setup. To access our simulated system, ssh into the IP address being printed by the status
page, from your manager instance. In our case, from the above output, we see that our simulated system is running
on the instance with IP 172.30.2.174. So, run:

[RUN THIS ON YOUR MANAGER INSTANCE!]
ssh 172.30.2.174

This will log you into the instance running the simulation. Then, to attach to the console of the simulated system, run:

screen -r fsimO

Voila! You should now see Linux booting on the simulated system and then be prompted with a Linux login prompt,
like so:

[truncated Linux boot output]

[0.020000] VFS: Mounted root (ext2 filesystem) on device 254:0.
[0.020000] devtmpfs: mounted
[0.020000] Freeing unused kernel memory: 140K

(continues on next page)

20 Chapter 3. Running FireSim Simulations

FireSim Documentation

(continued from previous page)

[0.020000] This architecture does not have kernel memory protection.
mount: mounting sysfs on /sys failed: No such device

Starting logging: OK

Starting mdev...

mdev: /sys/dev: No such file or directory

modprobe: can't change directory to '/lib/modules': No such file or directory
Initializing random number generator... done.

Starting network: ip: SIOCGIFFLAGS: No such device

ip: can't find device 'ethO'

FAIL

Starting dropbear sshd: OK

Welcome to Buildroot
buildroot login:

You can ignore the messages about the network — that is expected because we are simulating a design without a NIC.

Now, you can login to the system! The username is root and the password is firesim. At this point, you should be
presented with a regular console, where you can type commands into the simulation and run programs. For example:

Welcome to Buildroot

buildroot login: root

Password:

uname -a

Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018,
—riscv64 GNU/Linux

#

At this point, you can run workloads as you’d like. To finish off this tutorial, let’s poweroff the simulated system and
see what the manager does. To do so, in the console of the simulated system, run poweroff -—f:

Welcome to Buildroot

buildroot login: root

Password:

uname -a

Linux buildroot 4.15.0-rc6-31580-g9c3074b5c2cd #1 SMP Thu May 17 22:28:35 UTC 2018,
—riscv64 GNU/Linux

poweroff —f

You should see output like the following from the simulation console:

poweroff —-f

[12.456000] reboot: Power down

Power off

time elapsed: 468.8 s, simulation speed = 88.50 MHz
xxx PASSED xx* after 41492621244 cycles

Runs 41492621244 cycles

[PASS] FireSimNoNIC Test

SEED: 1526690334

Script done, file is uartlog

[screen is terminating]

You’ll also notice that the manager polling loop exited! You’ll see output like this from the manager:

FireSim Simulation Status @ 2018-05-19 00:46:50.075885

(continues on next page)

3.1. Running a Single Node Simulation 21

FireSim Documentation

(continued from previous page)

This workload's output is located in:
/home/centos/firesim—new/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/
This run's log is located in:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-
—JS5IGTV166X169DZ.log

This status will update every 10s.

Instance IP: 172.30.2.174 | Job: linux-uniformO | Sim running: False

1/1 instances are still running.

0/1 simulations are still running.

FireSim Simulation Exited Successfully. See results in:
/home/centos/firesim-new/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/
The full log of this run is:
/home/centos/firesim-new/deploy/logs/2018-05-19--00-38-52-runworkload-
—JS5IGTV166X169DZ. log

If you take a look at the workload output directory given in the manager output (in this case, /home/centos/
firesim-new/deploy/results-workload/2018-05-19--00-38-52-1inux-uniform/), you’ll
see the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy/results—
—workload/2018-05-19--00-38-52-1inux-uniform$ 1ls —-la =*/=

-rw-rw-r—— 1 centos centos 797 May 19 00:46 linux-uniformO/memory_stats.csv
-rw-rw-r-— 1 centos centos 125 May 19 00:46 linux-uniformO/os-release
-rw-rw-r-— 1 centos centos 7316 May 19 00:46 linux-uniformO/uartlog

What are these files? They are specified to the manager in a configuration file (firesim/deploy/workloads/
linux-uniform. json) as files that we want automatically copied back to our manager after we run a simulation,
which is useful for running benchmarks automatically. The Defining Custom Workloads section describes this process
in detail.

For now, let’s wrap-up our tutorial by terminating the £1 . 2x1arge instance that we launched. To do so, run:

firesim terminaterunfarm

Which should present you with the following:

centos@ip-172-30-2-111.us-west-2.compute.internal:~/firesim-new/deploy$ firesim
—terminaterunfarm

FireSim Manager. Docs: http://docs.fires.im

Running: terminaterunfarm

IMPORTANT!: This will terminate the following instances:

(continues on next page)

22 Chapter 3. Running FireSim Simulations

FireSim Documentation

(continued from previous page)

fl.l6xlarges

[]

m4.l6xlarges

[]

fl.2xlarges

['i-0d6c29ac507139163"]

Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.

You must type yes then hit enter here to have your instances terminated. Once you do so, you will see:

[truncated output from above]

Type yes, then press enter, to continue. Otherwise, the operation will be cancelled.
yes

Instances terminated. Please confirm in your AWS Management Console.

The full log of this run is:
/home/centos/firesim—new/deploy/logs/2018-05-19--00-51-54-terminaterunfarm-
—T9ZAED3LJUQQ3KON. log

At this point, you should always confirm in your AWS management console that the instance is in the shutting-
down or terminated states. You are ultimately responsible for ensuring that your instances are terminated
appropriately.

Congratulations on running your first FireSim simulation! At this point, you can check-out some of the advanced
features of FireSim in the sidebar to the left (for example, we expect that many people will be interested in the ability
to automatically run the SPEC17 benchmarks: SPEC 2017), or you can continue on with the cluster simulation tutorial.

3.2 Running a Cluster Simulation

Now, let’s move on to simulating a cluster of eight nodes, interconnected by a network with one 8-port Top-of-Rack
(ToR) switch and 200 Gbps, 2us links. This will require one £1.16xlarge (8 FPGA) instance.

Make sure you are ssh or mosh’d into your manager instance and have sourced sourceme—fl-manager.sh
before running any of these commands.

3.2.1 Returning to a clean configuration

If you already ran the single-node tutorial, let’s return to a clean FireSim manager configuration by doing the following:

cd firesim/deploy
cp sample-backup-configs/sample_config_runtime.ini config_runtime.ini

3.2.2 Building target software

If you already built target software during the single-node tutorial, you can skip to the next part (Setting up the manager
configuration). If you haven’t followed the single-node tutorial, continue with this section.

In these instructions, we’ll assume that you want to boot the buildroot-based Linux distribution on each of the nodes
in your simulated cluster. To do so, we’ll need to build our FireSim-compatible RISC-V Linux distro. You can do this
like so:

cd firesim/sw/firesim-software
./sw-manager.py -c br-disk.json build

3.2. Running a Cluster Simulation 23

FireSim Documentation

This process will take about 10 to 15 minutes on a c4 . 4x1large instance. Once this is completed, you’ll have the
following files:

e firesim/sw/firesim-software/images/br-disk-bin - a bootloader + Linux kernel image for
the nodes we will simulate.

e firesim/sw/firesim-software/images/br-disk.img - a disk image for each the nodes we will
simulate

These files will be used to form base images to either build more complicated workloads (see the Defining Custom
Workloads section) or to copy around for deploying.

3.2.3 Setting up the manager configuration

All runtime configuration options for the manager are set in a file called firesim/deploy/config_runtime.
ini. In this guide, we will explain only the parts of this file necessary for our purposes. You can find full descriptions
of all of the parameters in the Manager Configuration Files section.

If you open up this file, you will see the following default config (assuming you have not modified it):

RUNTIME configuration for the FireSim Simulation Manager
See docs/Advanced-Usage/Manager/Manager—Configuration-Files.rst for documentation,
—of all of these params.

[runfarm]
runfarmtag=mainrunfarm

fl_1l6xlarges=1
m4_lé6xlarges=0
fl_2xlarges=0

runinstancemarket=ondemand
spotinterruptionbehavior=terminate
spotmaxprice=ondemand

[targetconfig]
topology=example_8config
no_net_num_nodes=2
linklatency=6405
switchinglatency=10
netbandwidth=200
profileinterval=-1

This references a section from config hwconfigs.ini

In homogeneous configurations, use this to set the hardware config deployed
for all simulators

defaulthwconfig=firesim-quadcore-nic-ddr3-11lc4dmb

[tracing]
enable=no
startcycle=0